1.2.2基本初等函数的导数公式及导数的运算法则(共3课时)
- 格式:ppt
- 大小:975.00 KB
- 文档页数:40
第 1 页.2 根本初等函数的导数公式及导数的运算法那么〔3〕班级: 姓名: 小组:学习目的 1.理解复合函数的概念,熟悉复合函数的求导法那么; 2.会运用复合函数的求导法那么求一些复合函数的导数. 学习重点难点重点:牢记复习函数的求导法那么难点:利用复合函数的求导法那么求复合函数的导数 学法指导通过课前自主预习,纯熟掌握复合函数导数的求导法那么;小组合作探究得出结论. 课前预习〔阅读课本17页,独立完成以下题目〕一般地,对于两个函数()()x g u u f y ==,,假如通过变量u ,使y 可以表示成 ,那么称这个函数为函数()()x g u u f y ==和的复合函数,记作 。
复合函数))((x g f y =的导函数和函数()()x g u u f y ==,的导数间的关系为='y即y 对x 的导数等于预习评价〔学生独立完成,老师通过修改理解掌握情况〕 1.函数()232+=x y 的导数是 〔 〕A 、64+xB 、46x -C 、128+xD 、128-x2.()32ln +=x y ,那么()=1'f〔1〕xe y -=2 〔2〕3cosx y =课堂学习研讨、合作交流探究一:复合函数的导数()223+=x y ,⎪⎭⎫ ⎝⎛+=62sin πx y考虑1.这两个函数都是复合函数吗?考虑2.试说明考虑1中的复合函数是如何复合的?()223+=x y ,()()23,2+==x x g u u f 的导数.考虑4.观察考虑3中导数有何关系?探究二:复合函数导数的应用 例1:求以下函数的导数. 〔1〕105.0+-=x e y 〔2〕)sin(ϕπ+=x y 〔3〕()132log 22++=x x y例2:曲线3431)(3+=x x f .求曲线在点)4,2(P 处的切线方程.当堂检测1. 函数xy 1ln=的导数是 〔 〕 A 、x B 、1x C 、1x- D 、x - 2.,cos sin )(x x f -=α那么)(αf '=3.函数x x x f ln )(=. 求函数图像在点1=x 的切线方程.4.求以下函数的导数.(1) xx y sin 13-= (2) )52sin(2+•=x x y学后反思。
§1.2.2基本初等函数的导数公式
及导数的运算法则
【教学目标】
1.知识与技能:
熟练掌握基本初等函数的导数公式;掌握导数的四则运算法则;能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
2.过程与方法:
通过对每个公式的针对性简单练习,使学生掌握基本初等函数的导数公式,通过8个基本初等函数的整合练习,加深理解导数的运算法则,以及解题的简洁性和变式的灵活性.
3.情感态度与价值观:
通过对新知的理解与巩固,培养学生创新能力,应变能力,运算能力,思维敏捷度,使学生体会到成功的喜悦,培养学生的学习兴趣.
【教学重点与难点】
1.重点:基本初等函数的导数公式、导数的四则运算法则.
2.难点:基本初等函数的导数公式和导数的四则运算法则的应用.
【教学手段】
多媒体幻灯片
【学习目标】
1.掌握基本函数的导数公式,灵活运用公式求某些函数的导数.
2.理解函数的和、差、积、商的求导法则,能够用法则求一些函数的导数.
