【20套试卷合集】宁夏省中卫2019-2020学年数学七上期中模拟试卷含答案
- 格式:doc
- 大小:3.51 MB
- 文档页数:140
2019-2020学年七年级(上册)期中考试数学试卷一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10104.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)25.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,26.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab27.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187二.填空题(共8小题)11.直接写出结果:(1)﹣1+2=;(2)﹣1﹣1=;(3)(﹣3)3=;(4)6÷(﹣1)=;(5)(﹣1)2n﹣(﹣1)2n﹣1=(n为正整数);(6)方程4x=0的解为;(7)方程﹣x=2的解为.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有个.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=,b=,c=;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x =,最小值为.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x = 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。
2019-2020学年七上数学期中模拟试卷含答案(全卷 三 个大题 23 小题,满分100 分,考试用时 120 分钟) 注意:1、答题前,考生现将自己的姓名、准考证号、考场号、座位号填清楚。
2、答题时需字体工整、笔迹清楚,按照试题序号顺序在答卷的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试卷上答题无效。
3、需要回答的问题和答卷上预留的空格一一对应编号,考生应严格按顺序号答题 一、选择题(每小题3分,共24分) 1、-3的相反数是( )(A )-3 (B )13-(C )13(D )3 2、下列有理数大小关系判断正确的是( ) A 、101)91(-->-- B 、100-> C 、33+<- D 、01.01->-4、 3、下列说法正确的是( )A 、13 πx 2的系数是13B 、12 xy 2的系数为12 xC 、-5x 2的系数为5D 、-x 2的系数为-14、如图,a ,b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0<+b aB .0<abC .0<-a bD .0>ba5、长城总长约为0米,用科学记数法表示为( )A .6.7510⨯米 B .6.7610⨯米 C .6.7710⨯米 D .6.7810⨯米 6、一个数的绝对值是5,则这个数是( )A. 5±B.5C. -5D.257、右图是一数值转换机,若输入的x 为-5,则输出的结果为( )A. 11B. -9C. -17D. 21 8、若a+b <0, 且ab <0,则下列正确的是( )A. a,b 异号,负数的绝对值大。
B. a,b 异号,且a >bC. a,b 异号,且 ∣a ︳>∣b ∣D. a,b 异号,正数的绝对值大。
二、填空题(每小题3分,共18分)9、如果运进72吨记作+72吨,那么运出56吨记作_________; 10、已知代数式221332b a ba m n -+-与是同类项,则2m+3n=11、若|a+2|+()23-b =0,则a+b=____________.12、某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数为_____ 13、已知代数式x +2y 的值是3,则代数式2x +4y +1的值是14、 如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中的基础图形个数为______________(用n 的式子表示).三、解答题(共58分)15、计算:(每小题 4分,共8分) (1))25()15()7(--++- (2)18.0)35()5(124-+-⨯-÷-16、化简:(每小题4分,共8分)(1))5(3)23(---a a (2)222221984xy y x xy y x --+-17、(本题5分)在数轴上表示下列各数,并用“<”将它们连接起来.-5,35,0,-21,-56,0.75,4.518、(本题5分)已知a 、b 互为相反数, c 、d 互为倒数, m 是最小的正整数,求cd b a m -++--2013)(2012)1(2的值。
宁夏中卫市七年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七上·罗湖期中) 单项式与是同类项,则()A . m=1,n=4B . m=2,n=4C . m=4,n=1D . m=2,n=22. (2分)用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A . 0.1(精确到0.1)B . 0.05(精确到百分位)C . 0.05(精确到千分位)D . 0.050(精确到0.001)3. (2分) (2018七上·双台子月考) 如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2019次输出的结果为()A . 3B . 6C . 12D . 244. (2分) (2020七下·高新期末) 如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y长示小长方形的两边长(x>y)请观察图案,以下关系式中错误的是()A . x2+y2=16B . x-y=3C . 4xy+9=25D . x+y=55. (2分)已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A . 6B . 7C . 11D . 126. (2分) (2017七上·西湖期中) 对一组数的一次操作变换记为,定义其变换法则如下:,且规定(为大于的整数),如,,,,则().A .B .C .D .二、填空题 (共6题;共6分)7. (1分) (2020七上·张家港月考) 若a<0,b<0,则一定是________(填负数,0或正数)8. (1分) (2017七下·靖江期中) 甲型H7N9流感病毒的直径大约为0.00000008米,用科学记数法表示为________米.9. (1分) (2018七上·南昌期中) 若多项式x2+kxy+4x﹣2xy+y2﹣1不含xy项,则k的值是________.10. (1分) (2019七上·花都期中) 多项式a2-ab2-3a2c-8是________次________项式,它的常数项是________11. (1分) (2020八上·湛江开学考) 火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊的营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是________.12. (1分) (2016七上·长乐期末) 如果△+△=*,○+○=,△=○+○+○+○,那么*+=________.三、解答题 (共11题;共68分)13. (10分) (2020七下·贵阳开学考) 计算:(1)(2)14. (10分) (2018七上·东台月考) 某中学对九年级男生进行引体向上的测试,以10个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:+2,﹣5,0,﹣2,+4,﹣1,﹣1,+3.(1)这8名男生中,达到标准的占百分之几?(2)他们共做了多少个引体向上?15. (5分) x+5与–7互为相反数,求x的值.16. (2分) (2019七上·合阳期中) 已知互为相反数,且,互为倒数,的绝对值为6.