八年级数学上学期期末考试试题(扫描版) 新人教版
- 格式:doc
- 大小:1.32 MB
- 文档页数:9
人教版八年级上册数学期末考试试题一、单选题1.点P(1,﹣2)关于x轴对称的点的坐标为()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2) 2.计算:(﹣x3)2=()A.x6B.﹣x6C.x5D.﹣x53.要使分式3535bb--有意义,则分式中的字母满足条件()A.b>53B.b≠53C.b>35D.b≠354.计算:(x+3)(x﹣2)=()A.x2﹣x﹣6B.x2+x﹣6C.x2﹣6x+1D.x2+6x﹣1 5.下列计算中,正确的是()A.6a2•3a3=18a5B.3x2•2x3=5x5C.2x3•2x3=4x9D.3y2•2y3=5y66.下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,11C.5,8,15D.3,4,67.方程133xx x+--=3的解是()A.x=0.5B.x=2C.x=4D.x=5.58.一个多边形的外角和等于360°,则这个多边形的边数为()A.3B.4C.5D.以上均有可能9.在△ABC中,AC的垂直平分线DE分别交BC,AC边于点D,E,AE=3cm,△ABC 的周长为13cm,则△ABD的周长为()cm.A.5B.6C.7D.810.计算11xx x+-的结果为()A.1B.x C.1xD.2xx+二、填空题11.因式分解:4x2﹣9=_____.12.已知△ABC≌△DEF,则BC=_____.13.填空:22633xx xy-=()2x.14.已知am=2,an=3,则am-n=_____.15.计算:9992=_____.16.点M(-5,3)关于x轴对称的点N的坐标是________.17.如图,在锐角△ABC中,∠BAC=60°,AE是中线,两条高BF和CD交于点M,则下列结论中,①BF=2AF;②∠DMB=2∠ACD;③AC:AB=CD:BF;④当点M在AE 上时,△ABC是等边三角形.正确的是_____(填序号).18.如图,B处在A处的南偏西45°方向,C处在A处的南偏东15°方向,∠ACB=85°,则C处在B处的_____度方向.19.如图,在△ABC中,∠C=90°,AD平分∠BAC,若CD=8,点E是AB上一动点,DE的最小值为_________.三、解答题20.分解因式:36m2﹣4n221.计算:222a aba b a ab+++.22.如图,在四边形ABCD 中,BC ∥AD ,∠A =∠C .求证:AB =CD .23.先化简,再求值:(3x +2y )2﹣(3x +y )(3x ﹣y ),其中x =13,y =﹣124.如图,把一张长方形的纸ABCD 沿EF 折叠,重合部分是△MEF .问:△MEF 是等腰三角形吗?为什么?25.如图,在平面直角坐标系xOy 中,已知△ABC .(1)画出与△ABC 关于x 轴对称的图形;(2)在y 轴上画出点P ,使得AP +BP 最小(保留作图痕迹).26.如图,在等腰△ABC 中,点D 在AB 边上,点E 是AC 延长线上的点,DE 交底边BC于点G,AE=3AD=3BD=3,(1)求CE的长度;(2)求证:AG是△ADE的中线.27.甲、乙两人同时从A地出发去B地,甲比乙快,甲到达B地后速度变为原来的2倍,并立即返回A地,在距离B地240米处与乙相遇,乙遇到甲后速度也变为原来的2倍,并掉头返回,但甲回到A地时,乙距离A地还有120米,设A,B两地的距离为x米,依题意得:(1)两人第一次相遇时,乙所走的路程为米;(用含有x的式子表示)(2)甲到达B地前,甲、乙两人的速度比为;(用含有x的式子表示)(3)求A,B两地的距离.28.如图,四边形ABDE和四边形ACFG都是正方形,CE与BG交于点M,点M在△ABC 的外部.(1)求证:BG=CE;(2)求证:CE⊥BG;(3)求:∠AME的度数.参考答案1.A【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】点P (1,-2)关于x 轴的对称点的坐标是(1,2),故选A .【点睛】此题考查平面直角坐标系点的对称性质,解决本题的关键是熟记得出的性质.2.A【分析】根据幂的乘方与积的乘方运算法则进行计算即可.【详解】326()x x -=,故选:A .【点睛】本题考查了幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方运算法则.3.B【分析】根据分式有意义的条件可得3b-5≠0,再解即可.【详解】解:由题意得:3b-5≠0,解得:b≠53,故选:B【点睛】本题考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.4.B【分析】按照多项式与多项式相乘的法则,进行计算即可.【详解】解:()()223223326x x x x x x x +-=-+-⨯=+-故选B .【点睛】本题考查了多项式与多项式的乘法运算.解题的关键在于正确的计算.5.A【分析】利用单项式乘单项式的运算法则进行计算,从而作出判断.【详解】解:A 、原式518a =,故此选项符合题意;B 、原式56x =,故此选项不符合题意;C 、原式64x =,故此选项不符合题意;D 、原式56y =,故此选项不符合题意;故选:A .【点睛】本题考查单项式乘单项式,解题的关键是掌握单项式乘单项式和同底数幂的乘法运算法则.6.D【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A 、3+4<8,不能组成三角形,不符合题意;B 、5+6=11,不能够组成三角形,不符合题意;C 、5+8<15,不能组成三角形,不符合题意;D 、3+4>6,能够组成三角形,符合题意.故选:D .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.7.C【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:分式方程整理得:1333x x x -=--,去分母得:13(3)x x -=-,去括号得:139x x -=-,移项合并得:28x -=-,解得:4x =,检验:把4x =代入得:30x -≠,∴分式方程的解为4x =.故选:C .【点睛】此题考查了解分式方程,解题的关键是利用了转化的思想,解分式方程注意要检验.8.D【分析】根据多边形的外角和等于360︒判断即可.【详解】解: 多边形的外角和等于360︒,∴这个多边形的边数不能确定.故选:D .【点睛】本题考查了多边形的外角和定理,解题的关键是明确多边形的外角和与边数无关,任何多边形的外角和都是360︒.9.C【分析】根据线段垂直平分线的性质得到AD CD =,26AC AE ==,根据三角形的周长公式计算,得到答案.【详解】解:如图:DE 是边AC 的垂直平分线3AE cm =,AD CD ∴=,26()AC AE cm ==,ABC ∆ 的周长为13cm ,13()AB AC BC cm ∴++=,1367()AB BC cm ∴+=-=,ABD ∴∆的周长7()AB AD BD AB CD BD AB BC cm =++=++=+=,故选:C .【点评】本题考查的是线段的垂直平分线的性质,解题的关键是掌握线段的垂直平分线上的点到线段的两个端点的距离相等.10.A【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【详解】解:原式=11111x x xx x x x++--===.故选:A .考点:分式的加减法【点睛】本题主要考查分式的加减运算,掌握运算法则是解题关键.11.(2x+3)(2x ﹣3).【分析】根据平方差公式进行分解即可.【详解】原式=22(2)3x -=(2x+3)(2x ﹣3),故答案为(2x+3)(2x ﹣3).【点睛】本题考查因式分解,熟练掌握平方差公式是解题关键.12.EF【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABC ≌△DEF ,∴BC=EF ,故答案为:EF .【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.13.x y -##-y+x【分析】由题意知0,x x y ≠≠,根据分式的性质,分子和分母同时乘以或除以(不为0的数或整式),分式值不变,进行化简即可.【详解】解:由题意可知0,x x y≠≠226232=333()x x x xx xy x x y x y=--- 故答案为:x y -.【点睛】本题考查了因式分解,分式的性质,解题的关键在于正确的化简计算.14.23【分析】逆向运用同底数幂除法法则进行计算.【详解】∵am =2,an =3,∴am -n=23m n a a =.故答案是:23.【点睛】考查了运用同底数幂除法法则进行计算,解题关键是逆向运用同底数幂除法法则.15.998001【分析】根据完全平方公式计算即可.【详解】解:()2299910001=-2100020001=-+998001=.故答案为:998001.【点睛】本题主要考查了完全平方公式的运用,解题的关键是熟记完全平方公式.16.(-5,-3).【详解】根据平面直角坐标系内关于x 轴对称,纵坐标互为相反数,横坐标不变,点M (-5,3)关于y 轴的对称点为(-5,-3).17.②③④【分析】根据BF 是高线,根据含30°角的性质可得2AB AF =,结合直角三角形斜边长度大于直角边可判定①;由CD 是高可求解30ACD ∠=︒,60DMB ∠=︒,可判定②;通过等面积法即可列比例式可判定③;根据三角形高线的性质可判定AE 是ABC ∆中BC 上的高线和中线,即可得AB AC =,进而可判定ABC ∆的形状可判定④.【详解】解:BF 是高,90AFB BFC ∴∠=∠=︒,60BAC ∠=︒ ,906030ABF ∴∠=︒-︒=︒,2AB AF ∴=,AB BF > ,2BF AF∴<,故①错误CD 是高,90CDA ∴∠=︒,60BAC ∠=︒ ,9030ACD BAC ∴∠=︒-∠=︒,90BFC ∠=︒ ,903060DMB FMC ∴∠=∠=︒-︒=︒,2DMB ACD ∴∠=∠,故②正确;1122ABC S AC BF AB CD =⋅=⋅ ,AC BF AB CD ∴⋅=⋅,::AC AB CD BF ∴=,故③正确;BF ,CD 交于点M ,点M 在AE 上,AE BC ∴⊥,AE ∵是ABC ∆的中线,AB AC ∴=,60BAC ∠=︒ ,ABC ∴∆是等边三角形,故④正确,故答案为:②③④.18.80【分析】方向角是从正北或正南方向到目标方向所形成的小于90︒的角.【详解】解:B 处在A 处的南偏西45︒方向,C 处在A 处的南偏东15︒方向,451560BAC ∴∠=︒+︒=︒,85ACB ∠=︒ ,180608535ABC ∴∠=︒-︒-︒=︒,C ∴处在B 处的北偏东453580︒+︒=︒,故答案为80.19.8【分析】过点D 作DE ⊥AB 于E ,根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,再根据角平分线的性质即可求解.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,∵∠C =90°,AD 平分∠BAC ,CD =8,∴DE=CD=8,故答案为:8.20.()()433m n m n +-【分析】先提取公因数4,再用平方差公式将括号内的算式分解因式即可.【详解】解:原式()2249m n =-()2243m n ⎡⎤=-⎣⎦()()433m n m n =+-故答案为:()()433m n m n +-.【点睛】本题考查分解因式,能够熟练运用平方差公式进行因式分解是解决本题的关键.21.2【分析】原式中第二个分式的分母进行因式分解后,对于分式进行约分化简,然后利用同分母分式加法运算法则进行计算.【详解】解:原式22()a ab a b a a b =+++,22a b a b a b=+++,22a b a b +=+,2()a b a b +=+,2=.【点睛】本题考查分式的加法运算,解题的关键是理解分式的基本性质,掌握提取公因式进行因式分解.22.见解析【分析】根据//BC AD ,得出ADB CBD ∠=∠,证明出()ADB CBD AAS = ,即可得出结论.【详解】解://BC AD ,ADB CBD ∴∠=∠,,A C BD DB ∠=∠= ,()ADB CBD AAS ∴= ,AB CD ∴=.【点睛】本题考查了平行线的性质,三角形全等的判定及性质,解题的关键是掌握三角形全等的判定定理.23.2125xy y +,1【分析】先运用完全平方公式和平方差公式将前后两个算式化简,再括号合并同类项,再将数值代入算式中.【详解】解:原式22229124(9)x xy y x y =++--222291249x xy y x y =++-+2125xy y =+当x =13,y =﹣1时,()()221125121+514513xy y +=⨯⨯-⨯-=-+=.24.MEF ∆是等腰三角形,理由见解析【分析】根据四边形ABCD 是长方形,得MEF EFC ∠=∠,由长方形的纸ABCD 沿EF 折叠,重合部分是MEF ∆,得MFE EFC ∠=∠,从而M MEF FE =∠∠,即得ME MF =,MEF ∆是等腰三角形.【详解】解:MEF ∆是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,MEF EFC ∴∠=∠,长方形的纸ABCD 沿EF 折叠,重合部分是MEF ∆,MFE EFC ∴∠=∠,ME MF ∴=,即MEF ∆是等腰三角形.【点睛】本题考查长方形中得折叠问题,解题的关键是掌握折叠的性质及平行线的性质.25.(1)见解析(2)见解析【分析】(1)根据轴对称的性质即可画出图形;(2)作点A 关于y 轴的对称点A ',连接A B '交y 轴即为点P .(1)解:如图所示,△AB C ''即为所求;(2)解:如图所示,作点A关于y轴的对称点A',连接A B'交y轴于P,点P即为所求.【点睛】本题主要考查了作图-轴对称变换,轴对称-最短路线问题,解题的关键是利用轴对称的性质将问题转化为两点之间,线段最短.26.(1)CE=1;(2)见详解.【分析】(1)根据已知条件求出AE=3,AD=1,BD=1,AB=AD+BD=1+1=2,根据△ABC 为等腰三角形,可求AC=AB=2,利用线段差求解即可;(2)过点E作EF∥AB交BC延长线于点F,可得∠F=∠ABC,根据△ABC为等腰三角形,∠ACB=∠FCE,得出∠ABC=∠ACB=∠FCE=∠F,可证CE=FE=1=BD,再证△BDG≌△FEG (AAS)即可.(1)解:∵AE=3AD=3BD=3,∴AE=3,AD=1,BD=1,∴AB=AD+BD=1+1=2,∴△ABC为等腰三角形,BC为底边,∴AC=AB=2,∴CE=AE-AC=3-2=1;(2)证明:过点E 作EF ∥AB 交BC 延长线于点F ,∴∠F=∠ABC ,∵△ABC 为等腰三角形,∠ACB=∠FCE ,∴∠ABC=∠ACB ,∴∠FCE=∠F ,∴CE=FE=1=BD ,在△BDG 和△FEG 中B=FDGB=EGF BD FE∠∠⎧⎪∠∠⎨⎪=⎩,∴△BDG ≌△FEG (AAS ),∴DG=EG ,∴AG 为△ADE的中线.27.(1)240x -(2)120240x x +-(3)A 、B 两地距离为420米【分析】(1)由两人第一次相遇时,距离B 地240米,可知乙所走的路程;(2)设甲到达B 地前,甲的速度为v 甲,乙的速度为v 乙,由题意可列方程为240240+2x x v v v -=乙甲甲,计算求解即可;(3)由题意可列方程为24024012022x x v v ---=甲乙,解得240=360v x v x --甲乙,令240120360240x x x x -+=--,计算求解即可.(1)∵两人第一次相遇时,距离B 地240米,∴乙所走的路程为240x -米,故答案为240x -.(2)设甲到达B 地前,甲的速度为v 甲,乙的速度为v 乙,由题意可列方程为240240+2x x v v v -=乙甲甲,解得:120=240v x v x +-甲乙,故答案为:120240x x +-(3)由题意可列方程为24024012022x x v v ---=甲乙,解得:240=360v x v x --甲乙,∴240120360240x x x x -+=--,两边同时乘以()()360240x x -⨯-得:()()()2240360120x x x -=-⨯+,解得:420x =,经检验420x =是分式方程的解,∴A ,B 两地的距离为420米.28.(1)见解析(2)见解析(3)135︒【分析】(1)根据正方形的性质可得AB AE =,AC AG =,90BAE CAG ∠=∠=︒,然后求出CAE BAG ∠=∠,再利用“边角边”证明ABG ∆和AEC ∆全等,根据全等三角形对应边相等可得BG CE =;(2)设BG 、CE 相交于点N ,根据全等三角形对应角相等可得ACE AGB ∠=∠,然后求出90CNG ∠=︒,根据垂直的定义可得BG CE ⊥;(3)过A 作BG ,CE 的垂线段交于点P ,Q ,证明AM 是角平分线可得答案.(1)解:证明:在正方形ABDE 和ACFG 中,AB AE =,AC AG =,90BAE CAG ∠=∠=︒,BAE BAC CAG BAC ∴∠+∠=∠+∠,即CAE BAG ∠=∠,在ABG ∆和AEC ∆中,{AB AECAE BAG AC AG=∠=∠=,()ABG AEC SAS ∴∆≅∆,BG CE ∴=;(2)解:证明:设BG 、CE 相交于点N ,ABG AEC ∆≅∆ ,ACE AGB ∴∠=∠,9090180NCF NGF ACF AGF ∠+∠=∠+∠=︒+︒=︒ ,360()360(18090)90CNG NCF NGF F ∴∠=︒-∠+∠+∠=︒-︒+︒=︒,BG CE ∴⊥;(3)解:过A 作BG ,CE 的垂线段交于点P ,Q,ABG AEC ∆≅∆ ,,ABP AEQ AB AE ∴∠=∠=,90APB AQE ∠=∠=︒ ,()ΔΔABP AEQ AAS ∴≅,∴=AP AQ ,AM ∴是角平分线,45AMC ∴∠=︒,。
人教版八年级上册数学期末考试试题(本试卷共三大题,23小题,共4页;满分120分,考试时间120分钟)一、.填空题(共6小题,每小题3分,共18分)1.因式分解:2x 2﹣2=2.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为.3.已知3x =5,9y =8,则3x ﹣2y =.4.二次三项式4x 2﹣(k ﹣3)x+9是完全平方式,则k 的值是.5.如图所示,在△ABC 中,BAC ∠=90°,ACB ∠=30°,AD BC⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC的长为.6.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有个.二选择题:(本大题满分32分,共8小题,每题4分)7.数字0.0000036用科学记数法表示为()A .3.6×10﹣5B .3.6×10﹣6C .36×10﹣6D .0.36×10﹣58.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A .方B .雷C .罗D .安9.下列运算正确的是()A .326x x x =÷B .x x2121=-C .6234)2(x x =-D .63222a a a -=-10.关于x 的分式方程11--x m =2的解为正数,则m 的取值范围是()A .m >﹣1B .m≠1C .m >1且m≠﹣1D .m >﹣1且m≠111.已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=()A .29B .37C .21D .3312.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB的度数是()A .90°B .60°C .45°D .30°13.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是()A .30°B .15°C .20°D .35°14.如图,在△ABC 中,AB =AC ,∠BAC =90∘,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,连接EF 交AP 于点G ,给出以下五个结论:①∠B =∠C =45∘;②AE =CF ,③AP =EF ,④△EPF 是等腰直角三角形,⑤四边形AEPF 的面积是△ABC 面积的一半。