【教学过程】。
1.2.2 基本初等函数的导数公式及运算法则1.函数y =cos x 1-x 的导数是 ( ). A.-sin x +x sin x (1-x )2B.x sin x -sin x -cos x (1-x )2C.cos x -sin x +x sin x (1-x )2D.cos x -sin x +x sin x 1-x2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值为( ).A.193B.103C.133D.1633.已知f ⎝ ⎛⎭⎪⎫1x =x 1+x,则f ′(x )等于 ( ). A.11+x B .-11+x C.1(1+x )2 D .-1(1+x )2 4.若质点的运动方程是s =t sin t ,则质点在t =2时的瞬时速度为_______5.若f (x )=log 3(x -1),则f ′(2)=________.6.过原点作曲线y =e x 的切线,求切点的坐标及切线的斜率.7.函数y =(x -a )(x -b )在x =a 处的导数为 ( ).A .abB .-a (a -b )C .0D .a -b8.当函数y =x 2+a 2x (a >0)在x =x 0处的导数为0时,那么x 0=( ).A .aB .±aC .-aD .a 29.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.10.函数f (x )=x 3+4x +5的图象在x =1处的切线在x 轴上的截距为________.11.曲线y =e 2x ·cos 3x 在(0,1)处的切线与直线L 的距离为5,求直线L 的方程.12.(创新拓展)求证:可导的奇函数的导函数是偶函数.1解析 y ′=⎝ ⎛⎭⎪⎫cos x 1-x ′=(-sin x )(1-x )-cos x ·(-1)(1-x )2 =cos x -sin x +x sin x (1-x )2. 答案 C2解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103.答案 B3解析 令1x =t ,则f (t )=1t1+1t =11+t ,∴f (x )=11+x ,f ′(x )=⎝ ⎛⎭⎪⎫11+x ′=-1(1+x )2. 答案 D4解析 s ′=(t sin t )′=sin t +t cos t ,∴s ′(2)=sin 2+2cos 2.答案 sin 2+2cos 25解析 f ′(x )=[log 3(x -1)]′=1(x -1)ln 3,∴f ′(2)=1ln 3.答案 1ln 36解 ∵(e x )′=e x ,设切点坐标为(x 0,e x 0),则过该切点的直线的斜率为e x 0,∴所求切线方程为y -e x 0=e x 0(x -x 0).∵切线过原点,∴-e x 0=-x 0·e x 0,x 0=1.∴切点为(1,e),斜率为e.7解析 ∵y =x 2-(a +b )x +ab ,∴y ′=2x -(a +b ),∴y ′|x =a =2a -(a +b )=a -b .答案 D8解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 20-a 2=0得x 0=±a .答案 B9解析 f ′(x )=2(2x +a )·2=4(2x +a ),f ′(2)=16+4a =20,∴a =1. 答案 110解析 f ′(x )=3x 2+4,f ′(1)=7,f (1)=10,∴y -10=7(x -1),当y =0时,x =-37.答案 -3711解 y ′=(e 2x )′·cos 3x +e 2x ·(cos 3x )′=2e 2x ·cos 3x -3e 2x ·sin 3x,∴y ′|x =0=2.∴经过点(0,1)的切线方程为y -1=2(x -0),即y =2x +1.设适合题意的直线方程为y =2x +b , 根据题意,得5=|b -1|5,∴b=6或-4.∴适合题意的直线方程为y=2x+6或y=2x-4.12证明设f(x)是奇函数,则f(-x)=-f(x),两边对等求导,得f′(-x)·(-x)′=-f′(x),即-f′(-x)=-f′(x),∴f′(-x)=f′(x).故命题成立.。
1.2.2基本初等函数的导数公式及导数的运算法则(一)教学目的:1熟练掌握基本初等函数的导数公式。
2掌握导数的四则运算法则;3能利用给出的公式和法则求解函数的导数。
教学重点难点重点:基本初等函数的导数公式、导数的四则运算法则难点:基本初等函数的导数公式和导数的四则运算法则的应用教学安排:两课时教学过程:引入:复习巩固导数的基本公式,及其基本运算规律。
且知识讲解:一:基本初等函数的导数公式为了方便我们将可以直接使用的基本初等函数的导数公式表如下:关于表特别说明:1 常数函数的导数是0;2幂函数导数是以对应幂函数的指数为系数3余弦函数的导数是正弦函数的相反数。