求的值.17. (10分) (2020七上·台儿庄期中) 如图所示,在长为,宽为的长方形中减去一个直角边为的等腰直角三角形和直径为的半圆.(1)用含,的式子表示阴影部分的面积;(2)当,时,求阴影部分的面积.(取3)18. (10分) (2015七下·宜兴期中) 一天,小明和小玲玩纸片拼图游戏,发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2 .(1)图③可以解释为等式:________(2)要拼出一个长为a+3b,宽为2a+b的长方形,需要如图所示的________块,________块,________块.(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个矩形的两边长(x>y),观察图案,指出以下关系式:(1)(2)x+y=m(3)x2﹣y2=m•n(4)其中正确的有A . 1个B . 2个C . 3个D . 4个.19. (10分) (2020七上·吉州期末) 已知,A、B在数轴上对应的数分别用a、b表示,且.(1)数轴上点A表示的数是________,点B表示的数是________;(2)若一动点P从点A出发,以个单位长度秒速度由A向B运动;动点Q从原点O出发,以个单位长度l秒速度向B运动,点P、Q同时出发,点Q运动到B点时两点同时停止.设点Q运动时间为t秒.若P从A到B运动,则P点表示的数为________,Q点表示的数为________(用含t的式子表示)(3)当t为何值时,点P与点Q之间的距离为个单位长度.20. (2分) (2017七下·苏州期中) 综合题(1)填空:21−20=________=2 (),22−21=________=2 (),23−22=________=2 (),…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立:(3)计算:20+21+22+ (299)21. (2分) (2017七上·丹东期中) 某检修小组乘汽车检修供电线路,南记为正,北记为负。
2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。
宁夏七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七上·老河口期中) 下列各个运算中,运算结果最小的是()A . 2+(-2)B . 2-(-2)C . 2×(-2)D . 2÷(-2)2. (2分) (2020七上·恩施月考) 下列各组数中相等的是()A . 与B . 与C . 与D . 与3. (2分) (2021七上·大邑期末) 下列运算正确的是()A .B .C .D .4. (2分)(2018·鄂州) 下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m 为常数),当x>0时,y随x增大而增大,则一次函数y=-2 x + m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y = x2中偶函数的个数为2个.A . 1B . 2C . 3D . 45. (2分) (2018七上·汉阳期中) 把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A . 4mB . 2(m+n)C . 4nD . 4(m﹣n)6. (2分) (2020七上·厦门期末) 小宇同学喜欢玩“数字游戏”,他将,,,……,这个数按照下表进行排列,每行个数,从左到右依次大.若在下表中,移动带阴影的框,框中的个数的和可以是()A .B .C .D .7. (2分)已知有理数a、b、c在数轴上的位置如图所示,则下列式子正确的是()A . cb>abB . ac>abC . cb<abD . c+b>a+b8. (2分) (2019七上·伊通期末) 多项式﹣3kx2+xy﹣3y2+x2﹣6化简后不含x2 ,则k等于()A . 0B . ﹣C .D . 39. (2分) (2018七上·盐城期中) 下面选项中符合代数式书写要求的是()A . y2B . ay·3C .D . a×b+c10. (2分) (2020七上·西城期中) 下列各式中去括号错误的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2016·十堰) 计算:| ﹣4|﹣()﹣2=.12. (1分) (2019七上·邵武期中) 系数是,多项式的次数为13. (1分)一本书已看了20页,还剩下(b-20)页没看,则字母b表示.14. (1分)如图,数轴上A、B两点所表示的有理数的和的绝对值是.15. (1分) (2020七上·台州月考) 若规定这样一种运算:a△b=(|a﹣b|+a+b),例如:2△3=(|2﹣3|+2+3)=3.将1,2,3,…,50这50个自然数,任意分为25组,每组两个数,现将每组的两个数中任一数值记作a,另一个记作b,代入代数式a△b中进行计算,求出其结果,25组数代入后可求得25个值,这25个值的和的最大值为.16. (1分) (2020七上·龙岗月考) 点P从原点向距离原点左侧1个单位的A点处跳动,第一次跳动到OA 的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第6次跳动后,P点表示的数为.三、解答题 (共8题;共92分)17. (15分) (2020七上·永吉期中) 某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如下:与标准的偏差(单位:千克)-2-10+1+2+3袋数5103156(1)求这30袋大米一共多少千克?(2)这30袋大米总计超过标准多少千克或不足多少千克?18. (15分) (2016七上·富裕期中) 化简求值4x2﹣3(2x2﹣x﹣1)+2(2﹣x2﹣3x),其中 x=﹣2.19. (10分) (2019七上·遵义月考) 元旦放假时,小明一家三口一起乘小轿车去探望爷爷、奶奶和姥爷、姥姥.早上从家里出发,向东走了5千米到超市买东西,然后又向东走了2.5千米到爷爷家,下午从爷爷家出发向西走了10千米到姥爷家,晚上返回家里.(1)若以小明家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和姥爷家的位置在下面数轴上分别用点A、B、C表示出来;(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求小明一家从出发到返回家,小轿车的耗油量.20. (7分) (2020八上·泉州月考) 观察下列等式:12×231=132×21,14×451=154×41,32×253=352×23,34×473=374×43,45×594=495×54,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①35×=×53;②×682=286×.(2)设数字对称式左边的两位数的十位数字为m ,个位数字为n ,且2≤m+n≤9.用含m , n的代数式表示数字对称式左边的两位数与三位数的乘积P ,并求出P 能被110整除时mn的值.(其中乘法公式))21. (5分) (2019七上·衢州期中) 数a在数轴上的位置如图,且|a+1|=2,求|3a+7|.22. (10分) (2017七上·盂县期末) 先化简再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y2+2x3),其中x=﹣3,y=﹣2.23. (15分) (2020八上·西湖月考) 为了抓住开阳南江枇杷节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店最多可购进A纪念品多少件?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在(2)问的各种进货方案中,哪种方案获利最大?最大利润是多少元?24. (15分) (2020七上·泉港月考) 认真阅读下面的材料,完成有关问题.材料:在学习绝对值时,老师教过我们绝对值的几何含义,如表示5、3在数轴上对应的两点之间的距离;,所以表示5、﹣3在数轴上对应的两点之间的距离;,所以表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为.(1)问题(1):利用数轴探究:①找出满足的x的所有值是,②设,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是;当x的取值范围是时,取得最小值,最小值是.(2)问题(2):的最小值是,此时x=;(3)问题(3):,求的最大值和最小值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共92分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