人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.数据0.00000011用科学记数法表示正确的是()A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯3.已知一个n 边形的内角和等于1800°,则n =()A .6B .8C .10D .124.下列运算中正确的是()A .235x y xy+=B .()3263x y x y =C .824x x x ÷=D .32622x x x ⋅=5.若216x ax -+是完全平方式,则a 的值等于()A .2B .4或4-C .2或2-D .8或8-6.若分式41x x +-的值为零,则x 的值是()A .4x =B .4x =-C .1x =D .1x =-7.下列四个图中,正确画出△ABC 中BC 边上的高是()A .B .C .D .8.已知三角形的两边长分别为4和9,则下列数据中,能作为第三边长的是()A .2B .3C .4D .99.如图,∠C =∠D =90°,添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等.以下给出的条件适合的是()A .AC =ADB .AC =BC C .∠ABC =∠ABD D .∠BAC =∠BAD10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题11.若点(),1A a 与点()3,B b -关于x 轴对称,则ab =__________.12.计算:22c a a bc⋅=_______.13.分解因式:2m m +=___________.14.使得分式263x x -+有意义的条件是________.15.计算:1022021-+=______16.如图,AB ,CD 相交于点E ,若ABC ADE △≌△,且点B 与点D 对应,点C 与点E 对应,28BAC ∠=︒,则B Ð的度数是_____°.17.如图所示,在ABC 中,AB AC =,直线EF 是AB 的垂直平分线,D 是BC 的中点,M 是EF 上一个动点,ABC 的面积为12,4BC =,则BDM 周长的最小值是_______________.18.如图,ABC DEF ≅ ,B 、E 、C 、F 在同一直线上,7BC =,4EC =,则CF 的长为___________.三、解答题19.化简:()()()331x x x x +---.20.解方程:132x x =-21.先化简22213111-+⎛⎫÷- ⎪-+⎝⎭x x x x ,再从-1,2,3三个数中选一个合适的数作为x 的值代入求值.22.如图,点B ,F ,C ,E 在一直线上,B E ∠=∠,BF EC =,AB DE =.求证://AC DF .23.如图,在Rt ABC 中,90B ∠=︒.(1)作AC 的垂直平分线ED ,交BC 于点E ,交AC 于点D (尺规作图,不写作法,保留作图痕迹);(2)当3AB =,5BC =时,求ABE △的周长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.已知:在△ABC 中,AD 是BC 边上的高.(1)尺规作图:作∠BAC 的平分线AE ,交BC 于点E ;(2)在(1)的条件下:若∠ABC =105°,∠C =45°,求∠EAD 的度数.26.某服装店用960元购进一批服装,并以每件46元的价格全部售完.由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.()1该服装店第一次购买了此种服装多少件?()2两次出售服装共盈利多少元?27.如图,点D 在射线BC 上运动,ABC 与ADE 都是以点A 为直角顶点的等腰直角三角形.(1)在图1中证明:①ABD ACE △△≌;②EC BC ⊥;(2)如图2,当点D 在BC 的延长线上时,若6BC =,()6BD x x =>,CDE △的面积为y ,试求出y 与x 之间的关系式.参考答案1.B【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A.是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.B【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B .【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.D【分析】根据多边形的内角和公式,计算可得结论.【详解】解:∵(n ﹣2)×180=1800,∴n =12.故选:D .【点睛】本题考查了多边形的内角和,掌握多边形的内角和公式是解决本题的关键.4.B【分析】根据合并同类项、积的乘方、同底数幂的除法、单项式与单项式的乘法法则逐项分析即可.【详解】A.2x 与3y 不是同类项,不能合并,故不正确;B.()3263x y x y =,正确;C.826x x x ÷=,故不正确;D.32522x x x ⋅=,故不正确;故选B .【点睛】本题考查了整式的运算,熟练掌握运算法则是解答本题的关键.同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.5.D【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定a 的值.【详解】解:∵x 2-ax+16=x 2-ax+42,∴-ax=±2•x•4,解得a=8或-8.故选:D .【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】根据分式的值为0的条件,即可求解.【详解】解:根据题意得:40x +=且10x -≠,解得:4x =-.故选:B【点睛】本题主要考查了分式的值为0的条件,熟练掌握分式的值为0的条件——分子等于0,且分母不等于0是解题的关键.7.C【分析】根据三角形的高的定义,即可判断,从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.【详解】A 选项不是三角形的高,不符合题意;B 选项是AC 边上的高,不符合题意;C 选项是BC 边上的高,符合题意;D 选项不是三角形的高,不符合题意;故选C .【点睛】本题考查了三角形的高的定义,理解定义是解题的关键.8.D【分析】首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】解:设这个三角形的第三边为x .根据三角形的三边关系定理,得:9-4<x <9+4,解得5<x <13.故选:D .【点睛】本题考查了三角形的三边关系定理.掌握构成三角形的条件:两边之和>第三边,两边之差<第三边是解决问题的关键.9.A【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD 或AC=AD.【详解】解:需要添加条件为:BC=BD 或AC=AD,理由为:若添加的条件为:BC=BD在Rt △ABC 与Rt △ABD 中,BC BD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL);若添加的条件为:AC=AD在Rt △ABC 与Rt △ABD 中,AC AD AB AB=⎧⎨=⎩∴Rt △ABC ≌Rt △ABD(HL).故选:A.【点睛】本题考查了利用HL 公理判定直角三角形全等,熟练运用HL 公理是解题的关键10.D【详解】解:∵Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,∴AB=2BC=4(cm ).∵BC=2cm ,D 为BC 的中点,动点E 以1cm/s 的速度从A 点出发,∴BD=12BC=1(cm ),BE=AB ﹣AE=4﹣t (cm ),若∠DBE=90°,∵∠ABC=60°,∴∠BDE=30°.∴BE=12BD=12(cm ).当A→B 时,t=4﹣0.5=3.5;当B→A 时,t=4+0.5=4.5.若∠EDB=90°时,∵∠ABC=60°,∴∠BED=30°.∴BE=2BD=2(cm ).当A→B 时,∴t=4﹣2=2;当B→A 时,t=4+2=6(舍去).综上可得:t 的值为2或3.5或4.5.故选D .11.3【分析】关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,先求出a 、b 的值,然后得到答案.【详解】解:∵点(),1A a 与点()3,B b -关于x 轴对称,∴3a =-,1b =-,∴3(1)3ab =-⨯-=;故答案为:3.【点睛】本题考查了关于x 轴对称点的坐标,解题的关键是掌握点的坐标的变化规律.12.acb【分析】分式的乘法法则:把分子的积作为积的分子,把分母的积作为积的分母,再约分即可.【详解】解:22,c a ac a bc b⋅=故答案为:ac b【点睛】本题考查的是分式的乘法运算,掌握“分式的乘法运算的运算法则”是解题的关键.13.(1)m m +【分析】利用提公因式法进行因式分解.【详解】解:2(1)m m m m +=+故答案为:(1)m m +.【点睛】本题考查提公因式法因式分解,掌握提取公因式的技巧正确计算是解题关键.14.x≠﹣3【分析】根据分式有意义的条件可得:x+3≠0,再解即可.【详解】解:由题意得:x+3≠0,解得:x≠﹣3,故答案为:x≠﹣3.【点睛】本题考查了分式有意义的条件,熟知分母不为零是解题的关键.15.32##1.5【分析】根据负整指数幂和0次幂的运算法则计算即可.【详解】解:原式=112+=32故答案为:32【点睛】本题主要考查负整指数幂和0次幂的运算,掌握相关运算方法是解题的关键.16.48【分析】由题意知28AC AE B D DAE BAC =∠=∠∠=∠=︒,,,AEC ACE ∠=∠,由三角形的内角和定理得AEC ∠的值,三角形的外角的性质得D ∠,进而得到B Ð的值.【详解】解:∵ABC ADE△≌△∴28AC AE B D DAE BAC =∠=∠∠=∠=︒,,∴AEC ACE∠=∠∵++180AEC ACE BAC ∠∠∠=︒∴180762BAC AEC ︒-∠∠==︒∵AEC D DAE∠=∠+∠∴48D ∠=︒∴48B ∠=︒故答案为:48︒.【点睛】本题考查了三角形全等的性质,等边对等角,三角形的内角和定理,三角形外角的性质等知识.解题的关键在于对知识的灵活运用.17.8【分析】连接AD ,AM ,由EF 是线段AB 的垂直平分线,得到AM=BM ,则△BDM 的周长=BD+BM+DM=AM+DM+BD ,要想△BDM 的周长最小,即要使AM+DM 的值最小,故当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,由此再根据三线合一定理求解即可.【详解】解:如图所示,连接AD ,AM ,∵EF 是线段AB 的垂直平分线,∴AM=BM ,∴△BDM 的周长=BD+BM+DM=AM+DM+BD ,∴要想△BDM 的周长最小,即要使AM+DM 的值最小,∴当A 、M 、D 三点共线时,AM+DM 最小,即为AD ,∵AB=AC ,D 为BC 的中点,∴AD ⊥BC ,122BD BC ==,∴1122ABC S AD BC =⋅=△,∴AD=6,∴△BDM 的周长最小值=AD+BD=8,故答案为:8.【点睛】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当A 、M 、D 三点共线时,AM+DM 最小,即为AD .18.3【分析】直接用全等三角形的性质可得CF=EF-CE=BC-CE ,然后进行求解即可;【详解】∵△ABC ≌△DEF ,∴BC=EF ,∵BC=7,EC=4,∴CF=7-4=3,故答案为:3.【点睛】本题考查了全等三角形的性质以及应用,正确理解全等三角形的性质是解题的关键.19.9x -【分析】由平方差公式、整式乘法、整式的加减运算进行化简,即可得到答案.【详解】解:()()()2233199x x x x x x x x +---=--+=-.【点睛】本题考查了整式的混合运算,解题的关键是掌握运算法则,正确的进行化简.20.1x =-【分析】方程两边同乘以()2x x -,将分式方程化为整式方程,再解一元一次方程,最后要检验.【详解】解:方程两边同乘()2x x -,得23x x -=,移项及合并同类项,得22x =-,系数化为1,得1x =-,经检验,1x =-是原分式方程的解,∴原分式方程的解是1x =-.【点睛】本题考查解分式方程,是重要考点,掌握相关知识是解题关键.21.12x x --,2.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x 的值代入计算即可.【详解】解:原式=2(1)13()(1)(1)11x x x x x x -+÷-+-++=1211x x x x --÷++=1112x x x x -+⋅+-=12x x --,∵x≠±1且x≠2,∴x=3,则原式=3132--=2.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.22.见详解【分析】由题意易得BC EF =,然后可根据“SAS”证明三角形全等,进而根据全等三角形的性质可求证.【详解】证明:∵BF EC =,CF CF =,∴BF CF EC CF +=+,即BC EF =,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ≌,∴ACB DFE ∠=∠,∴//AC DF .23.(1)见解析(2)8【分析】(1)利用基本作图作DE 垂直平分AC ;(2)根据线段垂直平分线的性质得到EA=EC ,然后利用等线段代换得到△ABE 的周长=AB+BC .(1)解:如图,ED为所作;(2)解:∵DE 垂直平分AC ,∴EA=EC ,∴△ABE 的周长=AB+BE+AE=AB+BE+EC=AB+BC=3+5=8.【点睛】本题考查了作图——基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC =.∴523AE AB EC =-=-=.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.25.(1)作图见解析;(2)30.︒【分析】(1)以A 为圆心,任意长为半径画弧,得与,AB AC 的两个交点,再分别以这两个交点为圆心,大于这两个交点间的距离的一半为半径画弧,得两弧的交点,以A 为端点,过两弧的交点作射线AE 交BC 于E ,即可得到答案;(2)根据三角形的内角和定理求解BAC ∠,再利用角平分线的定义求解BAE ∠,再利用三角形的高的含义与外角的性质求解BAD ∠,最后利用角的和差关系可得答案.【详解】解:(1)如图,射线AE 即为所求,(2)10545ABC C ∠=︒∠=︒ ,,1801054530BAC ∴∠=︒-︒-︒=︒,AE ∵平分BAC ∠,1152EAB BAC ∴∠=∠=︒,105ABC AD ∠=︒ ,为高,1059015BAD ABC ADC ∴∠=∠-∠=︒-︒=︒,151530.EAD EAB BAD ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是三角形的高的含义,角平分线的定义与作图,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.26.(1)该服装店第一次购买了此种服装30件;(2)两次出售服装共盈利960元【分析】(1)设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据单价总价数量结合第二次购进单价比第一次贵5元,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据销售单价x 销售数量两次进货总价利润,即可求出结论.【详解】解:()1设该服装店第一次购买了此种服装x 件,则第二次购进2x 件,根据题意得:222096052x x-=,解得:x 30=,经检验,x 30=是原方程的根,且符合题意.答:该服装店第一次购买了此种服装30件.()()246303029602220960(⨯+⨯--=元).答:两次出售服装共盈利960元.【点睛】本题考查分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量间的关系,列式计算.27.(1)①证明见解析;②证明见解析(2)213(6)2y x x x =->【分析】(1)①由等腰直角三角形的性质得:90BAC ∠=︒,90DAE ∠=︒,AB AC =,AD AE =,和同角的余角相等可证BAD CAE ∠=∠,继而利用边角边可证得ABD ACE △△≌②根据全等三角形的性质和等腰三角形的性质可证(2)证明ABD ∆≌ACE ,根据全等三角形的性质得到BD EC =,45ACE B ∠=∠=︒,根据三角形的面积公式,求出y 与x 之间的关系式.(1)证明:①ABC ∆ 与ADE ∆都是以点A 为直角顶点的等腰直角三角形90BAC ∴∠=︒,90DAE ∠=︒,AB AC =,AD AE =90BAD DAC CAE DAC ∴∠+∠=∠+∠=︒BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆②ABD ∆ ≌ACE ∆,45ACE B ∴∠=∠=︒.45ACB =︒∠ ,90ECD ∴∠=︒,EC BC ∴⊥;(2)解:90BAD DAC CAE DAC ∠-∠=∠-∠=︒ BAD CAE∴∠=∠又AB AC = ,AD AE=ABD ∴∆≌()ACE SAS ∆BD EC ∴=,45ACE B ∠=∠=︒45ACB =︒∠ 90ECD ∴∠=︒EC BC∴⊥12ECD S CD EC∆∴=⋅211(6)3(6)22y x x x x x ∴=-⋅=->.。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列式子中,是分式的是()A .1πB .3xC .11x -D .25x3.如图,在△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,则∠ACD=()A .10°B .60°C .70°D .130°4.下列计算正确的是()A .333•2b b b =B .2336ab a b ()=C .3249•a a a ()=D .2224a a (﹣)=﹣5.数据0.000000005用科学记数法表示为()A .5×10﹣8B .5×10﹣9C .0.5×10﹣8D .0.5×10﹣96.下列长度的三条线段中,能组成三角形的是()A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .3cm ,3cm ,5cmD .3cm ,4cm ,8cm 7.若221()4y a y by -=-+,则a 的值可能是()A .14B .14-C .12D .188.在如图所示的钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架,这样实际上可以得到△ABD ≌△ACD ,理由不可能是()A .AAAB .ASAC .SASD .SSS9.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为()A .4B .6C .8D .1010.如图,在△ABC 中,CA 的平分线交BC 于点D ,过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接EF ,则下列结论中,不正确的是()A .∠AEF=∠AFEB .EF ∥BC C .AD 垂直平分EFD .S △BDF :S △CED=BF :CE二、填空题11.分解因式:25x 2﹣16y 2=_____.12.要使分式3m m +有意义,则m 的取值应满足__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.14.如图,ABN ACM ≌,∠B=35°,∠BAM=25°,则∠ANB=____________.15.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且OA 平分∠BAC ,OD=2,则OE=____________.16.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_____度.17.如图,等边△ABC 中,BD ⊥AC 于D ,QD =1.5,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为_____.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题19.计算:434224()(2)x x x x x ⋅⋅++-.20.先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.21.如图,已知∠AOB ,直线MN ∥OA .请根据以下步骤完成作图过程.(1)尺规作图(保留作图痕迹,不写作法);①以点O 为圆心,任意长为半径画弧,交OA ,OB 于点P 、Q ;②以P ,Q 为圆心,大于12PO 长为半径画弧,交于一点K ,连接OK ,交MN 于点L .(2)直接写出∠BOL 和∠AOL 的数量关系.22.小明利用一根长3m 的竿子来测量路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使3m BP =,并测得70APB ∠=︒,然后把竖直的竿子(3m)CD CD =在BP 的延长线上左右移动,使20CPD ∠=︒,此时测得11.2m BD =.请根据这些数据,计算出路灯AB 的高度.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥.求证:AE CE =.24.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.25.如图,某中学校园内有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,学校计划在中间留一块边长为(a+b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.27.超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵3元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料同一价格销售,两批全部售完后,获利不少于3000元,则销售单价至少为多少元?28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1.A2.C3.D4.B5.B6.C7.C8.A9.A10.B11.(54)(54)x y x y +-12.3m ≠-【分析】分母不为零时,分式有意义,利用分母不为零列不等式即可.【详解】解: 分式3m m +有意义,30,m ∴+≠3.m ∴≠-故答案为: 3.m ≠-【点睛】本题考查的是分式有意义的条件,利用分式有意义列不等式是解题的关键.13.6【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=2×360°,解得n=6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.60°【分析】根据ABN ACM △≌△可知35C B ∠=∠=︒,25CAN BAM ∠=∠=︒,根据ANB CAN C ∠=∠+∠计算求解即可.【详解】解:∵ABN ACM△≌△∴35C B ∠=∠=︒,BAN CAM∠=∠∴BAN MAN CAM MAN∠-∠=∠-∠∴25CAN BAM ∠=∠=︒∴60ANB CAN C ∠=∠+∠=︒故答案为:60°.【点睛】本题考查了全等三角形的性质,三角形外角的性质.解题的关键在于找出角度的数量关系.15.2【分析】证明△AOE ≌△AOD (AAS ),得OE=OD=2即可.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ODA=∠OEA=90°,∵OA 平分∠BAC ,∴∠1=∠2,在△AOE 和△AOD 中,21OEA ODA OA OA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOE ≌△AOD (AAS ),∴OE=OD=2,故答案为:2.【点睛】本题考查了全等三角形的判定与性质以及角平分线定义等知识,证明△AOE ≌△AOD 是解题的关键.16.30【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,∵AB 的垂直平分线MN 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=40°,∴∠DBC=∠ABC -∠ABD=70°-40°=30°.故答案为:3017.5【分析】作点Q 关于BD 的对称点Q′,连接PQ′交BD 于E ,连接QE ,此时PE+QE 的值最小,最小值PE+QE=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=2+1.5=3.5,∴AB=AC=2AD=7,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+QE的值最小,最小值为PE+QE=PE+EQ′=PQ′,∴QD=DQ′=1.5,∴AQ′=AD+DQ′=3.5+1.5=5,∵BP=2,∴AP=AB-BP=7-2=5,∴AP=AQ′=5,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5,∴PE+QE的最小值为5.