从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正,和余弦函数在该区间的正负是一致的,余弦函数在区间上是单调递减,瞬时变化率为负,和正弦函数在该区间的正负是相反的,故有一个负号。
4的导数是它自身。
5例1计算下列函数的导数强调:1幂函数和指数函数是两种不同的函数,关键是看变量所处的位置是在底数上还是在指数上。
2 导函数的定义域决定于原函数的定义域。
练习:求下列函数的导数。
例2.(课本P14例1)假设某国家在20年期间的年均通货膨胀率为那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?/年)在第10个年头,这种商品的价格约为0.08元/年的速度上涨.提出问题:10个年头,这种0.01)?二导数的计算法则推论1导数不变)2(常数与函数的积的导数,等于常数乘函数的导数)3解决问题:公式和求导法则,有/年)0.4元/年的速度上涨.例3 根据基本初等函数的导数公式和导数运算法则,求下列函数的导数,并注明定义域。
(1(2(3强调: 1 求导数是在定义域内实行的.2 求较复杂的函数积、商的导数,必须细心、耐心.例4(P15例3)日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净所需净化费用的瞬时变化率:(1(24538y x x =+-练习:()()32454338x y xx -+'=+-解:净化费用的瞬时变化率就是净化费用函数的导数.(1)用的瞬时变化率是52.84元/吨.(2)所以,费用的瞬时变化率是1321元/吨.强调:费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快. 五.课堂练习六.课堂小结(1)基本初等函数的导数公式表 (2)导数的运算法则 七.布置作业 八.教学后记。
1.2.2 基本初等函数的导数公式及导数的运算法则一、选择题1.下列结论:①(cos x )′=sin x ;②⎝⎛⎭⎫sin π3′=cos π3;③若y =1x 2,则y ′|x =3=-227.其中正确的有( )A .0个B .1个C .2个D .3个2.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( )A.1e B .-1eC .-eD .e3.正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎦⎤π2,3π4 4.已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( )A .(-2,-8)B .(-1,-1)或(1,1)C .(2,8) D.⎝⎛⎭⎫-12,-18 5.质点沿直线运动的路程s 与时间t 的关系是s =5t ,则质点在t =4时的速度为( )A.12523B.110523C.25523D.110523 二、填空题6.曲线y =cos x 在点A ⎝⎛⎭⎫π6,32处的切线方程为__________________________. 7.已知f (x )=x a ,a ∈Q ,若f ′(-1)=-4,则a =______.8.若函数y =f (x )满足f (x -1)=1-2x +x 2,则y ′=f ′(x )=________.三、解答题9.求下列函数的导数:(1)y =x 12;(2)y =1x 4; (3)y =5x 3; (4)y =10x .10.求过点(2,0)且与曲线y =x 3相切的直线方程.参考答案1.【答案】B【解析】直接利用导数公式.因为(cos x )′=-sin x ,所以①错误;sin π3=32,而⎝⎛⎭⎫32′=0,所以②错误;⎝⎛⎭⎫1x 2′=(x -2)′=-2x -3,则y ′|x =3=-227, 所以③正确.2.【答案】D【解析】设切点为(x 0,y 0).由y ′=e x ,得0x x y ='=0e x, ∴过切点的切线为y -0e x =0e x (x -x 0),即y =0e x x +(1-x 0) 0e x ,又y =kx 是切线, ∴⎩⎪⎨⎪⎧x 0=1,-k =e. 3.【答案】A【解析】∵y ′=cos x ,而cos x ∈[-1,1].∴直线l 的斜率的范围是[-1,1],∴直线l 倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫34π,π. 4.【答案】B【解析】y ′=3x 2,∵k =3,∴3x 2=3,∴x =±1,则P 点坐标为(-1,-1)或(1,1).5.【答案】B【解析】s ′=15t -45.当t =4时,s ′=15·1544=110523. 6.