七年级上学期期中数学试卷一、精心选一选(每小题3分,共30分)1.(3分)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣2.(3分)如果一个有理数的绝对值是8,那么这个数一定是()A.﹣8 B.﹣8或8 C.8D.以上都不对3.(3分)下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.互为相反数的两个数的和为零D.如果两个数不等,那么两个数的绝对值也不等4.(3分)单项式﹣3xy2z3的系数和次数分别是()A.3,5 B.﹣3,7 C.﹣3,﹣6 D.﹣3,65.(3分)2008北京奥运会主会场“鸟巢”的座席数是91 000个,这个数用科学记数法表示为()A.0.91×105B.9.1×104C.91×103D.9.1×1036.(3分)2.598精确到十分位是()A.2.59 B.2.600 C.2.60 D.2.67.(3分)下列各组式子中,是同类项的是()A.3x2y与﹣3xy2B.3xy与﹣2yx C.2x与2x2D.5xy与5yz8.(3分)下列选项中,正确的是()A.3x+4y=7xy B.3y2﹣y2=3 C.2ab﹣2ab=0 D.16x3﹣15x2=x9.(3分)计算(﹣2)3的结果是()A.﹣6 B.6C.8D.﹣810.(3分)化简(a﹣b)﹣(a+b)的结果是()A.﹣2b B.a﹣2b C.0D.3a二、用心填一填:(本题共6小题,每小题4分,共24分.)11.(4分)在+8.3,﹣6,﹣0.8,﹣(﹣2),0,中,整数有个.12.(4分)相反数等于它本身的数是.13.(4分)若单项式3x m y3与﹣2x5y n是同类项,则m+n=.14.(4分)多项式3x3y﹣2xy2+5是次项式.15.(4分)如图所示,a,b,c在数轴上的位置,用“>”“<”“=”填空.(1)a﹣c0;(2)ab0.16.(4分)已知轮船在静水中前进的速度是m千米/时,水流的速度是2千米/时,则这轮船在顺水中航行的速度是千米/时.逆水速度是千米/时.三、解答题:(本题共3小题,每小题6分,共18分)17.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接.1,﹣2,0,2.5,﹣4.5,3.18.(6分)计算:(﹣7)+3+(﹣3)+4.19.(6分)计算:(﹣3)×(﹣4)﹣60÷(﹣12).四、解答题:(本题共3小题,每小题7分,共21分)20.(7分)计算:(﹣﹣)×(﹣78).21.(7分)﹣5m2n+4mn2﹣2mn+6m2n+3mn22.(7分)化简计算(﹣1)2012×[(﹣2)5﹣32﹣÷(﹣)].五、解答题:(本题共3小题,每小题9分,共27分)23.(9分)化简求值:(5a2﹣3b)﹣3(a2﹣2b),其中a=2,b=﹣3.24.(9分)五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过多少千克?总重量是多少千克?25.(9分)某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有5张桌子时,第一种摆放方式能坐人,第二种摆放方式能坐人,(2)当有n张桌子时,第一种摆放方式能坐人,第二种摆放方式能坐人,(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.(3分)有理数﹣3的相反数是()A.3B.﹣3 C.D.﹣考点:相反数.专题:常规题型.分析:根据相反数的意义,只有符号不同的数为相反数.解答:解:﹣3的相反数是3.故选:A.点评:本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)如果一个有理数的绝对值是8,那么这个数一定是()A.﹣8 B.﹣8或8 C.8D.以上都不对考点:绝对值.专题:常规题型.分析:根据绝对值的性质,即可求出这个数.解答:解:如果一个有理数的绝对值是8,那么这个数一定是﹣8或8.故选B.点评:本题考查了绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.(3分)下列说法中正确的是()A.最小的整数是0B.有理数分为正数和负数C.互为相反数的两个数的和为零D.如果两个数不等,那么两个数的绝对值也不等考点:绝对值;有理数;相反数.分析:利用绝对值、有理数及相反数的有关知识逐一判断后即可得到正确的选项.解答:解:A、没有最小的整数,故错误;B、有理数包括整数与分数,故错误;C、互为相反数的两个数的和为0,故正确;D、如果两个数不等,那么两个数的绝对值可能相等,如3与﹣3,故选C.点评:本题考查了绝对值、有理数及相反数的知识,属于基础题,比较简单.4.(3分)单项式﹣3xy2z3的系数和次数分别是()A.3,5 B.﹣3,7 C.﹣3,﹣6 D.﹣3,6考点:单项式.分析:根据单项式系数及次数的定义,即可得出答案.解答:解:单项式﹣3xy2z3的系数是﹣3,次数是6.故选D.点评:本题考查了单项式的知识,解答本题的关键是掌握单项式次数及系数的定义.5.(3分)2008北京奥运会主会场“鸟巢”的座席数是91 000个,这个数用科学记数法表示为()A.0.91×105B.9.1×104C.91×103D.9.1×103考点:科学记数法—表示较大的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:91 000=9.1×104个.故选B.点评:用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.6.(3分)2.598精确到十分位是()A.2.59 B.2.600 C.2.60 D.2.6考点:近似数和有效数字.专题:常规题型.分析:十分位上的数字为5,下一位的数字为9,向十分位进1即可.解答:解:∵2.598百分位上的数字为9,∴2.598精确到十分位是2.5+0.1=2.6,故选D.点评:按要求求近似数,要看要求精确到的下一位,方法为四舍五入.7.(3分)下列各组式子中,是同类项的是()A.3x2y与﹣3xy2B.3xy与﹣2yx C.2x与2x2D.5xy与5yz考点:同类项.专题:常规题型.分析:根据同类项的定义中相同字母的指数也相同,分别对选项进行判断即可.解答:解:A、3x2y与﹣3xy2字母相同但字母的指数不同,不是同类项;B、3xy与﹣2yx字母相同,字母的指数相同,是同类项;C、2x与2x2字母相同但字母的指数不同,不是同类项;D、5xy与5yz字母不同,不是同类项.故选B.点评:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.8.(3分)下列选项中,正确的是()A.3x+4y=7xy B.3y2﹣y2=3 C.2ab﹣2ab=0 D.16x3﹣15x2=x考点:合并同类项.分析:根据同类项的定义:含有相同的字母,且相同字母的次数相同,首先判断同类项,然后利用合并同类项的法则即可判断.解答:解:A、不是同类项,不能合并,故选项错误;B、3y2﹣y2=2y2,故选项错误;C、正确;D、不是同类项,不能合并,故选项错误.故选C.点评:本题考查了合并同类项得法则,正确理解同类项的定义是关键.9.(3分)计算(﹣2)3的结果是()A.﹣6 B.6C.8D.﹣8考点:有理数的乘方.分析:根据有理数的乘方的定义进行计算即可得解.解答:解:(﹣2)3=﹣8.