∴答案为5.【点睛】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,解题的关键是学会利用轴对称解决最短问题.18.7【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【详解】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点睛】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.19.818x 【分析】首先利用同底数幂的乘法法则、幂的乘方与积的乘方法则计算,再合并同类项即可.【详解】解:原式88816x x x =++818x =【点睛】本题主要考查了整式的混合运算,熟练掌握同底数幂的乘法法则、幂的乘方与积的乘方法则是解题关键.20.1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+⎛⎫-÷ ⎪+++⎝⎭,=()22112x x x x -+⋅+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.21.(1)见解析(2)∠BOL=∠AOL【分析】(1)根据作图过程即可解决问题;(2)根据作图过程可得OL 平分∠AOB ,进而可得结论.(1)解:如图所示即为所求.(2)解:由作图可知:OL 平分∠AOB ,∴∠BOL=∠AOL .22.路灯AB 的高度是8.2m【分析】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB-PB 求出即可.【详解】解:∵20CPD ∠=︒,70APB ∠=︒,90CDP ABP ∠=∠=︒,∴70DCP APB ∠=∠=︒,20BAP DPC ∠=∠=︒在CPD △和PAB △中,CDP PBA CD PB DCP BPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()CPD PAB ASA ≌,∴DP AB =.∵11.2m BD =,3m BP =,∴8.2m DP BD BP =-=,即8.2m AB =.答:路灯AB 的高度是8.2m .23.见解析【分析】此题根据已知条件及对顶角相等的知识先证得△AED ≌△CEF ,则易求证AE =CE .【详解】证明:∵AB ∥FC ,∴∠ADE =∠CFE ,在△AED 和△CEF 中,ADE CFE DE FE AED CEF ∠⎪∠⎧⎩∠⎪∠⎨===,∴△AED ≌△CEF (ASA ),∴AE =CE .【点睛】主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.24.(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB 是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【详解】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD﹣∠PAB=30°﹣15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=12PB=3.5>3∴没有危险25.(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.26.(1)见解析(2)120°【分析】(1)根据“AAS”证明ABC FEC ≌,即可证明AB FE =;(2)根据∥AB CE 得到B FCE ∠=∠,进而证明E FCE B ACB ∠∠=∠=∠=,利用直角三角形性质得到90∠+∠+∠=︒E FCE ACB ,即可求出30ACB ∠=︒,30B ∠=︒,即可求出120A ∠=︒.(1)证明:∵CB 为ACE ∠的角平分线,∴ACB FCE ∠=∠,在ABC 与FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴() ≌ABC FEC AAS ,∴AB FE =;(2)解:∵∥AB CE ,∴B FCE ∠=∠,∴E FCE B ACB ∠∠=∠=∠=,∵ED AC ⊥,即90CDE ∠=︒,∴90∠+∠+∠=︒E FCE ACB ,即390ACB ∠=︒,∴30ACB ∠=︒,∴30B ∠=︒,∴1801803030120∠=︒-∠-∠=︒-︒-︒=︒A B ACB .27.(1)第一批饮料进货单价为6元;(2)销售单价至少为12元.【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y 元,根据利润=销售收入-进货成本,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元.依题意,得:5400120033x x =⨯+.解得:6x =.经检验,6x =是原方程的解,且符合题意.答:第一批饮料进货单价为6元.(2)第一批饮料进货数量为12006200÷=第二批饮料进货数量为5400(63)600÷+=.设销售单价为y 元,依题意,得:(200600)(12005400)3000y +-+.解得:y =12元答:销售单价至少为12元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.28.问题背景:EF=BE+DF ;探索延伸:仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为320海里【分析】问题背景:延长FD 到点G ,使DG=BE ,连接AG ,证明△ABE ≌△ADG ,得到△AEF ≌△AGF ,证明EF=FG ,得到答案;探索延伸:连接EF ,延长AE ,BF 相交于点C ,利用全等三角形的性质证明EF=AE+FB .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,首先证明,∠FOE=12∠AOB ,利用结论EF=AE+BF 求解即可.【详解】解:问题背景:由题意:△ABE ≌△ADG ,△AEF ≌△AGF ,∴BE=DG ,EF=GF ,∴EF=FG=DF+DG=BE+FD .故答案为:EF=BE+FD .探索延伸:EF=BE+FD 仍然成立.理由:如图2,延长FD 到点G ,使DG=BE ,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG ,又∵AB=AD ,在△ABE 和△ADG 中,AB ADB ADG BE DG=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG(SAS),∴AE=AG ,∠BAE=∠DAG ,又∵∠EAF=12∠BAD ,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD ﹣∠EAF ,=∠BAD ﹣12∠BAD=12∠BAD ,∴∠EAF=∠GAF .在△AEF 和△AGF 中,AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF(SAS),∴EF=FG ,又∵FG=DG+DF=BE+DF ,∴EF=BE+FD .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。
人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
人教版八年级上册数学期末考试试题一、单选题1.计算23x x ⋅的结果为()A .6x B .5x C .4x D .3x 2的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.如图,A D ∠=∠,ACB DBC ∠=∠,那么ABC DCB △≌△的依据是()A .SASB .ASAC .AASD .SSS 4.如图,△ABC ≌△ADE ,下列说法错误的...是()A .BC=DEB .AB ⊥DEC .∠CAE=∠BAD D .∠B=∠D5.用直尺和圆规作一个角等于已知角,如图,能得出∠A O B '''=∠AOB 的依据是()A .(SAS )B .(SSS )C .(ASA )D .(AAS )6.在综合实践活动课上,小明用三根木棒首尾顺次相接摆三角形.下列每组数分别是三根木棒的长度(单位:cm ),其中能摆出直角三角形的一组是()A .4,4,7B .32,42,52C .9,12,15D .6,7,87.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:58.如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于()A B .CD9.若实数m ,n 满足30m -=,且m ,n 恰好是Rt ABC 的两条边长,则第三条边长为()A .3或4B .5C .5D10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF AC ∥交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF ,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有()A .4个B .3个C .2个D .1个二、填空题11.已知一个等腰三角形的两边分别为4和10,则它的周长为_____.12.计算:23(66)32ab ab a b --+=______.13.分解因式26m m +=_________.14.如图, ABE ≌ DCE ,AE =2cm ,BE =1.2cm ,∠A =25°,∠B =48°,那么DE =_____cm ,∠C =_________°.15.如图,在Rt △ABC 中,∠ACB=90°,∠B=15°,AB 的垂直平分线与BC 交于点D ,交AB 于点E ,连接AD .则∠CAD 的度数为_________.16.在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 和直线AC 于D 、E 两点,且∠EBC =30°,则∠A 的度数为___________.17.等腰ABC 一腰上的高与另一腰的夹角为50°,则ABC 顶角的度数为________.18.如图,Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,利用尺规在AC ,AB 上分别截取AD ,AE .使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为________.19.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.20.如图所示,在ABC ∆中,90,C DE AB ∠=︒⊥于点,E AC AE =,且55CDA ∠=︒,则B ∠=___度.三、解答题21.化简:(1)223x y x y -++;(2)22224(3)3(4)x y xy xy x y ---+.22.如果a 的算术平方根是4,b ﹣1是8的立方根,求a ﹣b ﹣4的平方根.23.分解因式:(1)22363x xy y -+(2)328x x-24.如图,AB =AD ,BC =DC ,求证:∠ABC =∠ADC .25.已知MAN ∠.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作MAN ∠的平分线AE ;②在AE 上任取一点F ,作AF 的垂直平分线分别与AM 、AN 交于P 、Q ;(2)在(1)的条件下线段AP 与AQ 有什么数量关系,请直接写出结论.26.如图,在△ABC 中,点D 是AB 的中点,点F 是BC 延长线上一点,连接DF ,交AC 于点E ,连接BE ,∠A =∠ABE .(1)求证:ED 平分∠AEB ;(2)若AB =AC ,∠A =40°,求∠F 的度数.27.如图,长方形纸片ABCD ,AD ∥BC ,将长方形纸片折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF .(1)求证:BE =BF .(2)若AB =4,AD =8,求AE 的长.28.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.参考答案1.B2.C3.C4.B5.B6.C7.C8.C9.B10.A11.2412.222244a b a b ab -+-【分析】根据单项式乘以多项式计算即可;【详解】原式222244a b a b ab =-+-;故答案是:222244a b a b ab -+-.13.(6)m m +【分析】直接提取公因式m ,进而分解因式得出答案.【详解】解:26m m+=m (m+6).故答案为:m (m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.248【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE ≌ DCE∴DE=AE=2cm ,∠C=∠B=48°故答案为:2,48【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是关键.15.60°##60度【分析】由垂直平分线的性质可求得BD=DA,且可求得∠ADC=2∠B=30°,在Rt△ACD中可求得∠CAD的度数.【详解】解:∵DE为线段AB的垂直平分线,∴BD=DA,∴∠DAB=∠B=15°,∴∠ADC=2∠B=30°,∵∠ACD=90°,∴∠CAD=90°-∠ADC=90°-30°=60°,故答案为:60°.【点睛】本题主要考查线段垂直平分线的性质及等腰三角形的性质,利用线段垂直平分线上的点到线段两端点的距离相等得到BD=DA是解题的关键.16.40°或160°或80°【分析】结合题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;根据等腰三角形的性质得到∠ABC=∠ACB,根据线段垂直平分线的性质得到EA=EB,得到∠ABE=∠EAB,结合三角形的内角和的性质,列一元一次方程并求解,即可得到答案.【详解】解:根据题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;当E在线段AC上,如图:∵AB=AC,∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A,∴∠ABC=∠ACB=∠ABE+∠EBC=∠A+30°,∴∠A+2(∠A+30°)=180°,解得∠A =40°;当E 在CA 延长线上,如图∵AB =AC ,∴∠ABC =∠ACB ,∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠BAE ,∴∠ABC =∠ACB =∠EBC ﹣∠ABE =∠EBC ﹣∠BAE =30°﹣∠BAE ,∵∠ABC+∠ACB =∠BAE ,∴2(30°﹣∠BAE )=∠BAE ,解得∠BAE =20°,∴∠A =180°﹣20°=160°.当E 在AC 延长线上,如下图:∵AB =AC ,∴∠ABC =∠ACB ,∠ABC+∠ACB+∠A =180°,∴∠ABC =1802A︒-∠∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠A ,∴∠ABE=∠ABC+∠EBC=1802A︒-∠+30°,∴∠A=1802A︒-∠+30°,解得∠A=80°;故答案为:40°或160°或80°.17.40°或140°【分析】由于等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不符合题意,分两种情况讨论:①若∠A<90°;②若∠A>90°;求出顶角∠BAC的度数.【详解】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,AB=AC,∴∠A+∠ABD=90°,∵∠ABD=50°,∴∠A=90°−50°=40°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−50°=40°,∴∠BAC=180°−40°=140°;综上所述,ABC顶角的度数为40°或140°,故答案为:40°或140°.18.83【分析】利用角平分线的性质设出GC=GP=x ,根据等积法得到方程168452x x ⨯⨯=+,得出结果.【详解】解:如图,当GP ⊥AB 时,GP 最小,根据作图知AG 平分∠BAC ,∠C=90°,∴GC=GP ,设GC=GP=x ,在直角△ABC 中,∠C=90°,10==,又∵ABCACG ABG S S S =+△△△,即11168=45222AC x AB x x x ⨯⨯⋅+⋅=+,解得x=83,故答案为83.【点睛】本题考查角平分线的性质,注意掌握利用等积法求三角形的高或点的线的距离的方法.19.k<6且k≠3【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【详解】解:233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解,∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.【点睛】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.20.20【分析】利用HL 得到△ACD ≌△AED ,由此可得到∠CDA=∠ADE ,再通过三角形内角和及角的和与差求出∠CAE ,可得到最终结果.【详解】解:∵DE ⊥AB ,∠C=90°,AC=AE ,AD=AD ,∴△ACD ≌△AED (HL ),∴∠CDA=∠ADE=55°,∠CAD=∠DAE ,∵∠CAD=180°-90°-55°=35°,∴∠CAE=70°,∴∠B=180°-90°-70°=20°.故答案为:20.【点睛】本题考查了全等三角形的判定与性质,属于基础题,熟练掌握全等三角形的判定与性质是解决本题的关键.21.(1)4x(2)2xy -【分析】(1)合并同类项即可.(2)去括号后,合并同类项,即可.(1)解:223x y x y -++=2(31)(11)x y ++-=4x .(2)解:22224(3)3(4)x y xy xy x y ---+=2222124312x y xy xy x y-+-=22(1212)(43)x y xy -+-+=2xy -.【点睛】本题考查了整式的加减、去括号、合并同类项,熟练掌握去括号法则,准确进行合并同类项是解题的关键.22.3±【分析】首先根据算术平方根的性质求出a 的值,然后根据立方根的性质求出b 的值,最后代入a ﹣b ﹣4即可求出平方根.【详解】解:由题意2416a ==,12b -==,3b ∴=,49a b ∴--=4a b ∴--的平方根为3±.【点睛】此题考查了平方根,算术平方根和立方根的性质,解题的关键是熟练掌握平方根,算术平方根和立方根的性质.23.(1)23()x y -;(2)2(2)(2)x x x +-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1)22363x xy y -+()2232x xy y =-+23()x y =-;(2)328x x-()224x x =-2(2)(2)x x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.见解析.【分析】连接AC ,根据SSS 证明△ACD ≌△ACB 即可得到结论.【详解】证明:连接AC在△ACD 与△ACB 中,AD AB AC AC CD CB =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB ,∴ABC ADC ∠=∠.25.(1)①作图见解析;②作图见解析;(2)AP=AQ ,理由见解析【分析】(1)①根据角平分线的作图方法求解即可;②根据线段垂直平分线的作图方法求解即可;(2)只需要证明△ATP ≌△ATQ 即可得到AP=AQ .【详解】解:(1)①如图所示,以A 为圆心,以任意长为半径画弧,分别与AM ,AN 交于点H 、G ,再分别以H 、G 为圆心,以大于HG 长的一半为半径画弧,二者交于点O ,过点O 作射线AE即为所求;②如图所示,分别以A 、F 为圆心,以大于AF 长的一半为半画弧,二者分别交于J 、K ,连接JK 分别交AM 于P ,AN 于Q ,AE 于T ;(2)AP=AQ,理由如下:∵JK是线段AF的垂线平分线,∴∠PTA=∠QTA=90°,∵AE是∠MAN的角平分线,∴∠MAE=∠NAE,又∵AT=AT,∴△ATP≌△ATQ(ASA),∴AP=AQ.【点睛】本题主要考查了角平分线和线段垂直平分线的尺规作图,角平分线的定义,线段垂直平分线的性质,全等三角形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)证明见解析;(2)∠F=20°.【分析】(1)先证EA=EB,再利用等腰三角形的三线合一性质即可得出结论.(2)根据等腰三角形的性质求出∠ABE,再由等腰三角形的性质证明∠BDF=90°,然后由直角三角形的性质即可得出答案.【详解】(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA =EB ,AD =DB ,∴ED ⊥AB ,∴∠FDB =90°,∴∠F =90°﹣∠ABC =20°.【点睛】本题考查的是线段垂直平分线的判定与性质、等腰三角形的判定与性质以及三角形内角和定理等知识,熟练掌握等腰三角形的判定与性质是解题的关键.27.(1)证明见解析;(2)3.【分析】(1)先根据折叠的性质可得BEF DEF ∠=∠,再根据平行线的性质可得BFE DEF ∠=∠,从而可得BEF BFE ∠=∠,然后根据等腰三角形的判定即可得证;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,设BE DE x ==,从而可得8AE x =-,然后在Rt ABE △中,利用勾股定理可求出x 的值,由此即可得出答案.【详解】证明:(1)由折叠的性质得:BEF DEF ∠=∠,AD BC ,BFE DEF ∴∠=∠,BEF BFE ∴∠=∠,BE BF ∴=;(2) 四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,4AB =,90A ∠=︒,222AB AE BE ∴+=,即2224(8)x x +-=,解得5x =,8853AE x ∴=-=-=.【点睛】本题考查了折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握折叠的性质是解题关键.28.(1)证明见解析;(2)16【分析】(1)证明:根据等边三角形的性质得到60ABC ACB ∠=∠=︒,推出∠E=∠BCD ,得到DE=DC ,由此得到结论;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,求出15x =o ,得到690EDC x ∠==︒,推出△DEC 是等腰直角三角形,过点D 作DF EC ⊥于点F ,证得△DFE 、△DFC 都是等腰直角三角形,求出DF=4,即可根据三角形的面积公式求出答案.【详解】(1)证明:ABC ∆ 是等边三角形60ABC ACB ∴∠=∠= ,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠ ,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴- ,60E x ∠=∴- ,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+ ,解得15x =o ,690EDC x ∴∠== ,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥ ,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC∴=8EC = ,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=。