【答案】x +2y -3-π6=0 【解析】∵y ′=(cos x )′=-sin x ,∴6x y π='=-sin π6=-12, ∴在点A 处的切线方程为y -32=-12⎝⎛⎭⎫x -π6,即x +2y -3-π6=0. 7.【答案】4【解析】∵f ′(x )=ax a -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4.8.【答案】2x【解析】∵f (x -1)=1-2x +x 2=(x -1)2, ∴f (x )=x 2,f ′(x )=2x .9.解:(1)y ′=(x 12)′=12x 11.(2)y ′=⎝⎛⎭⎫1x 4′=(x -4)′=-4x -5=-4x 5. (3)y ′=(5x 3)′=(35x )′=3525x -=355x 2. (4)y ′=(10x )′=10x ln 10.10.解:点(2,0)不在曲线y =x 3上,可令切点坐标为(x 0,x 30).由题意,所求直线方程的斜率k =x 30-0x 0-2=0x x y ='=3x 20, 即x 30x 0-2=3x 20,解得x 0=0或x 0=3. 当x 0=0时,得切点坐标是(0,0),斜率k =0,则所求直线方程是y =0; 当x 0=3时,得切点坐标是(3,27),斜率k =27, 则所求直线方程是y -27=27(x -3), 即27x -y -54=0.综上,所求的直线方程为y =0或27x -y -54=0.。
1.2.2 基本初等函数的导数公式及导数的运算法则(三)明目标、知重点1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(ax+b)的导数).1.概念一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为y=f(u)和u=g(x)的复合函数,记作y=f(g(x)).2.复合函数的求导法则复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′.即y对x的导数是y对u的导数与u对x的导数的乘积.探究点一复合函数的定义思考1 观察函数y=2x cos x及y=ln(x+2)的结构特点,说明它们分别是由哪些基本函数组成的?答y=2x cos x是由u=2x及v=cos x相乘得到的;而y=ln(x+2)是由u=x+2与y=ln u(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数.所以它们称为复合函数.思考2 对一个复合函数,怎样判断函数的复合关系?答复合函数是因变量通过中间变量表示为自变量的函数的过程.在分析时可以从外向里出发,先根据最外层的主体函数结构找出y=f(u);再根据内层的主体函数结构找出函数u=g(x),函数y=f(u)和u=g(x)复合而成函数y=f(g(x)).思考3 在复合函数中,内层函数的值域A与外层函数的定义域B有何关系?答A⊆B.小结要特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法.例1 指出下列函数是怎样复合而成的:(1)y=(3+5x)2;(2)y=log3(x2-2x+5);(3)y=cos 3x.解(1)y=(3+5x)2是由函数y=u2,u=3+5x复合而成的;(2)y =log 3(x 2-2x +5)是由函数y =log 3u ,u =x 2-2x +5复合而成的;(3)y =cos 3x 是由函数y =cos u ,u =3x 复合而成的.小结 分析函数的复合过程主要是设出中间变量u ,分别找出y 和u 的函数关系,u 和x 的函数关系.跟踪训练1 指出下列函数由哪些函数复合而成:(1)y =ln x ;(2)y =e sin x ;(3)y =cos (3x +1).解 (1)y =ln u ,u =x ;(2)y =e u ,u =sin x ;(3)y =cos u ,u =3x +1.探究点二 复合函数的导数思考 如何求复合函数的导数?答 对于简单复合函数的求导,其一般步骤为“分解——求导——回代”,即:(1)弄清复合关系,将复合函数分解成基本初等函数形式;(2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量.注意不要漏掉第(3)步回代的过程.例2 求下列函数的导数:(1)y =(2x -1)4;(2)y =11-2x ; (3)y =sin(-2x +π3);(4)y =102x +3. 解 (1)原函数可看作y =u 4,u =2x -1的复合函数,则y x ′=y u ′·u x ′=(u 4)′·(2x -1)′=4u 3·2=8(2x -1)3.