故选D.点评:本题考查了有理数的乘方,乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.10.(3分)化简(a﹣b)﹣(a+b)的结果是()A.﹣2b B.a﹣2b C.0D.3a考点:整式的加减.专题:计算题.分析:先去括号,然后合并同类项求解.解答:解:原式=a﹣b﹣a﹣b=﹣2b.故选A.点评:本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.二、用心填一填:(本题共6小题,每小题4分,共24分.)11.(4分)在+8.3,﹣6,﹣0.8,﹣(﹣2),0,中,整数有3个.考点:有理数.分析:根据整数的定义选出即可.解答:解:整数有﹣6,﹣(﹣2),0,共3个,故答案为:3.点评:本题考查了对有理数的应用,注意:整数包括正整数、0、负整数.12.(4分)相反数等于它本身的数是0.考点:相反数.分析:根据相反数的性质,相反数等于它本身的数只能是0.解答:解:相反数等于它本身的数是0.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.13.(4分)若单项式3x m y3与﹣2x5y n是同类项,则m+n=8.考点:同类项.专题:计算题.分析:根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m、n 的值,代入代数式即可得出答案.解答:解:∵3x m y3与﹣2x5y n是同类项,∴m=5,n=3,从而可得m+n=8.故答案为:8.点评:此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项所含字母相同,并且相同字母的指数也相同.14.(4分)多项式3x3y﹣2xy2+5是四次三项式.考点:多项式.分析:根据多项式的次数和项数的定义求解.解答:解:由多项式多项式的次数和项数的定义可知,3x3y﹣2xy2+5是四次三项式.故答案为:四,三.点评:考查了多项式,解答此次题的关键是熟知以下概念:多项式中的每个单项式叫做多项式的项;多项式里次数最高项的次数,叫做这个多项式的次数.15.(4分)如图所示,a,b,c在数轴上的位置,用“>”“<”“=”填空.(1)a﹣c>0;(2)ab<0.考点:有理数大小比较;数轴.分析:(1)根据数轴得出c<0<a,即可得出答案;(2)根据数轴得出b<0<a,即可得出答案.解答:解:∵从数轴可知:c<b<0<a,(1)a﹣c>0.故答案为:>.(2)ab<0.故答案为:<.点评:本题考查了数轴和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.16.(4分)已知轮船在静水中前进的速度是m千米/时,水流的速度是2千米/时,则这轮船在顺水中航行的速度是m+2千米/时.逆水速度是m﹣2千米/时.考点:列代数式.分析:利用顺水速度=静水速度+水流速度,逆水速度=静水速度﹣水流速度,列出代数式即可.解答:解:顺水中航行的速度是(m+2)千米/时.逆水速度是(m﹣2)千米/时.故答案为:m+2,m﹣2.点评:此题考查列代数式,掌握基本数量关系解决问题.三、解答题:(本题共3小题,每小题6分,共18分)17.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接.1,﹣2,0,2.5,﹣4.5,3.考点:有理数大小比较;数轴.分析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.解答:解:如图:,由数轴上的点表示的数右边的总比左边的大,得﹣4.5<﹣2<0<1<2.5<3.点评:本题考查了有理数大小比较,数轴上的点表示的数右边的总比左边的大.18.(6分)计算:(﹣7)+3+(﹣3)+4.考点:有理数的加法.分析:运用运算律及有理数的加法法则计算即可.解答:解:(﹣7)+3+(﹣3)+4=[3+(﹣3)]+[(﹣7)+4]=0+(﹣3)=﹣3.点评:考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.19.(6分)计算:(﹣3)×(﹣4)﹣60÷(﹣12).考点:有理数的混合运算.分析:先算乘法和除法,再算减法,由此顺序计算即可.解答:解:原式=12﹣(﹣5)=12+5=17.点评:此题考查有理数的混合运算,掌握运算顺序,正确判定运算符号即可.四、解答题:(本题共3小题,每小题7分,共21分)20.(7分)计算:(﹣﹣)×(﹣78).考点:有理数的乘法.分析:利用乘法分配律进行计算即可得解.解答:解:(﹣﹣)×(﹣78),=×(﹣78)﹣×(﹣78)﹣×(﹣78),=﹣12+26+13,=﹣12+39,=27.点评:本题考查了有理数的乘法,利用运算定律可以使计算更加简便,计算时要注意运算符号的处理.21.(7分)﹣5m2n+4mn2﹣2mn+6m2n+3mn考点:合并同类项;同类项.专题:计算题.分析:先根据同类项的概念,找出此多项式中的同类项,再根据合并同类项的法则得出结果.注意不是同类项的不能合并.解答:解:﹣5m2n+4mn2﹣2mn+6m2n+3mn,=(﹣5m2n+6m2n)+(﹣2mn+3mn)+4mn2,=m2n+mn+4mn2.点评:本题考查同类项的定义及合并同类项的法则.同类项的定义:含有相同的字母,并且相同字母的指数也相同的项是同类项.合并同类项的法则:合并同类项时把系数相加减,字母与字母的指数不变.22.(7分)化简计算(﹣1)2012×[(﹣2)5﹣32﹣÷(﹣)].考点:有理数的混合运算.专题:计算题.分析:原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.解答:解:原式=1×(﹣32﹣9+)=﹣38.5.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题:(本题共3小题,每小题9分,共27分)23.(9分)化简求值:(5a2﹣3b)﹣3(a2﹣2b),其中a=2,b=﹣3.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=5a2﹣3b﹣3a2+6b=2a2+3b,当a=2,b=﹣3时,原式=8﹣9=﹣1.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.(9分)五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过多少千克?总重量是多少千克?考点:有理数的加法;正数和负数.专题:应用题.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:(1)白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖共超过(4.5﹣4+2.3﹣3.5+2.5)=1.8千克,故这五袋白糖共超过1.8千克;(2)总重量是5×50+1.8=251.8千克,故五袋白糖的总重量是251.8千克.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.25.(9分)某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有5张桌子时,第一种摆放方式能坐22人,第二种摆放方式能坐14人,(2)当有n张桌子时,第一种摆放方式能坐4n+2人,第二种摆放方式能坐2n+4人,(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?考点:规律型:图形的变化类.分析:(1)(2)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n﹣1)=4n+2,由此算出5张桌子,用第一种摆设方式,可以坐4×5+2=22人;第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4,由此算出5张桌子,用第二种摆设方式,可以坐2×5+4=14人.(2)分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.解答:解:(1)当有5张桌子时,第一种摆放方式能坐4×5+2=22人,第二种摆放方式能坐2×5+4=14人;(2)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n﹣1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4.(2)打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102>98当n=25时,2×25+4=54<98所以,选用第一种摆放方式.点评:此题考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题.。