人教版八年级上册数学期末考试试题一、单选题1.在211133,,,,22x xyx x yπ++中,分式的个数是()A.2B.3C.4D.52.在平面直角坐标系中,过点A(2,0)作x轴的垂线MN,则点P(4,3)关于直线MN 的对称点P′的坐标为()A.(2,3)B.(4,﹣3)C.(﹣4,3)D.(0,3)3.如图,DE是△ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则△EBC 的周长为()A.16cm B.18cm C.26cm D.28cm4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.正多边形的一个内角等于144 ,则该多边形是正()边形.A.8B.9C.10D.116.以下列各组线段为边,能组成三角形的是().A.2,3,5B.3,3,6C.2,5,8D.4,5,67.如图,∠ABD=∠CBD,AB=CB,据此可以证明 BAD≌ BCD,依据是()A.AAS B.ASA C.SAS D.HL8.如图为6个边长相等的正方形组成的图形,则∠1+∠2+∠3的大小是()A .90°B .120°C .135°D .150°9.如图,△ABC ≌△ADE ,若∠BAE=120°,∠BAD=40°,则∠BAC 的度数为()A .40°B .80°C .120°D .100°10.如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的△ADH 中()A .AH=DH≠ADB .AH=DH=ADC .AH=AD≠DHD .AH≠DH≠AD二、填空题11.因式分解:2xy 4x -=_____.12.用科学记数法表示0.000000000027=________________.13.计算:(π﹣3)0﹣|﹣2|+(﹣12)﹣2=___________________.14.计算:4xy 2z÷(-2x -2yz -1)=___________.15.若分式55y y --的值为0,则y =_______16.要使分式()11x x -有意义,则x 满足___________________17.如图,Rt △ABC 中,∠B=90°,∠A=30°,AB=5,D 是AC 的中点,P 是AB 上一动点,则CP+PD 的最小值为_____.18.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.19.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为_____________(答案不唯一,只需填一个)20.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=15,BD:CD=3:2,则点D 到AB 的距离是________.三、解答题21.计算:(1)(m ﹣n )(m+n )﹣(m+n )2﹣mn .(2)2112x 11x 1x ⎛⎫-÷ ⎪+--⎝⎭22.解方程2133xx x-=--﹣2.23.先化简,再求值:2222441242x x xx x x x--+÷-+-,再从-2,2,3中选一个恰当的数作为x的值,代入求值.24.已知:如图,长方形ABCD.(1)尺规作图(保留作图痕迹,不写作法):作点B关于AC的对称点E,连接AE,交DC 于F.(2)求证:△ACF是等腰三角形.25.已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:BC∥EF.26.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.27.某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.28.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.参考答案1.A【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:12,212x+,3xyπ中的分母中均不含有字母,因此它们是整式,而不是分式.1x,3x y+的分母中含有字母,因此是分式.故选:A.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以3xyπ不是分式,是整式.2.D【分析】由于点P关于直线MN的对称点P′的纵坐标与点P的纵坐标相等,点P和点P′到直线MN的距离相等,从而求得点P′的坐标.【详解】解:∵点P和点P′关于直线MN的对称,∴点P′的纵坐标为3,∴点P和点P′到直线MN的距离相等,∴点P′的坐标为(0,3).故选:D.【点睛】本题考查了两个知识点:①点到直线的距离,②一个点关于一条直线的对称点的坐标,可以画出图形结合结合已知做题.3.B【分析】由DE是△ABC中AC边上的垂直平分线,可得AE=CE,继而可得△EBC的周长=BC+AB.【详解】解:∵DE是△ABC中AC边上的垂直平分线,∴AE=CE,∵BC=8cm,AB=10cm,∴△EBC的周长为:BC+BE+CE=BC+BE+AE=BC+AB=8+10=18(cm).故选:B.【点睛】本题考查了线段垂直平分线的性质.注意掌握数形结合思想与转化思想的应用.4.B【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【详解】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.【点睛】本题主要考查了全等图形的概念,解决问题的关键是掌握全等图形的形状大小都相同.5.C【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【详解】解:设正多边形是n边形,由题意得(n-2)×180°=144°n .解得n=10,故选:C .【点睛】本题考查了多边形的内角与外角,利用了正多边形的内角相等,多边形的内角和公式.6.D【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、2+3=5,不能构成三角形,故选项错误,不符合题意;B 、3+3=6,不能构成三角形,故选项错误,不符合题意;C 、2+5<8,不能构成三角形,故选项错误,不符合题意;D 、4+5>6,能构成三角形,故选项正确,符合题意.故选:D .7.C【分析】依据图形可得到BD=BD ,然后依据全等三角形的判定定理进行判断即可.【详解】解:∵,BD BD ABD CBD AB CB =∠=∠=,,∴()BAD BCD SAS ≅ .故选:C【点睛】本题考查三角形全等的判定方法,解题的关键是熟练掌握判定两个三角形全等的一般方法有:SSS ,SAS ,ASA ,AAS 、HL ;注意:AAA ,SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.C【分析】标注字母,利用“边角边”判断出ABC ∆和DEA ∆全等,根据全等三角形对应角相等可得14∠=∠(或观察图形得到14)∠=∠,然后求出1+3=90∠∠︒,再判断出245∠=︒,然后计算即可得解.【详解】解:如图,在ABC ∆和DEA ∆中,90AB DE ABC DEA BC AE =⎧⎪∠=∠=︒⎨⎪=⎩,()ABC DEA SAS ∴∆≅∆,14∴∠=∠(或观察图形得到14)∠=∠,3490∠+∠=︒ ,1390∴∠+∠=︒,又245∠=︒ ,1239045135∴∠+∠+∠=︒+︒=︒.故选:C .【点睛】本题考查了全等图形,网格结构,解题的关键是准确识图判断出全等的三角形.9.B【分析】由△ABC ≌△ADE ,得∠BAC=∠DAE ,则∠BAD=∠CAE ,再由∠BAC=∠BAE-∠CAE ,即可得出答案.【详解】解:∵△ABC ≌△ADE ,∴∠BAC=∠DAE ,∴∠BAD=∠CAE ,∵∠BAE=120°,∠BAD=40°,∴∠BAC=∠BAE-∠CAE=120°-40°=80°.故选:B .【点睛】本题考查了全等三角形的性质,解题的关键是找到两全等三角形的对应角.10.B【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD .故选B .【点睛】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.11..【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-.12.2.7×10-11【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000000027=2.7×10-11故答案为:2.7×10-11【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.3【分析】先求0指数、绝对值和负指数,再计算.【详解】解:(π﹣3)0﹣|﹣2|+(﹣12)﹣2=1-2+4=3故答案为:3.【点睛】本题考查了包含0指数、绝对值和负指数的实数运算,解题关键是熟练运用相关知识化简各数,再准确计算.14.-2x 3yz 2【分析】根据单项式除以单项式的法则进行计算即可.【详解】解:4xy 2z÷(-2x -2yz -1)=-2x 1+2y 2-1z 1+1=-2x 3yz 2.故答案为:-2x 3yz 2.【点睛】本题考查了整式的除法,以及负整数指数幂的运算,掌握运算法则是解题的关键.15.-5【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式y 55y --的值等于0,则|y|-5=0,y=±5.又∵5-y≠0,y≠5,∴y=-5.若分式y 5--的值等于0,则y=-5.故答案为-5.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况.16.01x x ≠≠且【分析】根据分式有意义的条件是分母不等于0,故分母x (x-1)0≠,解得x 的范围即可;【详解】解:由题意得:x (x-1)0≠,解得:01x x ≠≠且;故答案为:01x x ≠≠且.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.17.5【分析】作C 关于AB 的对称点C',连接C′D ,易求∠ACC'=60°,则AC=AC',且△ACC'为等边三角形,CP+PD=DP+PC'为C'与直线AC 之间的连接线段,其最小值为C'到AC 的距离=AB=5,所以最小值为5.【详解】解:作C 关于AB 的对称点C',连接C′D ,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AC',∴△ACC'为等边三角形,∴CP+PD=DP+PC'为C'与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=5,故答案为:5.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.18.80【分析】先根据折叠的性质可得AD DF∠=∠,再根=,根据等边对等角的性质可得B BFD据三角形的内角和定理列式计算即可求解.【详解】解:DEF是DEA△沿直线DE翻折变换而来,∴=,AD DF是AB边的中点,D∴=,AD BD∴=,BD DFB BFD∴∠=∠,,∠=︒50BBDF B BFD∴∠=︒-∠-∠=︒-︒-︒=︒.180180505080故答案为:80.19.AC=DC(答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD,添加AC=DC可以利用SAS来进行判定;添加∠B=∠E可以利用ASA来进行判定;添加∠A=∠D可以利用AAS来进行判定.故答案为:AC=DC (答案不唯一)20.6【详解】过点D 作DE ⊥AB 于E ,∵BC=15,BD:CD=3:2,∴215623CD ,=⨯=+∵90C = ∠,AD 平分∠BAC ,∴DE=CD=6.故答案为6.21.(1)-2n 2-3mn ;(2)x【分析】(1)原式利用完全平方公式,平方差公式计算即可得到结果;(2)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果.【详解】解:(1)(m ﹣n )(m+n )﹣(m+n )2﹣mn .=m 2-n 2-(m 2+2mn+n 2)-mn=m 2-n 2-m 2-2mn -n 2-mn=-2n 2-3mn(2)2112x 11x 1x -÷+--(1(1)(1)(-1)(1)(1)2x x x x x x -+++=+-=x22.原分式方程无解【分析】方程两边乘最简公分母(x ﹣3),可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘(x ﹣3),得:2﹣x =﹣1﹣2(x ﹣3),解得:x =3,检验:当x =3时,x ﹣3=0,∴x =3是原分式方程的增根,原分式方程无解.23.12x,16【分析】分式的混合运算,注意先算乘方,然后算乘除,最后算加减,然后代入求值.【详解】解:2222441242 x x xx x x x --+÷-+-=2(2)xx x-+÷2(2)(2)(2)xx x-+-12x-=2(2)xx x-+·22xx+-12x-=112 x x -=1 2x由题意可得:x≠0且x≠±2∴当x=3时,原式=111 2236 x==⨯24.(1)见解析;(2)见解析【分析】(1)以B为圆心任意长为半径画弧,交AC于M,N,再作MN的垂直平分线PQ,交MN于点O,以O为圆心,OB为半径画弧交PQ于点E,则点E即为所求作;(2)连接AE可得∠CAE=∠BAC,根据矩形的性质可得∠ACD=∠BAC,从而可得∠CAE=∠ACD,即可证得结论.【详解】解:(1)如图所示,点E即为所作,(2)证明:连接AE,∵点B、E关于直线AC对称∴∠CAE=∠BAC在长方形ABCD中,∵AB∥CD∴∠ACD=∠BAC∴∠CAE=∠ACD∴AF=CF即△ACF是等腰三角形.【点睛】此题主要考查了线段垂直平分线的作法以及等腰三角形的判定,证明∠CAE=∠ACD是解答此题的关键.25.见解析【分析】先根据AF=DC,可推得AF-CF=DC-CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS,即可证明△ABC≌△DEF,然后利用全等三角形的性质求解.【详解】证明:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中AC DF AB DE BC EF=⎧⎪=⎨⎪=⎩∴△ABC≌△DEF(SSS).∴∠ACB=∠DFE又∵∠ACB+∠BCD=180°;∠DFE+∠EFA=180°∴∠BCD=∠EFA∴BC∥EF【点睛】本题考查了全等三角形全等的判定和性质,熟练掌握各判定定理正确推理论证是解题的关键.26.证明见解析【分析】先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.【详解】证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角),∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义),∴∠CEB=∠BDC=90°,∴∠ECB=90°−∠ABC,∠DBC=90°−∠ACB ,∴∠ECB=∠DBC(等量代换),∴FB=FC(等角对等边),在△ABF 和△ACF 中,AB AC AF AF FB FC =⎧⎪=⎨⎪=⎩,∴△ABF ≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF 平分∠BAC .【点睛】本题主要考查了等腰三角形的性质和判定,全等三角形的判定和性质,熟练掌握等腰三角形的性质和判定,全等三角形的判定和性质是解题的关键.27.8【分析】设原来每天加工零件的数量是x 个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.【详解】解:设原来每天加工零件的数量是x 个,根据题意得:4020040132.5x x-+=,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.考点:分式方程的应用28.(1)BD CE BD CE =⊥,,证明见解析(2)BD CE BD CE =⊥,,证明见解析【分析】(1)延长BD 与EC 交于点F ,可以证明△ACE ≌△ADB ,可得BD=CE ,且∠BFE=90°,进而结论得证;(2)延长BD 交CE 于F ,证明△ABD ≌△ACE ,则BD=CE 、∠ABF=∠ECA ;根据∠ABF=∠HCF 以及三角形内角和定理可证得∠BHC=90°.(1)证明:延长BD 交CE 于F ,在△EAC 和△DAB 中,AE ADEAC DAB AC AB=⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△DAB (SAS ),∴BD =CE ,∠ABD =∠ACE ,∵∠AEC+∠ACE =90°,∴∠ABD+∠AEC =90°,∴∠BFE =90°,即EC ⊥BD ,∴BD CE BD CE ⊥=,.(2)证明:延长BD 交CE 于F,∵∠BAD+∠CAD =90°,∠CAD+∠EAC =90°,∴∠BAD =∠EAC ,∵在△EAC 和△DAB 中,AE ADEAC BAD AC AB=⎧⎪∠=∠⎨⎪=⎩,∴△EAC ≌△DAB (SAS ),∴BD =CE ,∠ABD =∠ACE ,∵∠ABC+∠ACB =90°,∴∠CBF+∠BCF =∠ABC ﹣∠ABD+∠ACB+∠ACE =90°,∴∠BFC =90°,即EC ⊥BD ,∴BD CE BD CE =,.。
D,E为对应顶点,下列结论不一定成立的是八年级第一学期期末考试数学试题班级姓名成绩一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号12345678910答案1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是A2.下列计算正确的是A.a3+a2=a5B C DB.a3⋅a2=a5C.(2a2)3=6a6D.a6÷a2=a33.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为A.0.5⨯10-4B.5⨯10-4C.5⨯10-5D.50⨯10-34.若分式a+1a的值等于0,则a的值为A.-1B.1C.-2D.25.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,.A.AC=CD B.BE=CDC.∠ADE=∠AED D.∠BAE=∠CAD6.等腰三角形的一个角是70°,它的底角的大小为AB D E CA.70°B.40°C.70°或40°D.70°或55°7.已知x2-8x+a可以写成一个完全平方式,则a可为A.4B.8C.16D.-168.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则A.a=2b B.2a=bC.a=b D.a=-b9.若a+b=3,则a2-b2+6b的值为A.3B.6C.9D.12SD . 3-10.某小区有一块边长为 a 的正方形场地,规划修建两条宽为 b 的绿化带.方案一如图甲所示,绿化带面积为 S ;方案二如图乙所示,绿化带面积为 S .设 k =S甲甲乙乙 (a > b > 0) ,下列选项中正确的是b bba bbb ba ab bb aa ab b甲乙A . 0 < k <121 3 B . < k < 1 C .1 < k <2 22 < k < 2二、填空题(本大题共 24 分,每小题 3 分)11.如图,在四边形 ABCD 中,∠A =90°,∠D =40°,则∠B +∠C 为 .ABD12.点 M (3, 1) 关于 y 轴的对称点的坐标为.C13.已知分式满足条件“只含有字母 x ,且当 x =1 时无意义”,请写出一个这样的分式: .14.已知△ABC 中,AB =2,∠C =40°,请你添加一个适当的条件,使△ABC 的形状和大小都是确定的.你添加的条件是 .15.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点 O 处拴一条线绳,线绳的另一端挂一个 铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角 顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到 的数学原理是 .16.如图,在平面直角坐标系 xOy 中,△DEF 可以看作是△ABC 经过若干次的图形变化(轴对称、平移)y3EF2 D 1–3 –2 –1 O –1–2A 1 2 3 xBC得到的,写出一种由△ABC 得到△DEF 的过程:.–321.解方程: x17.如图,在△ABC 中,AB =4,AC =6,∠ A BC 和∠ACB 的平分线交于 O 点,过点O 作 BC 的平行线交 AB 于 M 点,交 AC 于 N 点,则△AMN 的周长为 .M A O NBC18.已知一张三角形纸片 ABC (如图甲),其中 AB =AC .将纸片沿过点 B 的直线折叠,使点 C 落到 AB 边上的 E 点处,折痕为 BD (如图乙).再将纸片沿过点 E 的直线折叠,点 A 恰好与点 D 重合,折痕为 EF (如图丙).原三角形纸片 ABC 中,∠ABC 的大小为 °.AAAEEF DDBC B CBC甲 乙 丙三、解答题(本大题共 17 分,第 19 题 8 分, 第 20 题 4 分,第 21 题 5 分)19.