(2)y =11-2x =(1-2x )-12可看作y =u -12,u =1-2x 的复合函数,则y x ′=y u ′·u x ′=(-12)u -32·(-2)=(1-2x )-32=1(1-2x )1-2x; (3)原函数可看作y =sin u ,u =-2x +π3的复合函数, 则y x ′=y u ′·u x ′=cos u ·(-2)=-2cos(-2x +π3) =-2cos(2x -π3). (4)原函数可看作y =10u ,u =2x +3的复合函数,则y x ′=y u ′·u x ′=102x +3·ln 10·2=(ln 100)102x +3.反思与感悟 分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数.复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内逐层求导.跟踪训练2 求下列函数的导数.(1)y =(2x +3)3;(2)y =e -0.05x +1;(3)y =sin(πx +φ).解 (1)函数y =(2x +3)2可以看成函数y =u 2,u =2x +3的复合函数.∴y x ′=y u ′·u x ′=(u 2)′·(2x +3)′=2u ·2=4(2x +3)=8x +12.(2)函数y =e -0.05x +1可以看成函数y =e u 和函数u =-0.05x +1的复合函数.∴y x ′=y u ′·u x ′=(e u )′·(-0.05x +1)′=-0.05e u =-0.05 e -0.05x +1.(3)函数y =sin(πx +φ)可以看成函数y =sin u ,u =πx +φ的复合函数.∴y x ′=y u ′·u x ′=(sin u )′·(πx +φ)′=cos u ·π=π cos(πx +φ).探究点三 导数的应用例3 求曲线y =e2x +1在点(-12,1)处的切线方程. 解 ∵y ′=e2x +1·(2x +1)′=2e 2x +1, ∴y ′|12x =2,∴曲线y =e 2x +1在点(-12,1)处的切线方程为 y -1=2(x +12),即2x -y +2=0.反思与感悟 求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法.跟踪训练3 曲线y =esin x 在(0,1)处的切线与直线l 平行,且与l 的距离为2,求直线l 的方程.解 设u =sin x ,则y ′=(esin x )′=(e u )′(sin x )′. =cos x e sin x .y ′|x =0=1.则切线方程为y -1=x -0,即x -y +1=0.若直线l 与切线平行可设直线l 的方程为x -y +c =0.两平行线间的距离d =|c -1|2=2⇒c =3或c =-1. 故直线l 的方程为x -y +3=0或x -y -1=0.1.函数y =(3x -2)2的导数为( )A .2(3x -2)B .6xC .6x (3x -2)D .6(3x -2) 答案 D解析 y ′=2(3x -2)·(3x -2)′=6(3x -2).2.若函数y =sin 2x ,则y ′等于( )A .sin 2xB .2sin xC .sin x cos xD .cos 2x 答案 A解析 y ′=2sin x ·(sin x )′=2sin x ·cos x =sin 2x .3.若y =f (x 2),则y ′等于( )A .2xf ′(x 2)B .2xf ′(x )C .4x 2f (x )D .f ′(x 2) 答案 A解析 设x 2=u ,则y ′=f ′(u )·u x ′=f ′(x 2)·(x 2)′=2xf ′(x 2).4.设曲线y =e ax 在点(0,1)处的切线与直线x +2y +1=0垂直,则a =________.答案 2解析 由题意知y ′|x =0=a e ax |x =0=a =2.呈重点、现规律]求简单复合函数f (ax +b )的导数求简单复合函数的导数,实质是运用整体思想,先把简单复合函数转化为常见函数y =f (u ),u =ax +b 的形式,然后再分别对y =f (u )与u =ax +b 分别求导,并把所得结果相乘.灵活应用整体思想把函数化为y =f (u ),u =ax +b 的形式是关键.一、基础过关1.下列函数不是复合函数的是( )A .y =-x 3-1x +1B .y =cos(x +π4) C .y =1ln xD .y =(2x +3)4 答案 A解析 A 中的函数是一个多项式函数,B 中的函数可看作函数u =x +π4,y =cos u 的复合函数,C 中的函数可看作函数u =ln x ,y =1u的复合函数,D 中的函数可看作函数u =2x +3,y =u 4的复合函数,故选A.2.函数y =1(3x -1)2的导数是( ) A.6(3x -1)3 B.6(3x -1)2 C .-6(3x -1)3 D .-6(3x -1)2 答案 C 解析 y ′=1(3x -1)2]′=-2(3x -1)3·(3x -1)′=-6(3x -1)3,故选C. 3.