2019-2020学年上学期期中原创卷A 卷七年级数学·全解全析123456789101112BABCAACDDCAB1.【答案】B【解析】因为只有符号不同的两个数互为相反数,所以–2019的相反数是2019.故选B.2.【答案】A【解析】规定向右运动3m 记作+3m ,那么向左运动4m 记作–4m .故选A .3.【答案】B【解析】在所列有理数中,负数有–|–12|,(–2)3这2个,故选B .4.【答案】C【解析】根据单项式的定义,在代数式2x -,0,3x y -,4x y +,ba 中单项式有2x -和0两个.故选C .5.【答案】A【解析】m 的3倍与n 的差的平方为(3m –n )2.故选A.6.【答案】A【解析】π5x 的系数是1π5,故原题说法错误;故选A.7.【答案】C【解析】8.8×104精确到千位.故选C .8.【答案】D【解析】A 、x –(3y –12)=x –3y +12,正确;B 、m +(–n +a –b )=m –n +a –b ,正确;C 、2–3x =–(3x –2),正确;D 、–12(4x –6y +3)=–2x +3y –32,错误;故选D .9.【答案】D【解析】因为3x 2+5x =5,所以10x –9+6x 2=2(3x 2+5x )–9=2×5–9=1.故选D .10.【答案】C【解析】由图可得,a <0,b >0,且|a |>|b |,所以a +b <0,所以|a +b |=–(a +b )=–a –b .故选C .11.【答案】A【解析】m 2+2mn =13,3mn +2n 2=21,可得2m 2+4mn =26,9mn +6n 2=63,两式相加可得:2m 2+13mn +6n 2=89,所以2m 2+13mn +6n 2–44=45.故选A .12.【答案】B【解析】因为13a =,所以22223a ==--,()321222a ==--,4241322a ==-,52 3.423a ==-所以该数列每4个数为一周期循环,因为2018÷4=504……2,所以201822a a ==-,故选B .13.【答案】2【解析】|–2|=2.故答案为:2.14.【答案】–35;7【解析】单项式2535x y -的系数是35-,次数是7,故答案为:35-,7.15.【答案】7.6×1011【解析】7600亿=760000000000,760000000000=7.6×1011.故答案为:7.6×1011.16.【答案】2ab【解析】根据题意可得这批图书共有ab 册,它的一半就是2ab .故答案为:2ab .17.【答案】3【解析】因为多项式(a –2)x 2+(2b +1)xy –x +y –7是关于x ,y 的多项式,该多项式不含二次项,所以a –2=0,2b +1=0,解得a =2,b =12-,所以a –2b =2–12(2⨯-=2+1=3.故答案为:3.18.【答案】4【解析】第1次输入10:10×|–12|÷[–(−12)2]=–20,–20<100;第2次输入–20:–20×|–12|÷[–(−12)2]=40,40<100,第3次输入40:40×|–12|÷[–(−12)2]=–80,–80<100,第4次输入–80:80×|–12|÷[–(−12)2]=160,因为160>100,停止.所以输入的次数为4.故答案为:4.19.【解析】(1)原式=–115+3×1283=–115+128=13;(3分)(2)原式=–1–12×13×(–7)=–1+76=16.(6分)20.【解析】(1)原式=a 2–2a 3–2a 2+3a 3+3a 2=a 3+2a 2;(3分)(2)原式=x –3x –2y –4x +2y =–6x .(6分)21.【解析】因为a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,所以a +b =0,cd =1,x =±3,(3分)所以原式=9–(0+1)+2×0=9–1+0=8.(6分)22.【解析】(1)3x 2–5x +x 2+2x –4x 2+7=–3x +7,把x =13代入得:原式=–3×13+7=6;(4分)(2)6(a +b )2+12(a +b )+19(a +b )2–2(a +b )=25(a +b )2+10(a +b ),把a +b =25代入得:原式=25×(25)2+10×25=8.(8分)23.【解析】(1)由数轴可知x >0,y <0,则y =–y ,则–x ,y 在数轴上表示为:(2分)(2)数轴上左边的数小于右边的数,则–x <y <0<y <x ;(5分)(3)由数轴可知x +y >0,y –x <0,y =–y ,则x y +–y x -+y =x +y +y –x –y =y .(8分)24.【解析】(1)(–1008)+1100+(–976)+1010+827+946=1899(米).答:此时他在A 地的向南方向,距A 地1899米;(5分)(2)|–1008|+|1100|+|–976|+|1010|+|827|+|946|=5867(米).答:小明共跑了5867米.(10分)25.【解析】(1)阴影部分的面积为a 2+82–[12a 2+12×8×(a +8)](4分)=a 2+64–(12a 2+4a +32)=a2+64–12a2–4a–32=12a2–4a+32;(6分)(2)当a=4时,12a2–4a+32=12×42–4×4+32=24,则所涂油漆费用=24×60=1440(元).(10分)26.【解析】(1)小军解法较好;(2分)(2)还有更好的解法,492425×(–5)=(50–125)×(–5)=50×(–5)–125×(–5)=–250+1 5=–24945;(7分)(3)191516×(–8)=(20–116)×(–8)=20×(–8)–116×(–8)=–160+1 2=–1591 2.(12分)27.【解析】(1)因为|a+2|+(c–7)2=0,所以a+2=0,c–7=0,解得a=–2,c=7,因为b是最小的正整数,所以b=1;故答案为:–2,1,7.(3分)(2)(7+2)÷2=4.5,对称点为7–4.5=2.5,2.5+(2.5–1)=4;故答案为:4.(7分)(3)不变,因为AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;所以3BC–2AB=3(2t+6)–2(3t+3)=12.(12分)。