计算:(1) -4 - 9 + 3 -2 - (-2018)0;(2) (15x 2 y - 10 x y 2 ) ÷ 5 x y .20.如图,A ,B ,C ,D 是同一条直线上的点,AC =BD ,AE ∥DF ,∠1=∠2.求证:BE = CF .EA1CB2DF3- 1 = x - 2 x ( x - 2).22.先化简,再求值: (m + 4m + 4 , .四、解答题(本大题共 15 分,每小题 5 分)m + 2) ÷m m 2,其中 m = 3 .23.如图,A ,B 分别为 CD ,CE 的中点,AE ⊥CD 于点 A ,BD ⊥CE 于点 B .求∠AEC 的度数.CBAED24.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂” 是我们必须世代传承的文化根脉、文化基因为传 承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵 60 元,用 4800 元购买《水浒传》连环画的套数是用 3600 元购买《三国演义》连环画套数的 2 倍,求每套《水浒传》连环画的价格.五、解答题(本大题共 14 分,第 25、26 题各 7 分) 25.阅读材料小明遇到这样一个问题:求计算 ( x + 2)(2 x + 3)(3 x + 4) 所得多项式的一次项系数.小明想通过计算 ( x + 2)(2 x + 3)(3 x + 4) 所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找 ( x + 2)(2 x + 3) 所得多项式中的一次项系数.通过观察发现:( x + 2)(2 x + 3) = 2 x 2 + 3x + 4 x + 6也就是说,只需用 x + 2 中的一次项系数 1 乘以 2 x + 3 中的常数项 3,再用 x + 2 中的常数项 2 乘以 2 x + 3 中的一次项系数 2,两个积相加1⨯ 3 + 2 ⨯ 2 = 7 ,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x-3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式的一次项系数为0,则a=_________.(4)若x2-3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.26.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.A NB C M附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:3 3 和 (a 、b 、c 、d 均为正整数, < , c < d )的一个中间分数(用含 a 、b 、c 、 b d b dt 两个不等的正分数有无数多个中间分数.例如:上表中第③行中的 3 个分数 1 1 2、 、 ,有3 2 31 12 1 1 2 1 2 234 3< < ,所以 为 和 的一个中间分数,在表中还可以找到 和 的中间分数 , , , .把3 2 3 2 3 3 5 7 7 51 2这个表一直写下去,可以找到 和 更多的中间分数.33(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;3 2②如果把上面的表一直写下去,那么表中第一个出现的 和 5 3的中间分数是 ;(2)写出分数 a c a c..d 的式子表示),并证明;(3)若 s 9 8与 (m 、n 、s 、 t 均为正整数)都是 和 的中间分数,则 mn 的最小值为 .m n 17 15-“⎩数学参考答案一、选择题(本大题共30分,每小题3分)题号答案1A2B3C4A5A6D7C8D9C10B二、填空题(本大题共24分,每小题3分)11.230°12.(-3,1)13.1 x-114.答案不唯一,如:∠A=60°(注意:如果给一边长,需小于或等于2)或AC=BC15.等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”16.答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度17.1018.72三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19.(1)解:原式=4-3+19-1-------------------------------------------------------------------3分=19.-----------------------------------------------------------------------------4分(2)解:原式=(15x2y-10x y2)⋅15x y-------------------------------------------------------1分=5x y(x-2y)⋅15x y--------------------------------------------------------2分=3x-2y.---------------------------------------------------------------------- 4分20.证明:∵AC=AB+BC,BD=BC+CD,AC=BD,E A∴AB=DC.---------------------------------------------1分∵AE∥DF,C 1 B∴∠A=∠D.-------------------------------------------2分2D F在△ABE和△DCF中,⎧∠A=∠D,⎪⎨AB=DC,⎪∠1=∠2,∴△ABE≌△DCF.---------------------------------------------------------------------3分∴BE=CF.------------------------------------------------------------------------------4分2 时, x (x - 2) ≠ 0 .2 .------------------------------------------------------------5 分m + 2 --------------------------------------------------------------------2 分21.解:方程两边乘 x (x - 2),得x 2 - x (x - 2 ) = 3 .-------------------------------------------------------------------------2 分解得 x = 32 .------------------------------------------------------------------------4 分检验:当 x = 3∴原分式方程的解为 x = 3四、解答题(本大题共 15 分,每小题 5 分)22.解:原式=m 2 +4m + 4m÷ m + 2 m 2----------------------------------------------------------------1 分m 2 + 4m + 4 =⋅ mm 2m + 2=(m +2)2m⋅m 2= m 2 + 2m .--------------------------------------------------------------------------3 分当 m = 3 时,原式=15.------------------------------------------------------------------5 分注:直接代入求值正确给 2 分.23.解:连接 DE .----------------------------------------------1 分∵A ,B 分别为 CD ,CE 的中点,C AE ⊥CD 于点 A ,BD ⊥CE 于点 B ,B∴CD =CE =DE ,A∴△CDE 为等边三角形.----------------------------3 分∴∠C =60°. E1∴∠AEC =90° - ∠C =30°.----------------------5 分2D24 . 解:设 每套 《水 浒传 》连 环画 的价 格为 x 元, 则每 套《 三国 演义》连 环画 的价 格为 (x + 60)元.--------------------------------------------------------------------------------------------1 分由题意,得4800x = 23600x + 60 .-----------------------------------------------------------3 分解得x = 120 .-----------------------------------------------------------------4 分经检验, x = 120 是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为 120 元.--------------------------------------------5 分⎩五、解答题(本大题共 14 分,第 25、26 题各 7 分)25.(1)7.--------------------------------------------------------------------------------------------1 分 (2) -7 .----------------------------------------------------------------------------------------3 分(3) -3 .----------------------------------------------------------------------------------------5 分 (4) -15 .--------------------------------------------------------------------------------------7 分26.(1)ANE DPBC M-------------------------------------------------1 分(2)解:∵点 A 与点 D 关于 CN 对称, ∴CN 是 AD 的垂直平分线, ∴CA =CD .∵ ∠ACN = α ,∴∠ACD =2 ∠ACN = 2α .-------------------------------------------------------2 分 ∵等边△ABC ,∴CA =CB =CD ,∠ACB =60°.------------------------------------------------3 分 ∴∠BCD =∠ACB +∠ACD =60°+ 2α .1∴∠BDC =∠DBC = (180° - ∠BCD )=60° - α .-------------------4 分2(3)结论:PB =PC +2PE .------------------------------------------------------------------5 分 本题证法不唯一,如:证明:在 PB 上截取 PF 使 PF =PC ,连接 CF . ∵CA =CD ,∠ACD = 2α∴∠CDA =∠CAD =90° - α . ∵∠BDC =60° - α ,∴∠PDE =∠CDA - ∠BDC =30°.------------------------------------------6 分 ∴PD =2PE .∵∠CPF =∠DPE =90° - ∠PDE =60°. ∴△CPF 是等边三角形. ∴∠CPF =∠CFP =60°. ∴∠BFC =∠DPC =120°. ∴在△BFC 和△DPC 中,⎧∠CFB = ∠CPD , ⎪⎨∠CBF =∠CDP , ⎪CB = CD ,∴△BFC ≌△DPC . ∴BF =PD =2PE .∴PB = PF +BF =PC +2PE .----------------------------------------------------7 分证明:∵a、b、c、d均为正整数,ab+d b b(b+d)b2+bda+c c d(a+c)-c(b+d)ad-bc -===b d<0.b+d d d(b+d)bd+d2d∴a附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)(1)①27;------------------------------------------------------------------------------------1分②58.------------------------------------------------------------------------------------3分(2)本题结论不唯一,证法不唯一,如:结论:a+cb+d.--------------------------------------------------------------------------5分c<,c<d,b da+c a b(a+c)-a(b+d)bc-ad ∴-==c a-=d b>0,b+1da c-1+ba+c c<<.-----------------------------------------------------------8分b b+d d(3)1504.------------------------------------------------------------------------------------10分八年级数学上册期末试题一、选择题(本大题共12小题,每小题3分,共36分。
人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.下列四根木棒中,不能与5cm ,8cm 长的两根木棒钉成一个三角形的是()A .4cmB .8cmC .10cmD .14cm3.要使分式11x +有意义,x 的取值应满足()A .1x =-B .0x ≠C .0x =D .1x ≠-4.在平面直角坐标系中,点M (﹣3,6)关于x 轴的对称点M′的坐标是()A .(3,﹣6)B .(﹣3,﹣6)C .(3,6)D .(6,﹣3)5.下列运算正确的是()A .336aa a+=B .()236a a =C .()22ab ab =D .555235a a a ⋅=6.如图,已知∠ABD =∠CBD ,添加以下条件,不一定能判定△ABD ≌△CBD 的是()A .∠A =∠CB .AB =CBC .∠BDA =∠BDCD .AD =CD7.若将分式35xx y+中的x ,y 都扩大10倍,则分式的值()A .扩大为原来的10倍B .缩小为原来的110C .缩小为原来的1100D .不改变8.如果一个多边形的每个内角都是144°,那么这个多边形的边数是()A .5B .6C .10D .129.如图:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,则下列说法正确的有几个()(1)AE 平分∠DAB ;(2)△EBA ≌△DCE ;(3)AB+CD=AD ;(4)AE ⊥DE .(5)DE=AEA .2个B .3个C .4个D .510.如图,AB CD ∥,∠A=45°,∠C=∠E ,则∠C 的度数为()A .45°B .22.5°C .67.5°D .30°二、填空题11.分解因式:2x 2x -=___.12.若△ABC ≌△DEF ,∠A =100°,∠E =60°,则∠F =___.13.计算:2221b b a b a-=-+________.14.计算:()23262xy x y ÷-=_____15.已知关于x 的分式方程2311x k x x -=--的解为正数,则k 的取值范围为________.16.如图,AD 是ABC 的角平分线,DE AC ⊥,垂足为E ,BF AC ∥交ED 的延长线于点F ,BC 恰好平分ABF ∠,2AE BF =.若3CE =,则AB =________.17.如图,在锐角△ABC 中,BC=4,∠ABC=30°,∠ABD=15°,直线BD 交边AC 于点D ,点P 、Q 分别在线段BD 、BC 上运动,则PQ+PC 的最小值是__________.18.如图,AC ,BD 在AB 的同侧,2AC =,8BD =,10AB =,点P 为AB 的中点,连接CP ,DP ,CD ,若120CPD ∠=︒,则CD 的最大值为________.三、解答题19.计算:()()()11224a a a +--+.20.分解因式:2235105a b ab b -+.21.先化简,再求值:22121269x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,其中x 是从1,2,3中选取的一个合适的数.22.尺规作图:如图,已知△ABC ,作BC 边的垂直平分线交AB 于点D ,连接DC .(不写作法,保留作图痕迹).23.某公司用4000元购进一批某种型号的口罩.由于质量较好,公司又用6400元购进第二批同一型号的口罩,已知第二批口罩的数量是第一批的2倍,且每包便宜5元.问第一批口罩每包的价格是多少元?公司前后两批一共购进多少包口罩?24.如图,已知ABC ,90C ∠=︒,AC BC <,DE 为AB 的垂直平分线,交BC 于D ,交AB 于E .(1)用直尺和圆规,作出DE (不写作法,保留作图痕迹);(2)连接AD ,若36B ∠=︒,则CAD ∠=________.25.如图,已知ABC 和CDE △均为等边三角形,且点B 、C 、D 在同一条直线上,连接AD 、BE ,交CE 和AC 分别于G 、H 点,连接GH .(1)求证:AD BE =;(2)求AFB ∠的度数;(3)连接FC ,猜想:AF 、FC 与BF 的关系,并加以证明.26.如图,在四边形ABCD 中,∠B=∠C=90°,E 为BC 上一点,DE 、AE 分别为∠ADC 、∠DAB 的平分线.(1)∠DEA =;(需说明理由)(2)求证:CE =EB ;(3)探究CD 、DA 、AB 三条线段之间的数量关系,并说明理由.27.如图,四边形ABCD 中,AB=AD ,BC=DC ,我们把这种两组邻边分别相等的四边形叫做“筝形”.(1)求证:ABC ADC △△≌;(2)测量OB 与OD 、∠BOA 与∠DOA ,你有何猜想?证明你的猜想;(3)在“筝形”ABCD 中,已知AC=6,BD=4,求“筝形”ABCD 的面积.参考答案1.B 2.D 3.D 4.B 5.B 6.D 7.D 8.C 9.B 10.B11.()x x 2-12.20︒13.1b a-14.23y -15.k<32且k≠1216.917.218.1519.249a a --20.()25b a b -21.3x x -;12-【分析】先算括号内的减法,再根据分式的乘法法则算乘法,根据分式有意义的条件求出x=1,再代入求出答案即可.【详解】解:原式()()()()222221322333x x x x x x xx x x x x -----=⋅=⋅=-----,要使分式有意义,必须20x -≠且30x -≠,解得:x 不能为2,3,所以取1x =,当1x =时,原式11132==--.22.【详解】如图:23.第一批口罩每包的价格是25元,公司前后两批一共购进480包口罩【分析】设第一批口罩每包的价格是x 元,则第二批口罩每包(x−5)元,根据数量=总价÷单价,结合第二批口罩的数量是第一批的2倍,即可得出关于x 的分式方程,解出检验后即可得出结论.【详解】解:设第一批口罩每包x 元,则第二批口罩每包(5)x -元.根据题意,得6400400025x x=⨯-.解得25x =.经检验,25x =是所列方程的根.则4000348025⨯=(包).答:第一批口罩每包的价格是25元,公司前后两批一共购进480包口罩.24.(1)作图见解析部分;(2)18°.【分析】(1)利用尺规根据要求作出图形即可;(2)利用线段的垂直平分线的性质,三角形内角和定理求解即可.(1)如图,DE 即为所求;(2)∵DE 垂直平分线段AB ,∴DA=DB ,∴∠DAB=∠B=36°,∴∠ADC=∠DAB+∠B=72°,∵∠C=90°,∴∠CAD=90°-72°=18°.25.(1)见解析(2)60°(3)AFFC BF +=,证明见解析【分析】(1)由△ABC 和△CDE 均为等边三角形得AC =BC ,EC =DC ,∠ACB =∠ECD =60°,可证明△ACD ≌△BCE ,则可得出结论;(2)利用≌ACD BCE V V ,得到CBE CAD ∠=∠,利用AFB ∠,60ACB ∠=︒,分别是△BDF ,△ACD 的外角即可求解;(3)在BF 上取点M ,使MF AF =,连接AM ,证得AFM △是等边三角形,进而证得BAM CAF ≌△△,利用全等三角形的性质即可求解.(1)证明:∵ABC 和CDE △均为等边三角形,∴AC BC =,EC DC =,60ACB ECD ∠=∠=︒,∴ACB ACE ECD ACE ∠+∠=∠+∠,∴ACD ECB ∠=∠,∴≌ACD BCE V V (SAS );∴AD BE =;(2)解:∵≌ACD BCE V V ,∴CBE CAD ∠=∠.∵AFB CBE ADC CAD ADC ACB ∠=∠+∠=∠+∠=∠,60ACB ∠=︒,∴60AFB ACB ∠=∠=︒(3)猜想:AF FC BF +=,证明如下:在BF 上取点M ,使MF AF =,连接AM ,由(2)得60AFB ∠=︒,则AFM △是等边三角形,∴AM AF =,60MAF ∠=︒;∵60BAC ∠=︒,∴BAM MAH MAH CAF ∠+∠=∠+∠.∴BAM CAF ∠=∠.∵AB AC =,∴BAM CAF ≌△△(SAS ),∴BM FC =,∴BF FM BM AF FC=+=+26.(1)90°;(2)见详解;(3)CD+AB=DA .【分析】(1)由∠B=∠C=90º可得CD ∥AB ,再由平行线的性质和角平分线的性质可得∠EDA+∠DAE=90º,因此∠DEA=90º.(2)作EF 丄AD 于F ,由角平分线的性质定理可得EC=EF=EB ,结论得证.(3)先由HL 证明Rt △DCE ≌Rt △DFE ,因此得DC=DF ,同理可证AF=AB ,结论得证.(1)解:∵∠B=∠C=90º,∴∠B+∠C=180º,∴AB ∥CD ,∴∠ADC+∠DAB=180º.∵DE 、AE 分别为∠ADC 、∠DAB 的平分线,∴∠EDA=12∠ADC ,∠DAE=12∠DAB ,∴∠EDA+∠DAE=12(∠ADC +∠DAB )=11802⨯︒=90°.∴∠DEA=180º-(∠EDA+∠DAE)=90º.故答案为90°.(2)证明:作EF 丄AD 于F∵DE 平分∠ADC ,且∠C=90º,EF 丄AD ,∴CE=FE .∵AE 平分∠DAB ,且∠B=90º,EF 丄AD ,∴FE=EB ,∴CE=EB .(3)在Rt △DCE 和Rt △DFE 中DE DE CE FE=⎧⎨=⎩∴Rt △DCE ≌Rt △DFE ,∴DC=DF .同理可证:Rt △AFE ≌Rt △ABE ,∴AF=AB ,∴CD+AB=DF+AF=AD .【点睛】本题主要考查了平行线的判定和性质,角平分线的性质,全等三角形的判定和性质,熟练掌握以上知识是解题的关键.27.(1)见解析(2)OB=OD 、BOA DOA ∠=∠(3)12【分析】(1)根据全等三角形的判定和性质进行证明即可;(2)测量得出OB=OD 、BOA DOA ∠=∠,故猜想:OB=OD 、BOA DOA ∠=∠,根据垂直平分线的判定和性质即可得出证明;(3)根据ABD BCD ABCD S S S =+筝形△△进行计算即可.(1)证明:在△ABC 和△ADC 中,AB AD BC DC AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC ,(2)猜想:OB=OD 、BOA DOA ∠=∠,证明如下:∵AB=AD ,BC=DC ,∴,A C 在BD 的垂直平分线上,∴AC BD ⊥,AC 平分BD ,∴90BOA DOA ∠=∠=︒,OB=OD ,∴BOA DOA ∠=∠,OB=OD ,(3)∵11,,22ABD BCD S S BD AO BD CO =⨯=⨯△△∴ABD BCDABCD S S S =+筝形△△=1122BD AO BD CO ⨯+⨯11=()12BD AO CO ⨯+=12BD AC ⨯=1462⨯⨯=12∴“筝形”ABCD 的面积为:12.。