若f (x )=log 3(x -1),则f ′(2)=________.答案 1ln 3解析 f ′(x )=log 3(x -1)]′=1(x -1)ln 3, ∴f ′(2)=1ln 3. 4.函数y =x 2cos 2x 的导数为( )A .y ′=2x cos 2x -x 2sin 2xB .y ′=2x cos 2x -2x 2sin 2xC .y ′=x 2cos 2x -2x sin 2xD .y ′=2x cos 2x +2x 2sin 2x答案 B解析 y ′=(x 2)′cos 2x +x 2(cos 2x )′=2x cos 2x +x 2·(-2sin 2x )=2x cos 2x -2x 2sin 2x .5.函数y =(2 015-8x )3的导数y ′=________.答案 -24(2 015-8x )2解析 y ′=3(2 015-8x )2×(2 015-8x )′=3(2 015-8x )2×(-8)=-24(2 015-8x )2.6.曲线y =cos(2x +π6)在x =π6处切线的斜率为______. 答案 -2解析 ∵y ′=-2sin(2x +π6), ∴切线的斜率k =-2sin(2×π6+π6)=-2. 7.函数y =x (1-ax )2(a >0),且y ′|x =2=5,则实数a 的值为________.答案 1解析 y ′=(1-ax )2+x (1-ax )2]′=(1-ax )2+x 2(1-ax )(-a )]=(1-ax )2-2ax (1-ax ).由y ′|x =2=(1-2a )2-4a (1-2a )=12a 2-8a +1=5(a >0),解得a =1.二、能力提升8.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2 答案 B解析 设直线y =x +1切曲线y =ln(x +a )于点(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ), 又y ′=1x +a ,∴y ′|x =x 0=1x 0+a =1, 即x 0+a =1.又y 0=ln(x 0+a ),∴y 0=0,∴x 0=-1,∴a =2.9.曲线y =12e x 在点(4,e 2)处的切线与坐标轴所围三角形的面积为( )A.92e 2 B .4e 2C .2e 2D .e 2 答案 D解析 ∵y ′=12e x ·12,∴y ′|x =4=12e 2. ∴曲线在点(4,e 2)处的切线方程为y -e 2=12e 2(x -4),切线与坐标轴的交点分别是(0,-e 2),(2,0),则切线与坐标轴围成的三角形面积 S =12|-e 2||2|=e 2.10.若f (x )=(2x +a )2,且f ′(2)=20,则a =________.答案 1解析 f ′(x )=2(2x +a )·2=4(2x +a ),f ′(2)=16+4a =20,∴a =1.11.已知a >0,f (x )=ax 2-2x +1+ln(x +1),l 是曲线y =f (x )在点P (0,f (0))处的切线.求切线l 的方程.解 f (x )=ax 2-2x +1+ln(x +1),f (0)=1.∴f ′(x )=2ax -2+1x +1=2ax 2+(2a -2)x -1x +1, f ′(0)=-1,∴切点P 的坐标为(0,1),l 的斜率为-1,∴切线l 的方程为x +y -1=0.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离s (单位:m)关于时间t (单位:s)的函数为s =s (t )=5-25-9t 2.求函数在t =715s 时的导数,并解释它的实际意义. 解 函数s =5-25-9t 2可以看作函数s =5-x 和x =25-9t 2的复合函数,其中x 是中间变量.由导数公式表可得s x ′=-1212x -,x t ′=-18t . 故由复合函数求导法则得s t ′=s x ′·x t ′=(-1212x -)·(-18t )=9t 25-9t2, 将t =715代入s ′(t ),得s ′(715)=0.875 (m/s). 它表示当t =715s 时,梯子上端下滑的速度为0.875 m/s. 三、探究与拓展13.曲线y =e 2x ·cos 3x 在(0,1)处的切线与直线l 的距离为5,求直线l 的方程. 解 y ′=(e 2x )′·cos 3x +e 2x ·(cos 3x )′=2e 2x ·cos 3x -3e 2x ·sin 3x ,∴y ′|x =0=2.∴经过点(0,1)的切线方程为y -1=2(x -0),即y =2x +1.设适合题意的直线方程为y=2x+b,根据题意,得5=|b-1|5,∴b=6或-4.∴适合题意的直线方程为y=2x+6或y=2x-4.。