宁夏回族自治区 2019-2020年度七年级上学期期中数学试题(I)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列各数中,互为相反数的是()A.与B.与C.与D.与2 . 下列各组数的大小比较中,正确的是()A.1>2B.﹣3>﹣2C.0>﹣1D.>23 . 的倒数是()B.8C.﹣8D.﹣1A.4 . 若x的相反数是3,=5,则x+y的值为()A.-8B.2C.-8或2D.8或-25 . 已知非零有理数a,b满足,,,用数轴上的点来表示a,b,正确的是()A.B.C.D.6 . 多项式x2-3kxy-3y2+6xy-8不含xy项,则k的值是().A.0B.2C.-2D.67 . 若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.非正数8 . 在有理数、0、、、、、中负数有()个.A.5B.4C.3D.29 . 如果是一个有理数,那么一定是一个()A.正数B.负数C.0D.正数或负数或010 . 下列说法:①平方等于64的数是8;②若a,b互为相反数,ab≠0,则;③若,则的值为负数;④若ab≠0,则的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为()A.0个B.1个C.2个D.3个11 . 计算(﹣3)﹣9的结果等于()A.6B.﹣12C.12D.﹣612 . 若的展开式中常数项为-2,且不含项,则展开式中的一次项系数为()A.B.C.3D.-313 . 计算5+(-5)=A.1B.0C.10D.-1014 . 单项式的系数是()D.-3 A.3B.C.15 . 2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13 100 000人,创历史新高.将数字13 100 000用科学记数法表示为().A.13.1×106B.1.31×107C.1.31×108D.0.131×10816 . 港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程总投资亿元,将亿用科学记数法表示,结果并精确到百亿约为()A.B.C.D.二、填空题17 . 一只小虫在数轴上从A点出发,第1次向正方向爬行1个单位后,第2次向负方向爬行2个单位,第3次又向正方向爬行3个单位……按上述规律,它第2019次刚好爬到数轴上的原点处,小虫爬行过程中经过数轴上的数﹣100的次数是_____.18 . 若(a+3)2+|b﹣2|=0,则(a+b)2011=______.19 . 在数轴上,点A表示﹣3,点B与点A到原点的距离相等,点C与点B的距离是2,则点C表示的有理数为_____.20 . 绝对值大于2.1而小于5.4的整数的积为________.三、解答题21 . 计算:(1)﹣14+(﹣)×12+|﹣6|(2)(﹣6)×﹣8÷(2﹣4)22 . 已知.(1)求x、y的值.(2)求的值.23 . 观察下列三行数:261854162…①-131551159…②-1-3-9-27-81…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数有什么关系?(3)每行取第6个数计算它们的和.24 . 某出租车一天上午从A地出发在沿着东西向的大街营运,向东为正,向西为负,行驶里程(单位:km)依先后次序记录如下:+18,-5,-2,+3,+10,-9,+12,-3,-7,-15.(1)将最后一名乘客送到目的地,出租车相对出发地的位置?(2)不超过3千米时,按起步价收费10元,超过3千米的部分,每千米收费2元,司机上午的营业额是多少?25 . 已知,,且,求:(1)的值;(2)当时,先化简,再求的值.26 . 把下列各数在数轴上表示出来,并用“<”把各数连接起来.-2, +3.5, 0,-1.5,。
2019-2020学年度第一学期期中质量监测七年级数学答案一、选择题(共40分,每小题4分)1. B2. B3. D4. B5. A6. A7. C8. C9. D10. D二、填空题(共24分,每小题4分)11. −112. 6.5×10713. 2114. m+n3015. −2或−816. 28三、解答题(本题共9题,共86分)17. (共16分,每小题4分)解:(1)原式=−5.3−3.2+2.2−5.7………2分=-5.3-5.7-3.2+2.2=-11-1……………………………3分=-12………………………………4分(2)原式=2+(29−14+118)×(−36)………….1分=2+29×(−36)−14×(−36)+118×(−36)………2分=2−8+9−2…………3分=1……………………4分(3)原式=−4+(−27)×(−29)+4×(−1)…………2分=−4+6−4…………………………………3分=−2…………………………………………4分(4)原式=2x−6x2+2+6x2−3x−6………2分=−x−4………………………………4分18. 解:原式 =x2+2xy−3y2−2x2−2yx+4y2…………………3分=−x2+y2……………………………5分当x=−1,y=2时,原式=−(−1)2+22=−1+4=3…………………7分19. 解:①标对1个给1分,共5分②−(−2)2<−112<0<|−2.5|<−(−4)…………7分20. 解:(1)如图所示:……………3分(2)26……………………6分(3)2……………………8分21. (1)−5…………………3分(2)根据题意得:C=(x2−6x−2)−(−5x2−4x)=6x2−2x−2………………5分∴A −C =−5x 2−4x −6x 2+2x +2=−11x 2−2x +2………….7分则“A −C ”的正确答案为−11x 2−2x +2………………….8分22. (1)1800 ……………2分(2)740 ……………4分(3)(120+150-200+220-320+410+420+2000×7)÷200=74(min) ………7分 答:这周小明跑步的时间为74min 。
2019~2020学年度第一学期期中测试七年级数学第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,每小題3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的.请将答案选项填在题中括号内. 1. 在-3,12,-2.4,0,23-这些数中,一定是正数..的有( ). A . 1个 B . 2个 C . 3个D . 4个2. 如果把存入3万元记作+3万元,那么支取2万元记作( ). A . +2万元 B . -2万元 C . -3万元D . +3万元3. 下列说法正确的是( ) A . 一个有理数不是整数就是分数 B . 正整数和负整数统称为整数C . 正整数、负整数、正分数、负分数统称为有理数D . 0不是有理数4. 下列图中数轴画法不正确...的有( ). (1) (2)(3)(4)(5)A . 2个B . 3个C . 4个D . 5个5. 下列各对数中互为相反数的是( ). A . ()3+-和-3 B . ()3-+和-3 C . ()3-+和()3+-D . ()3--和()3+-6. 下列说法中错误..的有( ).①绝对值是它本身的数有两个,它们是0和1 ②一个数的绝对值必为正数 ③2的相反数的绝对值是2 ④任何数的绝对值都不是负数 A . 1个B . 2个C . 3个D . 4个7. 用科学记数法表示72030000,正确的是( ) A . 4720310⨯B . 5720310.⨯C . 6720310.⨯D .7720310.⨯8. 如图,下列关于a ,a -,1的大小关系表示正确的是( ).A . 1a a <<-B . 1a a -<<C . 1a a <-<D . 1a a <-<9. 下列说法正确的是( ). A . 2xy-的系数是-2 B . 4不是单项式C . 23x y 的系数是13D . 2r π的次数是310. 对于多项式3237x x x --+-,下列说法正确的是( ). A . 最高次项是3x B . 二次项系数是3 C . 常数项是7D . 是三次四项式11. 下列根据等式的性质变形不正确...的是( ). A . 由22x y +=+,得到x y = B . 由233a b -=-,得到2a b = C . 由cx cy =,得到x y =D . 由x y =,得到2211x yc c =++ 12. 某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ). A . 95元B . 90元C . 85元D . 80元第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上. 13. 计算()()3528..-++的结果是______. 14. 计算()32-的结果是______.15. 用四舍五入法按要求取近似数:2.175万(精确到千位)是______万. 16. 计算11124462⎛⎫+-⨯⎪⎝⎭的结果是______. 17. 某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律,5小时后细胞存活的个数是______. 18. 如图,某长方形广场的四个角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r 米,长方形的长为a 米,宽为b 米.