人教版八年级上册数学期末考试试题一、单选题1.下列四个图形中,不是轴对称图形的是()A .B .C .D .2.要使分式5x 1-有意义,则x 的取值范围是()A .x1≠B .x 1>C .x 1<D .x 1≠-3.下列运算正确的是()A .a+a=a 2B .a 6÷a 3=a 2C .(a+b)2=a2+b2D .(a b3)2=a2b64.将多项式32x xy -分解因式,结果正确的是()A .22()x x y -B .2()x x y -C .2()x x y +D .()()x x y x y +-5.已知m x =6,n x =3,则2-m n x 的值为()A .9B .34C .12D .436.下列运算中正确的是()A .623m m m=B .1x yx y-+=-+C .22222a ab b a b a b a b+++=--D .11+=+p pq q7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A .5B .7C .5或7D .68.若22(3)16xm x +-+是完全平方式,则m 的值等于()A .1或5B .5C .7D .7或1-9.如图,在ABC 中,AB AC =,120A ∠=︒,6BC =cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为()A .4cmB .3cmC .2cmD .1cm10.如图所示,在直角三角形ACB 中,已知∠ACB=90°,点E 是AB 的中点,且DE AB ⊥,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D=30°,EF=2,则DF 的长是()A .5B .4C .3D .211.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS12.如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅ ;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是()A .①②③④B .②③④C .①③④D .①②③二、填空题13.因式分解:3269a a a -+=______.14.在平面直角坐标系中,(2,0)A ,(0,3)B ,若ABC ∆的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为__________.15.若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.16.计算:0120201(2020)((1)2--+--=______.17.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.18.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为__________(答案不唯一,只需填一个)三、解答题19.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a ②(x 2+1)2﹣4x 2.20.计算题(1)先化简,再求值:22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭其中a=3.(2)解方程:212xx x +=+21.如图所示,AB//DC ,AD ⊥CD ,BE 平分∠ABC ,且点E 是AD 的中点,试探求AB 、CD 与BC 的数量关系,并说明你的理由.22.如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断 BCD的形状;(2)求该船从A处航行至D处所用的时间.23.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)24.已知等腰△ABC一腰上的中线BD把三角形的周长分成21cm和12cm两部分,求底边BC的长.25.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC (1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.参考答案1.C【分析】根据轴对称图形的定义即可进行解答.【详解】解:由图形可知A、B、D为轴对称图形,C不是轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形的定义,解题的关键是掌握把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形.2.A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得:x-1≠0,解得:x≠1,故选:A.3.D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(a b3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.4.D【详解】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选:D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5.C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵x m =6,x n =3,∴x 2m-n =(x m )2÷x n =62÷3=12.故选:C .【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m )2÷x n 是解题的关键.6.C【分析】根据分式的约分可直接进行排除选项.【详解】解:A 、633m m m=,原式计算错误,故不符合题意;B 、x yx y-++分子分母没有公因式,不能约分,故不符合题意;C 、()()()222222a b a ab b a b a b a b a b a b++++==-+--,正确,故符合题意;D 、11p q ++分子分母没有公因式,不能约分,故不符合题意;故选C .【点睛】本题主要考查分式的约分,熟练掌握分式的约分是解题的关键.7.B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选:B .【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.8.D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∵多项式22(3)16x m x +-+是完全平方式,∴222(3)16(4)x m x =x +-+±,∴2(3)8m =-±34-±m=解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】解:连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为2cm.故选:C.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.10.B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.11.D【分析】根据作图过程可知:OC=OD,PC=PD,又OP=OP,从而利用SSS判断出△OCP≌△ODP,根据全等三角形的对应角相等得出∠COP=∠DOP,即OP平分∠AOB,从而得出答案.【详解】解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.12.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】解:ABC ∆ 和CDE ∆是正三角形,AC BC ∴=,CD CE =,60ACB DCE ︒∠=∠=,ACD ACB BCD ∠=∠+∠ ,BCE DCE BCD ∠=∠+∠,ACD BCE ∠∠∴=,()ADC BEC SAS ∴∆≅∆,故①正确,AD BE ∴=,故②正确;ADC BEC ∆≅∆ ,ADC BEC ∠∠∴=,60AOB DAE AEO DAE ADC DCE ∴∠=∠+∠=∠+∠=∠=︒,故③正确;CD CE = ,60DCP ECQ ∠=∠=︒,ADC BEC ∠∠=,()CDP CEQ ASA ∴∆≅∆.CP CQ ∴=,60CPQ CQP ∴∠=∠=︒,CPQ ∴∆是等边三角形,故④正确;故选:A .【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.13.2(3)a a -【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =-+=-,故答案为:2(3)a a -.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.14.()2,0-或()6,0或()0,3-或()0,9【分析】根据C 点在坐标轴上分类讨论即可.【详解】解:①如图所示,若点C 在x 轴上,且在点A 的左侧时,∵(0,3)B ∴OB=3∴S △ABC =12AC·OB=6解得:AC=4∵(2,0)A ∴此时点C 的坐标为:()2,0-;②如图所示,若点C 在x 轴上,且在点A 的右侧时,同理可得:AC=4∴此时点C 的坐标为:()6,0;③如图所示,若点C 在y 轴上,且在点B 的下方时,∵(2,0)A ∴AO=2∴S △ABC =12BC·AO=6解得:BC=6∵(0,3)B ∴此时点C 的坐标为:()0,3-;④如图所示,若点C 在y 轴上,且在点B 的上方时,同理可得:BC=6∴此时点C 的坐标为:()0,9.故答案为()2,0-或()6,0或()0,3-或()0,9.【点睛】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C 点的位置分类讨论是解决此题的关键.15.8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n边形的每个内角都等于135°,︒-︒=︒∴则这个n边形的每个外角等于18013545÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.16.2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式1212=+-=.故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.17.80【分析】先根据折叠的性质可得AD DF∠=∠,再根=,根据等边对等角的性质可得B BFD据三角形的内角和定理列式计算即可求解.【详解】解:DEF是DEA△沿直线DE翻折变换而来,∴=,AD DFD是AB边的中点,∴=,AD BD∴=,BD DFB BFD∴∠=∠,,∠=︒B50∴∠=︒-∠-∠=︒-︒-︒=︒.180180505080BDF B BFD故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.18.AC=DC(答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD,添加AC=DC可以利用SAS来进行判定;添加∠B=∠E可以利用ASA来进行判定;添加∠A=∠D可以利用AAS来进行判定.故答案为:AC=DC(答案不唯一)19.(1)①4a ②x 2﹣y 2+18y ﹣81(2)①﹣2a (a ﹣3)2②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x 2+1+2x )(x 2+1-2x )=(x+1)2(x ﹣1)2.20.(1)11a a +-,2;(2)x=-1【分析】(1)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【详解】解:(1)22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭=()222112a a a a -⎛⎫÷ ⎪---⎝⎭=()()()211221a a a a a +--⨯--=11a a +-,将a=3代入,原式=2;(2)212xx x +=+去分母得:()()2222x x x x +++=,去括号得:22242x x x x +++=,移项合并得:44x =-,系数化为1得:x=-1.经检验:x=-1是原方程的解.【点睛】本题考查了分式的化简求值和解分式方程,解题的关键是掌握运算法则和解法.21.BC=AB+CD,理由见解析【分析】过点E作EF⊥BC于点F,只要证明△ABE≌△FBE(AAS),Rt△CDE≌Rt△CFE (HL)即可解决问题;【详解】解:证明:∵AB//DC,AD CD,∴∠A=∠D=90°,过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.22.(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,∴∠BCD=∠BDC=60°,∴BC=BD,∴△BCD是等边三角形;(2)∵△BCD是等边三角形,∴CD=BD=BC=60海里,∵∠BAC=90°-60°=30°,∴∠ABC=∠BCD-∠BAC=30°,∴∠BAC=∠ABC,∴AC=BC=60海里,∴AD=AC+CD=120海里,∴该船从A处航行至D处所用的时间为:120÷15=8(小时);23.答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图24.5cm【分析】根据图形和题意可知,有AB+AD=21,CD+BC=12或AB+AD=12,CD+BC=21两种情况,据此即可求出BC的长,然后再结合三角形的三边关系进行判断即可.【详解】解:∵△ABC是等腰三角形,∴AB=AC,∵BD是AC边上的中线,∴AD=CD设AB=AC=xcm,BC=ycm,∵BD把三角形的周长分成21cm和12cm两部分,∴有AB+AD=21cm,CD+BC=12cm或AB+AD=12cm,CD+BC=21cm两种情况,则有:①21212 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:145 xy=⎧⎨=⎩即AB=AC=14cm,BC=5cm,根据三角形构成的条件可知,能够成三角形;②12221 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:817 xy=⎧⎨=⎩即AB=AC=8cm,BC=17cm,根据三角形构成的条件可知,不能够成三角形,不符合题意;综上所述,等腰三角形底边BC为5cm.25.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x 轴对称点的性质得出对应点坐标即可;(3)直接利用关于y 轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A 1B 1C 1,即为所求;(3)如图所示:△A 2B 2C 2,即为所求.。
人教版八年级上册数学期末考试试题一、单选题1.要使分式12x 有意义,则x的取值范围为()A.x≠﹣2B.x=2C.x=﹣2D.x≠02.已知三角形的两边长分别为3cm和4cm,则该三角形第三边的长不可能是()A.2cm B.3cm C.5cm D.7cm3.下列图案是轴对称图形的有()个.A.1B.2C.3D.44.数据0.00023用科学记数法可以表示为()A.2.3×104B.0.23×10﹣3C.2.3×10﹣4D.23×10﹣55.若一个正多边形的各个内角都是140°,则这个正多边形是()A.正七边形B.正八边形C.正九边形D.正十边形6.下列计算正确的是()A.a+a2=a3B.a6÷a3=a3C.(﹣a2b)3=a6b3D.(a+2)2=a2+47.若(x-m)(x+1)的运算结果中不含x的一次项,则m的值等于()A.0B.1C.2D.38.△ABC中,AB=AC,∠A=36°,若按如图的尺规作图方法作出线段BD,则下列结论错误的是()A.AD=BD B.∠BDC=72°C.S△ABD:S△BCD=BC:AC D.△BCD的周长=AB+BC9.如图,在ABC 和ADC 中,90B D ∠=∠=︒,CB CD =,130∠=︒,则2∠=()A .30°B .40°C .50°D .60°10.如图,在△ABC 中,∠B=70°,∠C=30°,则∠DAC 的度数为()A .100°B .110°C .150°D .80°二、填空题11.因式分解:39mx my -=____________.12.若x+y =3,且xy =1,则代数式x 2+y 2的值为_____.13.在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多3cm ,已知AB =4cm ,则AC 的长为_____.14.如图,∠ACD 是△ABC 的外角,若∠ACD =120°,∠A =50°,则∠B =_____.15.如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,若BC=4,则BD=_____.16.如图,B 处在A 处的南偏西40°方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东80°方向,则∠ACB =_____.17.如图,已知:,D E 分别是ABC 的边BC 和边AC 的中点,连接,DE AD .若224,ABC S cm = 则DEC 的面积是____________________.三、解答题18.计算:()()213x x +-19.化简22142x x x x +⎛⎫+÷⎪--⎝⎭,并在0,1,2中选一个合适的数作为x 的值代入求值.20.如图,AC 和BD 相交于点O ,OA=OC ,DC ∥AB .求证DC=AB .21.如图,△ABC 中,∠C =90°.(1)尺规作图:作边BC 的垂直平分线,与边BC ,AB 分别交于点D 和点E ;(保留作图痕迹,不要求写作法)(2)若点E 是边AB 的中点,AC =BE ,求证:△ACE 是等边三角形.22.如图,在平面直角坐标系中,图中的小方格都是边长为1的正方形,△ABC 各顶点坐标分别为A(4,0),B(-1,4),C(-3,1),已知点D 与点B 关于x 轴对称,请在方格中找出点D ,并求出△ABD 的面积.23.如图,CD 是△ABC 的角平分线,DE ,DF 分别是△ACD 和△BCD 的高.(1)求证CD ⊥EF ;(2)若AC =6,BC =4,S △ABC =10,∠ACB =60°,求CG 的长.24.如图,在ABC 中,AB AC =,点D 在BC 边上,点E 在AC 边上,连接AD ,DE .已知12∠=∠,AD DE =.(1)求证:ABD DCE △△≌;(2)若2BD =,5CD =,求AE 的长.25.某团委在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的单价比甲种树苗贵10元,用360元购买甲种树苗的棵数恰好与用480元购买乙种树苗的棵数相同.(1)求甲、乙两种树苗的单价各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?26.△ABC是等边三角形,点D是AC边上动点,∠CBD=α(0°<α<30°),把△ABD沿BD对折,得到△A′BD.(1)如图1,若α=15°,则∠CBA′=.(2)如图2,点P在BD延长线上,且∠DAP=∠DBC=α.①试探究AP,BP,CP之间是否存在一定数量关系,猜想并说明理由.②若BP=10,CP=m,求CA′的长.(用含m的式子表示)参考答案1.A2.D3.B4.C5.C7.B 8.C 9.D 10.A11.3(3)m x y -12.713.7cm 14.70°15.216.85°17.6cm 218.2x 2﹣5x ﹣3.19.1x x-,0【分析】先约分,再根据分式的加法法则计算,同时根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,根据分式有意义的条件可得x 不能为2,2,0-,故1x =,将1x =代入1x x-求解即可.【详解】22(1)42x xx x ++÷--221(2)(2)x x x x x ⎡⎤+-=+⋅⎢⎥+-⎣⎦12(12x x x-=+⋅-2122x x x x -+-=⋅-122x x x x --=⋅-1,x x-=要使分式22(1)42x xx x ++÷--有意义,必须240,0,x x -≠≠即x 不能为2,2,0-当1x =,原式1101-==.20.见解析【分析】由DC ∥AB 得∠D=∠B ,再利用AAS 即可证明△COD ≌△AOB ,即可得出结论.【详解】证明:∵DC ∥AB ,∴∠D=∠B ,在△COD 与△AOB 中,D B DOC BOA OC OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△AOB (AAS ),∴DC=AB .21.【分析】(1)根据题意作出线段BC 的垂直平分线即可;(2)根据直角三角形的性质和等边三角形的判定定理即可得到结论.