用代数式表示空地的面积为______.三、解答题:本大题共7小题,其中19~20题每题12分,21~24题每题8分,25题10分,共66分.解答应写出文字说明、演算步骤或证明过程. 19. 计算:(每小题4分,共12分) (1)111235223⎛⎫+-+ ⎪⎝⎭(2)()()()583--+--⎡⎤⎣⎦(3)()()()3019274816---+--+20. 用适当的方法计算:(每小题4分,共12分) (1)()112503833..⎛⎫-⨯-⨯⨯- ⎪⎝⎭(2)()48415-÷-⨯(3)75518145639569618..⎛⎫-+⨯-⨯+⨯⎪⎝⎭ 21. 解方程:(每小题4分,共8分) (1)3735y y +=--(2)26234x x x++=22.(每小题4分,共8分) (1)先化简,再求值:2222332232x y xy xy x y xy xy ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中3x =,13y =-;(2)已知2237x x -=,求整式2645x x -+的值. 23.(每小题4分,共8分)(1)已知多项式()31322314m x y xy n x y +-++--是六次三项式,求()213nm +-的值.(2)关于x ,y 的多项式()()23291027a x a b xy x y +++-++不含二次项,求35a b -的值.24.(本题8分)小明和林浩相约去图书城买书,请根据他们的对话内容(如图),求出林浩上次所买图书的原价.25.(本题10分)某中学组织植树活动,按年级将七、八、九年级学生分成三个植树队,七年级植树x 棵,八年级种的数比七年级种的数的2倍少26棵,九年级种的树比八年级种的树的一半多42棵. (1)请用含x 的式子表示三个队共种树多少棵;(2)若这三个队共种树423棵,请你求出这三队各种了多少棵树.学年度第一学期期中质量调查七年级数学试卷参考答案 一、选择题:1-5:ABACD 6-10:BDACD 11、12:CB二、填空题:13. -0.7 14. -8 15. 2.2万 16. -2 17. 33 18.()2ab r π-平方米三、解答题: 19.(1)解:原式111235223⎡⎤⎛⎫=+-+ ⎪⎢⎥⎝⎭⎣⎦()1153=-+143=(2)解:原式()()583=-+-+⎡⎤⎣⎦133=-+ 10=-(3)解:原式()()()3019274816=-+++-+-()()()()3048161927=-+-+-++⎡⎤⎣⎦9446=-+ 48=-20.(1)解:原式()112580333..⎛⎫=-⨯⨯⨯ ⎪⎝⎭31010103⎛⎫=-⨯⨯ ⎪⎝⎭101=-⨯ 10=-(2)解:原式148415=⨯⨯815=(3)解:原式()755181818145639569618..⎛⎫=⨯-⨯+⨯+-⨯+⨯⎪⎝⎭()()141551453956..=-++-+⨯ 4256.=+⨯ 19=21.(1)解:移项,得3357y y +=-- 合并同类项,得612y =- 系数化1,得2y =- (2)解:合并同类项,得132612x = 系数化1,得24x =22. 解:(1)原式222232233x y xy xy x y xy xy ⎡⎤=--+++⎣⎦22223233x y xy xy x y xy =-+-+ 2xy xy =+当3x =,13y =-时,原式23=-(2)因为2237x x -=,所以2327x x -=-. 所以()226452325x x x x-+=-+()275=⨯-+ 9=-23. 解:(1)由题意可知,多项式最高项的次数为6,所以13m +=. 因为多项式为三项式,所以10n -=. 所以2m =,1n =. 所以()()22132136nm +-=+-=(2)由题意可得,320a +=且9100a b +=, 所以32a =-,96a =-,106b =,53b =. 所以35235a b -=--=-.24. 解:设林浩上次所买图书的原价为x 元, 根据题意列方程,得082012.x x +=-解方程,得160x =答:林浩上次所买图书的原价为160元.25. 解:(1)由题意可知,八年级种树()226x -棵, 九年级种树()122642292x x ⎡⎤-+=+⎢⎥⎣⎦棵, 三个队共种树为:()()1226226422x x x ⎡⎤+-+-+⎢⎥⎣⎦2261342x x x =+-+-+ 43x =+所以三个队共种树()43x +棵; (2)依题意43423x += 解得105x = 则226184x -=()1226421342x -+= 答:七年级种树105棵,八年级种树184棵,九年级种树134棵.。
1a b =-1ab =-2019-2020学年七上数学期中模拟试卷含答案一、选择题(本大题共10小题,每题2分,共20分.)1.一潜水艇所在的海拔高度是-60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔 ( )A .-60米B .-80米C .-40米D .40米2.下列式子中,正确的是 ( )A .5-= -5B .-5-= -5C .215.0-=- D .2121=--3.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是 ( ) A .2(x -1)+3x=13 B .2(x+1)+3x=13 C .2x+3(x+1)=13 D .2x+3(x -1)=13 4.实数a 、b 在数轴上的位置如图所示,下列式子错误的是 ( ) A .b a <B .b a >C .b a -<-D .0>-a b5.下列说法:①若a 、b 互为相反数,则a+b=0;②若a+b=0,则a 、b 互为相反数;③若a 、b 互为相反数,则 ; ④若 ,则a 、b 互为相反数.其中正确的结论有 ( )A .1个B .2个C .3个D .4个6.下列合并同类项中,正确的是 ( )A .xy y x 633=+B .332532a a a =+C .033=-nm mnD .257=-x x7.已知2是关于x 的方程3x+a=0的解.那么a 的值是 ( )A .-6B .-3C .-4D .-58.已知a+b=4,c -d=-3,则(b+c)-(d -a)的值为 ( ) A .7 B .-7 C .1 D .-19.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A 、B 两点之间的距离为8(A 在B 的左侧),且A 、B 两点经上述折叠后重合,则A 点表示的数为 ( ) A .-4 B .-5 C . -3 D .-210.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3“分裂”后,其中最大的一个奇数是41,则m 的值是 ( ) A .5B .6C .7D .8二.填空题:(本大题共10小题,每空2分,共22分.) 11.-3的倒数 ,|-2|的相反数 .12.已知2a =1,则2013a = . 13.多项式-3xy 44 +3x+26的最高次项系数是__________. 14.若代数式mb a 32-与413b an +是同类项,则m+ n = .15.关于x 的方程x a )2(+1-a -2=1是一元一次方程,则a = .16.江阴刚建造好的发电站总装机容量将达00千瓦,用科学记数表示总装机容量是 . 17.在数轴上,到表示-1的点的距离不大于2的所有点中,表示整数的点有 个. 18.小张在解方程5a -x=13时,误将-x 看作+x ,得到方程的解为x= -2,则原方程的解为________. 19.规定符号※的意义为:a ※b =ab -a +b +1,那么(-2)※5= . 20.按照如图所示的操作步骤,若输出的值为20,则输入x 的值为 .三.解答题:(本大题共8小题,共58分.) 21.(本题满分4分)把下列各数-12,3-- ,31-,+(+2),在数轴上表示出来,并用“>”把他们连接起来.22.计算:(本题满分16分,每小题4分)⑴ -16+23+(-17)-(-7) (2) -212 +21÷(-2)×(-38)(3)-33-)24()1276521(-⨯-+ (4)21004)3(45)1(--⨯--⨯-23.化简(本题满分6分,每小题3分)(1)()12722-+a a (2) (4a 3+a -1)-[4a 3-3(a +2)]24.解方程:(本题满分8分,每小题4分)(1)4- (2-x)=5x ; (2)61232--=+x x x25.化简求值(本题满分5分)求代数式)4(3)32(2722222ab b a ab b a b a ---+的值, 其中a ,b 满足0)21(22=-++b a .26.(本题满分5分)已知代数式A=2x2+3xy+2y-1,B=x2-xy+x-1 2(1)求A-2B;(2)若A-2B的值与x的取值无关,求y的值.27.应用题(本题8分)甲、乙两辆车在一条公路上匀速行驶,为了确定汽车的位置.我们用O表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧:行程为零,表示汽车位于零千米处.(1)根据题意,填写下列表格;(2)甲、乙两车能否相遇,如果相遇,求相遇时的时刻及在公路上的位置;如果不能相遇,请说明理由;(3)甲、乙汽车能否相距180 km,如果能,求相距180 km的时刻及其位置;如不能,请说明理由.28.探究题(本6分)如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角”中有许多规律,如它的每一行的数字正好对应了(a+b)n(n为非负整数)的展开式中按a次幂从大到小排列的项的系数.规定任何非零数的零次幂为1,如(a+b)0=1例如,(a+b)1 =a+b展开式中的系数1、1恰好对应图中第二行的数字;(a+b)2 =a2+2ab+b2展开式中的系数1、2、1恰好对应图中第三行的数字;(a+b)3 =a3+3a2b+3ab2+b3展开式中的系数1、3、3、1恰好对应图中第四行的数字.(1)请认真观察此图,写出(a+b)4的展开式,(a+b)4= .(2)类似地,请你探索并画出(a-b) 0,、(a-b) 1 ,(a-b) 2 ,(a-b) 3 的展开式中按a次幂从大到小排列的项的系.数.对应的三角形.(3)探究解决问题:已知a+b=3,a2+b2=5,求ab的值.初一数学答案2013年11月一、选择题二、填空题三、解答题21.(数轴略)2>1-3>-1>-322.计算:(1)-3;(2)11-6;(3)-9;(4)1;23.化简:(1)9a2-2;(2)4a+5.24.解方程:(1)x=12;(2)x=-825.化简求值:原式=-a2b-3ab2a=-2,b=12,原式=1-226.(1)A-2B=5xy+2y-2x;(2)y=2 52019-2020学年七上数学期中模拟试卷含答案一、选择题 (本大题共8小题,每小题3分,共24分)1.-5的相反数是………………………………………………………………………( )A .51-B .51C .-5D .5 2.世界文化遗产长城总长约为0m ,若将数据0用科学记数法表示为6.7×10n (n 是正整数),则n 的值为……………………………………………………………( ) A .5 B .6 C .7 D .8 3. 在数:3.14159,1.001…,7.56 ,π,722中,无理数的个数有……………( ) A .1个 B .2个 C .3个 D .4个4.下列计算的结果正确的是……………………………………………………………( )A .22a a a =+ B .325a a a =- C .ab b a 33=+ D .22223a a a -=-5.如图,数轴上的点A 和点B 分别表示数a 与数b , 下列结论中正确的是……………………………( )A .a >bB .|a |>|b |C .-a <bD . a +b <06.对有理数a 、b ,规定运算如下:a ※ b =a +ab ,则-2 ※ 3的值为………………( )A .-8B .-6C .-4D .-27.下列说法中正确的个数是 …………………………………………………………( )(1)a -表示负数; (2)多项式1273222+-+-ab b a b a 的次数是3;(3)单项式922xy -的系数为-2; (4)若.0 x x x ,则-=A .0个B .1个C .2个D .3个8.已知zzy y xyz xyz ++=-x x 3434,则值为多少………………………………………( )A .1或-1B .1或-3C .-1或3D .3或-3 二、填空题 (本大题共10小题,12空,每空2分,共24分) 9.-2的绝对值是 ,-3的倒数是 .10.比较大小(用“<”或“>”填空):-23 -34 ;-||-8 ____ -(-3) .11.已知关于x 的方程ax +4=1-2x 的解为x =3,则a =____. 12.若x 2-2x -1=2,则代数式2x 2-4x 的值为 .13.已知P 是数轴上表示-2的点,把P 点向左移动3个单位长度后表示的数是 .14.若单项式3a 5b m+1与-2a n b 2是同类项,那么m +n= .15.请你写出一个含有字母a 的代数式,使字母a 不论取什么值,这个代数式的值总是正数.你所写的代数式是 .16.甲、乙两地相距x 千米,某人原计划5小时到达,后因故需提前1小时到达,则他每小时应比计划多走 千米(用含x 的代数式表示).17.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则另一边长是 (用含m 的代数式表示).18.如图所示的运算程序中,若开始输入的x 值为10,我们发现第1次输出的结果为5,第2次输出的结果为6,……第2014次输出的结果为___________.三、 解答题 (本大题共6小题,共52分) 19.(本题16分)计算:(1)1+(-2)+32---5 (2)-23+32--2×(-1)2015(3)(-81)÷9449⨯÷(-16) (4)26-(61121197+-)×(-6)220.(本题8分)解方程:(1))2(34x x -=- (2)612141+=--x x21.(本题5分)已知数c b a 、、在数轴上的位置如图所示,化简c a b a b a ++--+22.(本题5分)已知:A =2a 2+3ab -2a -1,B =-a 2+ab +1 (1)当a =-1,b =2时,求4A -(3A -2B)的值;a(2)若(1)中的代数式的值与a 的取值无关,求b 的值.23.(本题6分)小明在学习中遇到这样一道计算题“计算4×3.142-4×3.14×3.28+3.282”,他觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师,崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!请你和小明一起完成崔老师提供的问题:(1)填写下表:24.(本题6分)在边长为16cm 的正方形纸片的四个角上各剪去一个同样大小的正方形,折成一个无盖的长方体(如图) .(1)如果剪去的小正方形的边长为xcm,请用x 表示这个无盖长方体的容积;(2)当剪去的小正方形的边长x 的值分别为3cm 和3.5cm 时,比较折成的无盖长方体的容积的大小.25.(本题6分)已知数轴上有A 、B 、C 三个点,分别表示有理数-24,-10,10,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒. (1)用含t 的代数式表示P 到点A 和点C 的距离:PA=___________,PC=_____________;(2)当点P 运动到B 点时,点Q 从A 点出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.21.(本题5分)解:原式=[][])()(c a b a b a +-+---+ (3分)=c a - (5分)22.(本题5分)(1)原式=5ab -2a +1=-7 (3分)(2) (5分)23.(本题6分)(1)B 的值分别为16、1、9 (3分) (2)B =A 2 (4分) (3)原式=(2×3.14-3.28)2(5分)=9 (6分)2019-2020学年七上数学期中模拟试卷含答案友情提示:(1)本试卷满分为120分,答题时间为90分钟。