(1)解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E 是边AB 的中点,∴AE=BE=CE=12AB ,∵AC=BE ,∴AC=AE=CE ,∴△ACE 是等边三角形.22.D 点位置如图;△ABD 面积为20.【分析】先利用对称性,找到D 点的坐标,在坐标轴里面可以很轻松的找出三角形的底和高的值,即可求出三角形的面积.【详解】∵点D 与点B 关于x 轴对称,B(-1,4)∴D(-1,-4)∴△ABD 的面积为185202⨯⨯=.23.(1)见解析(2)3【分析】根据角平分线的性质定理可得DE=DF ,从而得到Rt CDE Rt CDF ≅ ,进而得到CE=CF ,即可求证;(2)先证得△CEF 是等边三角形,可得EF=CE ,∠ACD=30°,1122EG EF CE ==,再由ABC ACD BCD S S S =+△△△,可得DE=2,再根据直角三角形的性质可得CD=2DE=4,然后由勾股定理,即可求解.(1)∵CD 是△ABC 的角平分线,DE ⊥AC ,DF ⊥BC ,∴DE=DF ,△CDE 和△CDF 是直角三角形,∵CD=CD ,∴()Rt CDE Rt CDF HL ≅ ,∴CE=CF ,∴CD 垂直平分EF ,即CD ⊥EF .(2)∵CE=CF ,∠ACB =60°,∴△CEF 是等边三角形,∴EF=CE ,∠ACD=30°,∵CD ⊥EF ,∴1122EG EF CE ==,∵AC =6,BC =4,S △ABC =10,DE=DF ,ABC ACD BCD S S S =+△△△,∴()11110222DE AC DF BC AC BC ⨯+⨯=⨯+=,解得:DE=2,在Rt CDE △中,∠ACD=30°,∴CD=2DE=4,∴CE ==,∴1122EG EF CE ===,∴3CG ==.24.(1)见解析(2)3【分析】(1)根据AAS 可证明ABD DCE ≌△△.(2)根据ABD DCE ≌△△,得出AB =DC =5,CE =BD =3,求出AC =5,则AE 可求出.(1)证明:∵AB AC =,∴B C ∠=∠.又∵12∠=∠,AD DE =,∴ABD DCE ≌△△(AAS ).(2)解:∵ABD DCE ≌△△,∴5AB DC ==,2CE BD ==.∵AC AB =,∴5AC=.∴523AE AB EC =-=-=.25.(1)甲种树苗的单价是30元,乙种树苗的单价是40元;(2)他们最多可购买11棵乙种树苗;【分析】(1)根据题意可得等量关系:480360=乙树苗单价甲树苗单价,根据等量关系列出方程求解即可;(2)根据题意可知不等关系:×110501500-⨯-≤甲树苗单价(%)(乙树苗数量),根据题意列出不等式求解即可.(1)解:设甲种树苗每棵的价格是x 元,则乙种树苗每棵的价格是(x+10)元,依题意有48036010x x=+,解得:x=30,经检验,x=30是原方程的解,x+10=40,∴甲种树苗的单价是30元,乙种树苗的单价是40元.(2)设他们可购买y 棵乙种树苗,依题意有,30×(1﹣10%)(50﹣y )+40y≤1500,解得,71113y ≤,∴y 最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查列分式方程解决实际问题,以及列不等式解决实际问题,能够根据题意找出等量关系并列出方程是解决本题的关键.26.(1)30°(2)①BP AP CP =+;②102m-【分析】(1)根据等边三角形的性质可得60ABC ∠=︒,根据角度计算可得ABD ∠=45︒,由折叠的性质可得ABD A BD '∠=∠,根据A BC A BD CBD ''∠=∠-∠即可求解;(2)①连接CP ,在BP 上取一点P ',使BP AP '=,证明BP C APC ' ≌,PP C ' 是等边三角形,即可得到BP AP CP =+;②先证明,,A C P '三点共线,结合①的结论求解即可.(1)ABC 是等边三角形∴60ABC ∠=︒60ABD ABC CBD α∴∠=∠-∠=︒- 把△ABD 沿BD 对折,得到△A BD ',ABD A BD '∴∠=∠=60α︒- 15α=︒6060230A BC A BD CBD ααα''∴∠=∠-∠=︒--=︒-=︒故答案为:30°(2)①BP AP CP =+,理由如下:连接CP ,在BP 上取一点P ',使BP AP '=,如图,ABC 是等边三角形60,ACB BC AC∴∠=︒=DAP DBC α∠=∠= BP C APC'∴ ≌CP CP '∴=,BCP ACP'∠=∠60PCP ACP ACP BCP ACP ACB ''''∴∠=∠+∠=∠+∠=∠=︒PP C '∴ 是等边三角形60CPB ∴∠=︒,P P PC'=BP BP PP AP CP''∴=+=+即BP AP CP=+②如图,由①可得60BPC ∠=︒180120BCP BPC PBC α∴∠=︒-∠-∠=︒-由(1)可知602CBA α'∠=︒- 把△ABD 沿BD 对折,得到△A BD ',BA BA '∴=BA BC= BC BA '∴=()()111801806026022BCA CBA αα''∴∠=︒-∠=︒-︒-=︒+12060180BCP BCA αα'∴∠+∠=︒-+︒+=︒,,A C P '∴三点共线折叠BA BA '∴=,ADB A DB'∠=∠ADP A DP'∴∠=∠ DP DP=ADP A DP'∴ ≌AP AP '∴=由①可得BP AP CP=+10,BP CP m== 10AP BP CP m∴=-=-10A P AP m'∴==-10102CA A P CP m m m''∴=-=--=-。
最新人教版八年级数学(上册)期末试卷及答案(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.使x 2-有意义的x 的取值范围是________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--. 2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、A6、A7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、(3,7)或(3,-3)3、x 2≥4、x >3.5、46、8三、解答题(本大题共6小题,共72分)1、2x =2、22x -,12-.3、0.4、(1)y =x +5;(2)272;(3)x >-3.5、略.6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。
人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.如果三条线段之比是:(1)2:2:3;(2)2:3:5;(3)1:4:6;(4)3:4:5,其中能构成三角形的有()A .1组B .2组C .3组D .4组3.一个多边形的每一个内角都是135°,则这个多边形是()A .七边形B .八边形C .九边形D .十边形4.某病毒的直径为100纳米(1纳米=0.000000001米),100纳米用科学记数法表示为()A .81010-⨯米B .7110-⨯米C .9110-⨯米D .80110-⨯.米5.在直角坐标系中,点A (–2,2)与点B 关于x 轴对称,则点B 的坐标为()A .(–2,2)B .(–2,–2)C .(2,–2)D .(2,2)6.把一副三角板按如图叠放在一起,则α∠的度数是()A .165B .160C .155D .150 7.下列各式中,正确的是()A .2242ab b a c c =B .1a b b ab b ++=C .23193x x x -=-+D .22x y x y -++=-8.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B ,下列结论中不一定成立的是()A .PA PB =B .PO 平分APB ∠C .=OA OBD .AB 垂直平分OP9.如图,在四边形ABCD 中,AB ∥DC ,DAB ∠的平分线交BC 于点E ,DE AE ⊥,若6AD =,4BC =,则四边形ABCD 的周长为()A .14B .15C .16D .1710.小东一家自驾车去某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均时速是线路一上车速的1.8倍,线路二的用时预计比线路一用时少半小时,如果设汽车在线路一上行驶的平均速度为xkm/h ,则下面所列方程正确的是()A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =-11.在ABC 中,已知8AB =,5AC =,6BC =,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD (如图所示).则下列结论:①DE AB ⊥②ADE V 的周长等于7③:3:4BCD ABD S S = ④CD AD =,其中正确的是()A .①②B .②③C .①②③D .②③④12.由图,可得代数恒等式()A .()2222a b a ab b +=++B .()()22232a b a b a ab b ++=++C .()()2224a b a b a ab b ++=++D .()222232a b a ab b +++=二、填空题13.计算:(20112-⎛⎫-= ⎪⎝⎭________.14.若分式211x x--的值为零,则x 的值为________.15.如图,△ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,∠CPE 的度数是________°.16.如图,在ABC 中,AB AC =,点P 在ABC ∠的平分线上,将PBC 沿PC 对折,使点B 恰好落在AC 边上的点D 处,连接PD ,若AD PD =,则A ∠=______.17.分解因式:a -2ax+a 2x =__________.18.如图,∠B =50°,∠C =70°,∠BAD 平分线与∠ADC 外角平分线交于点F ,则∠F =_____.三、解答题19.计算:(1)()()322ab ab ÷-;(2)()()()2412525x x x +-+-.20.解方程:21324x x =--.21.先化简:542()11x x x x x ---÷++,再从-1,0,2三个数中任选一个你喜欢的数代入求值.22.如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1;B 1;C 1;(3)求△A 1B 1C 1的面积.23.如图,点,,,A B C D 在一条直线上,且AB CD =,若12∠=∠,EC FB =.求证:E F ∠=∠.24.如图,已知ABC 中,12AB AC ==厘米.9BC =厘米,点D 为AB 的中点.(1)如果点P 在BC 边上以3厘米/秒的速度由B 向C 点运动,同时点Q 在CA 边上由C 点向A 点运动.①若点Q 与点P 的运动速度相等,1秒钟时,BPD △与CQP V 是否全等?请说明理由:②若点Q 与点P 的运动速度不相等,要使BPD △与CQP V 全等,点Q 的运动速度应为多少?并说明理由;(2)若点Q 以②的运动速度从点C 出发点,P 以原来运动速度从点B 同时出发,都沿ABC 的三边按逆时针方向运动,当点P 与点Q 第一次相遇时,求它们运动的时间,并说明此时点P 与点Q 在ABC 的哪条边上.25.在直角ABC 中,90ACB ∠= ,60B ∠= ,AD ,CE 分别是BAC ∠和BCA ∠的平分线,AD ,CE 相交于点F .()1求EFD ∠的度数;()2判断FE 与FD 之间的数量关系,并证明你的结论.26.水果店第一次用500元购进某种水果,由于销售状况良好,该店又用1650元购时该品种水果,所购数量是第一次购进数量的3倍,但进货价每千克多了0.5元.(1)第一次所购水果的进货价是每千克多少元?(2)水果店以每千克8元销售这些水果,在销售中,第一次购进的水果有5%的损耗,第二次购进的水果有2%的损耗.该水果店售完这些水果可获利多少元?27.晓芳利用两张正三角形纸片,进行了如下探究:初步发现:如图1,△ABC 和△DCE 均为等边三角形,连接AE 交BD 延长线于点F ,求证:∠AFB =60°;深入探究:如图2,在正三角形纸片△ABC 的BC 边上取一点D ,作∠ADE =60°交∠ACB 外角平分线于点E ,探究CE ,DC 和AC 的数量关系,并证明;拓展创新:如图3,△ABC 和△DCE 均为正三角形,连接AE 交BD 于P ,当B ,C ,E 三点共线时,连接PC ,若BC =3CE ,直接写出下列两式分别是否为定值,并任选其中一个进行证明:(1)3AP PD PC -;(2)2AP PC PD BD PC PE++-+.参考答案1.B【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:选项A 、C 、D 均不能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以不是轴对称图形;选项B 能找到这样的一条直线,使直线两旁的部分能够完全重合的图形,所以是轴对称图形;故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边,判断即可.【详解】解:(1)223+>,232+>,223-<,322-<,能构成;(2)235+=,不能构成;(3)146+<,不能构成;(4)345+>,354+>,453+>,435-<,534-<,543-<能构成;故选:B .【点睛】本题是对三角形三边关系的考查,熟练掌握三角形三边关系是解决本题的关键.3.B【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【详解】多边形的边数是:n =360°÷(180°﹣135°)=8.故选:B .【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.4.B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100纳米=0.0000001米7110-=⨯米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a < ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.B【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:∵点A (-2,2)与点B 关于x 轴对称,∴点B 的坐标为(-2,-2).故选B .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.6.A【分析】先根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,同理再求出∠α即可【详解】解:如图,∠1=∠D+∠C=45°+90°=135°,∠α=∠1+∠B=135°+30°=165°.故选A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.7.C【分析】根据分式的基本性质对选项逐一判断即可.【详解】A 、2242ab b a c ac=,故错误;B 、11a b ab a b+=+,故错误;C 、23193x x x -=-+,故正确;D 、22x y x y -+-=-,故错误;故选C .【点睛】本题考查了分式的基本性质,熟记分式的基本性质是解题的关键.8.D【分析】根据角平分线的性质,垂直平分线的判定和三角形全等的判定和性质逐项进行判定即可.【详解】解:对A 、B 、C 选项,∵OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,∴PA PB =,∵在Rt PAO ∆和Rt PBO ∆中==PA PB OP OP⎧⎨⎩,∴Rt Rt OPA OPB ∆∆≌,∴APO BPO ∠=∠,=OA OB ,∴PO 平分APB ∠,故A 、B 、C 正确,不符合题意;D .∵PA PB =,=OA OB ,∴OP 垂直平分AB ,但AB 不一定垂直平分OP ,故D 错误,符合题意.【点睛】本题主要考查了角平分线的性质,垂直平分线的判定,全等三角形的判定和性质,根据题意证明Rt Rt OPA OPB ∆∆≌,是解题的关键.9.C【分析】延长AB 、DE 相交于点F ,根据AED AEF ∆∆≌得到DE EF =,AD AF =,再证明DEC FEB ∆∆≌得到DC BF =,从而推算出四边形ABCD 的周长等于2AD BC +得到答案.【详解】解:如下图所示,延长AB 、DE 相交于点F,DAB ∠的平分线交BC 于点E ,∴DAE FAE ∠=∠,∵DE AE ⊥,90AED AEF ∠=∠=︒∴,∵AE=AE ,∴AED AEF ∆∆≌,∴DE EF =,AD AF =,∵AB ∥DC ,∴CDE EFB ∠=∠,∵CDE EFB DE EF DEC FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DEC FEB ∆∆≌,∴DC BF =,∵6AB DC AB BF AF +=+==,∴四边形ABCD 的周长为66416AD AB BC DC AD AF BC +++=++=++=,故选:C .【点睛】本题考查全等三角形、平行线和角平分线的性质,解题的关键是熟练掌握全等三角形、平行线和角平分线的相关知识.10.A【分析】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,根据线路二的用时预计比线路一用时少半小时,列方程即可.【详解】设汽车在线路一上行驶的平均速度为xkm/h ,则在线路二上行驶的平均速度为1.8xkm/h ,由题意得:759011.82x x =+,故选A .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是,读懂题意,设出未知数,找出合适的等量关系,列出方程.11.B【分析】由折叠的性质得到CBD EBD ≅ ,继而得到BED C ∠=∠,根据题意90C ∠<︒,据此判断①错误;由折叠的性质得到DC=DE ,BE=BC=6,求得AED △的周长为:AD+AE+DE=AC+AE=7,可判断②;设点D 到AB 的距离为h ,根据三角形面积公式得到11::6:83:422BCD ABD S S h BE AB =⋅⋅== ,可判断③;设点B 到AC 的距离为m ,根据三角形面积公式得到11:::3:422BCD ABD S S m CD m AD CD AD =⋅⋅== ,可判断④.【详解】解:沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,CBD EBD≅ ,CBD EBD BED C∴∠=∠∠=∠90C ∠<︒90DEB ∴∠<︒DE ∴不垂直AB ,故①错误;由折叠的性质可知DC=DE ,BE=BC=68AB = 2AE AB BE ∴=-=AED ∴ 的周长为:AD+AE+DE=AC+AE=7,故②正确;设点D 到AB 的距离为h ,11::6:83:422BCD ABD S S h BE h AB ∴=⋅⋅== ,故③正确;设点B 到AC 的距离为m ,11:::3:422BCD ABD S S m CD m AD CD AD ∴=⋅⋅== ,故④错误,故选:B.【点睛】本题考查翻折变换,三角形周长的求法、三角形的面积公式等知识,是基础考点,掌握相关知识是解题关键.12.B【分析】根据大长方形的面积等于3个正方形的面积加上3个长方形的面积即可求解.【详解】解:依题意,得()()22232a b a b a ab b ++=++.故选B .【点睛】本题考查了多项式乘法与图形的面积,数形结合是解题的关键.13.3【分析】原式根据负整数指数幂、零指数幂的运算法则化简各项后,再进行减法运算即可得到答案.【详解】解:(201141=32-⎛⎫-=- ⎪⎝⎭.故答案为:3.【点睛】本题主要考查了负整数指数幂、零指数幂,熟练掌握负整数指数幂、零指数幂的运算法则是解答本题的关键.14.=1x -【分析】根据分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零,即可得到答案.【详解】解;根据分式的值为零的条件得:210x -=,且10x -≠,解得:=1x -,故答案为:=1x -.【点睛】本题考查了分式的值为零的条件:当分式的分母不为零,分子为零时,分式的值为零.15.60【分析】连接,BP BE ,先根据等边三角形的性质可得60,ACB BE AC ∠=︒⊥,从而可得30CBE ∠=︒,再根据等边三角形的性质、线段垂直平分线的性质可得PB PC =,从而可得PC PE PB PE +=+,然后根据两点之间线段最短可得当点,,B P E 共线时,PB PE +最小,最后根据等腰三角形的性质可得30BCP CBE ∠=∠=︒,利用三角形的外角性质即可得出答案.【详解】解:如图,连接,BP BE ,ABC 是等边三角形,E 是AC 的中点,60ACB ∠=︒∴,BE AC ⊥,9030CBE ACB ∴∠=︒-∠=︒,AD 是等边ABC 的BC 边上的高,AD ∴垂直平分BC ,PB PC ∴=,PC PE PB PE ∴+=+,由两点之间线段最短得:如图,当点,,B P E 共线时,PB PE +最小,最小值为BE ,此时有30BCP CBE ∠=∠=︒,则60CPE BCP CBE ∠=∠+∠=︒,故答案为:60.【点睛】本题考查了等边三角形的性质、两点之间线段最短等知识点,利用两点之间线段最短找出PC PE +最小时,点P 的位置是解题关键.16.36︒【分析】根据等腰三角形底角相等、角平分线的性质和折叠的性质,证得PBC PCB ∠=∠,从而得到BP PC =,PD PC =,进一步证明PDC PCD ∠=∠,再根据ABP ACP ∆∆≌得到PDC BAC ∠=∠,推算出2ABC BCA BAC ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如下图所所示,连接AP ,∵点P 在ABC ∠的平分线上,∴ABP PBC ∠=∠,∵AB AC =,∴A ABC CB =∠∠,∵折叠,∴PCB DCP ∠=∠,∴PBC PCB ∠=∠,∴BP PC =,∵BP PD =,∴PD PC =,∴PDC PCD ∠=∠,∴ABP PBC BCP PCD PDC ∠=∠=∠=∠=∠,∵AD PD =,∴PAD APD ∠=∠,∵2PDC PAD APD PAD ∠=∠+∠=∠,∵AB ACAP AP BP PC=⎧⎪=⎨⎪=⎩,∴ABP ACP ∆∆≌,∴BAP PAC ∠=∠,∴PDC BAC ∠=∠,∴2ABC BCA BAC ∠=∠=∠,∵180ABC BCA BAC ∠+∠+∠=︒∴22180BAC BAC BAC ∠+∠+∠=︒,∴36BAC ∠=︒.【点睛】本题考查等腰三角形、角平分线、全等三角形、三角形内角和定理和三角形外角定理,解题的关键是证明2ABC BCA BAC ∠=∠=∠.17.a 2(1)x -【分析】首先提取公因式a ,然后利用完全平方公式.【详解】解:原式=a(1-2x+2x )=a 2(1)x -.18.80︒【分析】设∠ADC=x ,则∠ADG=180°-x ,先证明∠BAE=∠C+∠EDC-∠B=x+20°,再由角平分线的定义得到1902ADF x =︒-∠,1102DAF x =︒+∠,再利用三角形内角和定理求解即可.【详解】解:设∠ADC=x ,则∠ADG=180°-x ,∵∠AEB=∠DEC ,∠AEB+∠B+∠BAE=180°,∠DEC+∠C+∠EDC=180°,∴∠B+∠BAE=∠C+∠EDC ,∴∠BAE=∠C+∠EDC-∠B=x+20°,∵AF 平分∠BAD ,DF 平分∠ADG ,∴119022ADF ADG x ==︒-∠∠,111022DAF BAD x ==︒+∠∠,∴1118018090108022F ADF DAF x x =︒--=︒-︒+-︒-=︒∠∠∠,故答案为:80︒.【点睛】本题主要考查了角平分线的定义,三角形内角和定理,正确得到∠BAE=∠C+∠EDC-∠B 是解题的关键.19.(1)4ab(2)8x 29+【分析】(1)根据积的乘方、同底数幂的除法法则解答;(2)根据完全平方公式、平方差公式解答.(1)解:()()322ab ab ÷-6322a b a b =÷4ab =;(2)解:()()()2412525x x x +-+-()()22421425x x x =++--22484425x x x =++-+829x =+.20.1x =【分析】先去分母,方程两边同时乘以(2)(2)x x +-,转化为解一元一次方程,再验根即可.【详解】解:方程两边同时乘以(2)(2)x x +-得,23x +=1x ∴=经检验,1x =是分式方程的解1x ∴=.21.-2【详解】试题分析:原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将0x =代入计算即可求出值.试题解析:原式2541,112x x x x x x x ⎛⎫+-+=-⋅ ⎪++-⎝⎭2541,12x x x x x x +-++=⋅+-()221,12x x x x -+=⋅+-2x =-.当0x =时,原式 2.=-22.(1)见解析;(2)(3,2);(4,-3);(1,-1);(3)6.5【分析】(1)根据关于y 轴对称点的性质得出各对应点位置进而得出答案;(2)利用(1)中作画图形,进而得出各点坐标;(3)利用△ABC 所在长方形面积减去△ABC 周围三角形面积进而求出即可;【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)A 1(3,2);B 1(4,-3);C 1(1,-1);故答案为:(3,2);(4,-3);(1,-1);(3)△A 1B 1C 1的面积为:3×5-12×2×3-12×1×5-12×2×3=6.5.【点睛】此题主要考查了轴对称变换以及三角形面积求法等知识,正确利用轴对称图形的性质得出是解题关键.23.证明见解析.【分析】由∠1=∠2,根据补角的性质可求出DBF ACE ∠=∠,根据AB=CD 可得AC DB =,根据SAS 推出ACE DBF ∆≅∆,根据全等三角形的性质即可得出答案.【详解】∵01DBF 180∠∠+=,02ACE 180∠∠+=.又∵12∠∠=,∴DBF ACE ∠∠=,∵AB CD =,∴AB BC CD BC +=+,即AC DB =,在ΔACE 和ΔDBF 中,EC FB ACE DBF AC DB =⎧⎪∠=∠⎨⎪=⎩∴()ΔACE ΔDBF SAS ≅,∴E F ∠∠=.24.(1)①△BPD ≌△CQP ,理由见解析;②点Q 的运动速度为4cm/s ,理由见解析;(2)经过了24秒,点P 与点Q 第一次在BC 边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C ,最后根据SAS 即可证明;②因为VP≠VQ ,所以BP≠CQ ,又∠B=∠C ,要使△BPD 与△CQP 全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ 的长即可求得Q 的运动速度;(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,据此列出方程,解这个方程即可求得.(1)①1秒钟时,△BPD 与△CQP 全等;理由如下:∵t=1秒,∴BP=CQ=3(cm )∵AB=12cm ,D 为AB 中点,∴BD=6cm ,又∵PC=BC-BP=9-3=6(cm ),∴PC=BD∵AB=AC ,∴∠B=∠C ,在△BPD 与△CQP 中,BP CQ B C BD PC =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②∵VP≠VQ ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD ≌△CPQ ,只能BP=CP=4.5,∵△BPD ≌△CPQ ,∴CQ=BD=6.∴点P 的运动时间 4.5 1.533BP t ===(秒),此时641.5Q CQ V t ===(cm/s ).(2)因为VQ >VP ,只能是点Q 追上点P ,即点Q 比点P 多走AB+AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得:4x=3x+2×12,解得:x=24,此时P 运动了24×3=72(cm )又∵△ABC 的周长为33cm ,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过了24秒,点P 与点Q 第一次在BC 边上相遇.【点睛】本题是三角形综合题目,考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用;熟练掌握三角形全等的判定和性质是解决问题的关键.25.(1)120°;(2)FE=FD ;见解析.【分析】(1)由已知条件易得∠BAC=30°,结合AD ,CE 分别是∠BAC 和∠ACB 的角平分线可得∠FAC=15°,∠FCA=45°,由此结合三角形内角和定理可得∠AFC=120°,由此即可得到∠EFD=∠AFC=120°.(2)如下图,在AC 是截取AG=AE ,连接FG ,在由已知条件易证△AGF ≌△AEF ,由此可得∠AFG=∠AFE=∠FAC+∠ECA=60°,结合∠AFC=120°,可得∠CFG=60°,∠CFD=60°,这样结合∠GCF=∠DCF ,CF=CF 即可得到△GCF ≌△DCF ,由此可得FG=FD ,结合FE=FG 即可得到FE=FD.【详解】(1)∵ABC 中,90ACB ∠= ,60B ∠=∴30BAC ∠= ,∵AD 、CE 分别是BAC ∠、BCA ∠的平分线,∴1152FAC BAC ∠=∠= ,1452FCA ACB ∠=∠= ,∴180120AFC FAC FCA ∠=-∠-∠= ,∴120EFD AFC ∠=∠= ;()2FE 与FD 之间的数量关系为FE FD =;在AC 上截取AG AE =,连接FG,∵AD 是BAC ∠的平分线,∴EAF GAF∠=∠在EAF △和GAF 中,∵AEAGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴AEF △≌AGF ,∴FE FG =,∠AFG=∠AFE=∠FAC+∠ECA=60°,∴∠CFD=∠AFE=60°,∴∠CFD=∠CFG ,∵在FDC △和FGC △中,DFC GFCFC FC FCG FCD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴CFG △≌CFD △,∴FG FD =,∴FE FD =.26.(1)5;(2)962.【分析】(1)设第一次所购水果的进货价是每千克多少元,由题意可列方程求解;(2)求出两次的购进千克数,根据利润=售价-进价,可求出结果.【详解】(1)设第一次所购水果的进货价是每千克x 元,依题意,得1650x 0.5+=3500x⨯,解得,x=5,经检查,x=5是原方程的解.答:第一次进货价为5元;(2)第一次购进:500÷5=100千克,第二次购进:3×100=300千克,获利:[100×(1-5%)×8-500]+[300×(1-2%)×8-1650]=962元.答:第一次所购水果的进货价是每千克5元,该水果店售完这些水果可获利962元.27.初步发现:证明见解析;深入探究:CE+DC=AC ,证明见解析;拓展创新:(1)2,证明见解析;(2)1,证明见解析【分析】初步发现:只需要利用SAS 证明△BCD ≌△ACE 得到∠CBD=∠CAE ,由∠BOC=∠AOF ,推出∠AFO=∠BCO=60°,由此即可证明结论;深入探究:在AB 上取一点G 使得BG=BD ,连接DG ,先证明△BDG 是等边三角形,得到BG=BD=DG ,∠BGD=60°,再利用ASA 证明△AGD ≌△DCE 得到CE=GD=BD ,即可证明CE+DC=AC ;拓展创新:(1)如图所示,在AE 上取一点F ,使得EF=PD ,先证明△ACE ≌△BCD 得到AE=BD ,∠AEC=∠BDC ,再证明△CPD ≌△CFE 得到PD=FE ,∠PCD=∠FCE ,PC=CF ,进而证明△PCF 是等边三角形,得到PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,利用面积法证明CG=CH ,得到3BP PE =,得到34AE BD PC PD ==+23AP PC PD =+,由此即可得到结论;(2)根据(1)所求分别用PC 和PD 表示出分子和分母的线段的和差即可得到答案.【详解】解:初步发现:如图所示,设AC 与BF 交于O ,∵△ABC 和△CDE 都是等边三角形,∴CB=CA ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB-∠ACD=∠DCE-∠ACD ,即∠BCD=∠ACE ,∴△BCD ≌△ACE (SAS ),∴∠CBD=∠CAE ,∵∠BOC=∠AOF ,∠AOF+∠AFO+∠OAF=180°,∠CBO+∠BOC+∠BCO=180°,∴∠AFO=∠BCO=60°,即∠AFB=60°;深入探究:CE+DC=AC ,证明如下:如图所示,在AB 上取一点G 使得BG=BD ,连接DG ,∵△ABC 是等边三角形,∴AC=BC=AB ,∠ACB=∠B=60°,∴∠ACF=120°,△BDG 是等边三角形,∴BG=BD=DG ,∠BGD=60°,∴∠AGD=120°,AG=DC ,∵CE 平分∠ACF ,∴1602ECF ACE ACF ∠=∠=∠=︒,∴∠DCE=120°,∵∠ADC=∠ADE+∠CDE=∠B+∠BAD ,∠B=∠ADE=60°,∴∠CDE=∠BAD ,在△AGD 和△DCE 中,DAG EDCAG DC AGD DCE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△DCE (ASA ),∴CE=GD=BD ,∴CE+DC=BD+DC=BC ,∴CE+DC=AC;拓展创新:(1)32AP PDPC -=,证明如下:如图所示,在AE 上取一点F ,使得EF=PD ,∵△ABC 和△CDE 都是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD ,∴∠BCD=∠ACE ,在△ACE 和△BCD 中,AC BCACE BCD CE CD=⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),∴AE=BD ,∠AEC=∠BDC ,在△CPD 和△CFE 中,CD CECDP CEF DP EF=⎧⎪∠=∠⎨⎪=⎩,∴△CPD ≌△CFE (SAS ),∴PD=FE ,∠PCD=∠FCE ,PC=CF ,∴∠PCD+∠DCF=∠FCE+∠DCF ,∴∠PCF=∠DCE=60°,∴△PCF 是等边三角形,∴PC=PF ;过点C 作CG ⊥BD 于G ,CH ⊥AE 于H ,∵△ACE ≌△BCD ,∴ACE BCD S S =△△,∴1122BD CG AE CH ⋅=⋅,∴CG=CH ,∵BC=3CE ,∴3BCP PCE S S =△△,∴11322BP CG PE CH ⋅=⨯⋅,∴3BP PE =,∴33334AE BD BP PD PE PD PF EF PD PC PD ==+=+=++=+,∴3423AP AE PE PC PD PF EF PC PD =-=+--=+,∴32322AP PD PC PD PDPC PC -+-==;(2)21AP PC PDBD PC PE ++=-+,证明如下:由(1)可得223235AP PC PD PC PD PC PD PC PD ++=+++=+,343435BD PC PE PC PD PC PF EF PC PD PC PC PD PC PD -+=+-++=+-++=+,∴21AP PC PDBD PC PE ++=-+;。
人教版八年级上册数学期末考试试卷一、单选题1.下列四个标志中,是轴对称图形的是()A .B .C .D .2.下列运算正确的是()A .248m m m ⋅=B .()()235m m m -⋅-=C .()6240m m m m ÷=≠D .()222448mn m n =3.某病毒的平均直径为0.0000001米,用科学记数法表示为()A .5110-⨯B .6110-⨯C .7110-⨯D .8110-⨯4.如果2169x ax ++是一个完全平方式,那么a 的值等于()A .13B .26C .-26D .±265.下列等式成立的是()A .(-3)-2=-9B .(-3)-2=19C .122()-a =a 14D .132()----a b =-a 2b 66.已知三角形的两边长分别为3cm 和7cm ,则下列四条线段中能作为第三边的是()A .3cm B .4cm C .9cm D .10cm7.在锐角三角形ABC 内一点P ,满足PA=PB=PC ,则点P 是△ABC ()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边垂直平分线的交点8.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A .BAD CAD∠=∠B .△BCD 是等边三角形C .AD 垂直平分BC D .ABDC S AD BC=9.如图,把长方形纸片ABCD 沿对角线BD 折叠,重叠部分为 EBD ,则下列说法错误的是()A . EBA ≌ EDCB . EBD 是等腰三角形C .折叠后的图形是轴对称图形D .∠ABE =∠CBD10.在直角 ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于D ,DE ⊥AB ,垂足为E ,将 ABC 沿DE 所在直线折叠,则点A 恰好与点B 重合,下列结论:①DE 垂直平分AB ;②∠A=30°;③12DC BC =;④ DEB 的周长等于AC +BC ,其中正确的命题是()A .①②③B .①②④C .①③④D .②③④二、填空题11.因式分解:2mn +6mn+9m=_________________.12.计算:22(1510)(5)x y xy xy -÷=_________.13.点()3,3A -关于y 轴对称的点1A 的坐标是______.14.若分式55y y --的值为0,则y =_______15.等腰三角形一腰上的高与另一腰的夹角为25 ,则顶角的度数为__________.16.在 ABC 中,D 、E 为AB 边上两点,把∠A 、∠1、∠2这三个角用“>”链接起来是_____.17.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了______米.18.如图,已知直角 ABC 和直角111A B C △,190C C ∠==∠︒,11AC A C =,若111ABC A B C ≌△△则需要添加的一个条件是_____.三、解答题19.计算:(3)(3)(3)(1)a a a a +-20.先化简,再求值:22113(1)4442a a a a a a --÷-+-++-,其中()()202122333a π--=⨯---⨯21.解方程:13124212x x x-=--22.某乡为了解决干旱问题,要在某河道处建一座水泵站,分别向河同一侧的张村A 和李村B 送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O 点为坐标原点,以河道所在的直线为x 轴建立直角坐标系,如图所示,两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费的角度考虑,水泵站建在距离大桥O 点千米的C 点可使所用输水管最短.(2)水泵站建在距离大桥O千米点的D点,可使它到张村、李村的距离相等.(利用尺规作图请在图中分别标出点C、D的位置,再填空.不写做法,不用证明)23.玩具商店用500元购进一批悠悠球,很受小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价都是35元,那么全部售出后,该玩具商店可获得的利润是多少元?24.某农场计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.如图,点C在线段AB上,CF为线段DE的垂直平分线,AC=EB,AD=BC试探究AD 与EB的位置关系,并说明理由.26.如图,∠B=∠C=90°,点E为BC的中点,DE平分∠ADC,过点E作EF⊥AD,垂足为F,连结AE、BF.(1)求证:AE是∠DAB的平分线.(2)求证:线段AE垂直平分BF.∥27.如图,已知 ABC,∠ACB=90°,AC=BC,点D在BA延长线上,过点D作DN AC∥交CA的延长线于点M,O为线段AB的中点,交BC的延长线于点N,过点D作DM BC连接OM,ON.(1)求证:DM=CN.(2)判断 MON的形状,并说明理由.28.(1)如图1,在 ABC中,∠BAC=90°,AB=AC,AF是过点A的一条直线,且B,C在AF的同侧,BD⊥AF于D,CE⊥AF于E,则图中与线段AD相等的线段是.(2)如图2,∠ABC=90°,BA=BC,点A,B的坐标分别是(-2,0),(0,3),求点C的坐标.(3)在(2)的条件下,在坐标平面内是否存在一点P(不与点C重合),使 PAB与 ABC 全等?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.B【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算,进而判断得出答案.同底数幂的乘法法则:底数不变,指数相加,am·an=am+n;同底数幂的除法法则:底数不变,指数相减,am÷an=am-n;幂的乘方:底数不变,指数相乘(am)n=amn;积的乘方:等于各因数分别乘方的积am·bm=(ab)m.【详解】解:A.m2•m4=m6,故选项错误,不符合题意;B.(-m)2•(-m)3=-m5,故选项错误,不符合题意;C.m6÷m2=m4(m≠0),故选项正确,符合题意;D.(4mn2)2=16m2n4,故选项错误,不符合题意;故选:C.【点睛】此题考查了同底数幂的乘除运算以及积的乘方运算,解题的关键是正确掌握相关运算法则.还要注意当n为奇数时(-a)n=-an;当n为偶数时(-a)n=an.3.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000001=1×10-7.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【分析】完全平方式有两个:a2+2ab+b2和a2-2ab+b2,根据以上内容得出ax=±2•x•13,求出即可.【详解】解:∵x2+ax+169是一个完全平方式,∴ax=±2•x•13,解得:a=±26,故选:D.【点睛】本题考查了对完全平方公式的应用,能根据题意得出ax=±2•x•13是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.5.B【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A、(-3)2=9≠-9,本选项错误;B、(-3)-2=19,本选项正确;C、(a-12)2=a-24≠a14,本选项错误;D 、(-a -1b -3)-2=a 2b 6≠-a 2b 6,本选项错误.故选B .【点睛】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.6.C【分析】△ABC 的两边a 、b 之和是10,a 、b 之差是4.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长c 的范围,然后由c 的范围来作出选择.【详解】解:设三角形的两边长分别为a 、b ,第三边是c .则:a+b=10cm 、a-b=4cm ,∴4cm <c <10cm .故选:C .【点睛】本题考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7.D【分析】利用线段的垂直平分线的性质进行思考,首先思考满足PA=PB 的点的位置,然后思考满足PB=PC 的点的位置,答案可得.【详解】∵PA=PB ,∴P 在AB 的垂直平分线上,同理P 在AC ,BC 的垂直平分线上.∴点P 是△ABC 三边垂直平分线的交点.故选D .【点睛】本题考查的知识点为:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.注意做题时要分别进行思考.8.D【分析】根据作图过程及所作图形可知BD BC CD ==,得出△BCD 是等边三角形;又因为AB AC =,,BD CD AD AD ==,推出ABD ACD ≅△△,继而得出BAD CAD ∠=∠;根据,BAD CAD ∠=∠,可知AD 为BAC ∠的角平分线,根据三线合一得出AD 垂直平分BC ;四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和,为12AD BC ⋅.【详解】解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .【点睛】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.9.D【分析】根据翻转变换的性质、全等三角形的判定定理和性质定理解答.根据题意结合图形可以证明EB=ED ,进而根据HL 证明△ABE ≌△CDE ;此时可以判断选项A ,B ,C 正确,D 错误,问题即可解决.【详解】解:如图,由题意得:△BCD ≌△BFD ,∴DC=DF ,∠C=∠F=90°;∠CBD=∠FBD ;又∵四边形ABFD 为长方形,∴∠A=∠F=90°,DE ∥BF ,AB=DF ;∴∠EDB=∠FBD ,DC=AB ;∴∠EDB=∠CBD ,∴EB=ED ,∴△EBD 为等腰三角形;故B 选项正确;在Rt △ABE 与Rt △CDE 中,BE DE AB CD =⎧⎨=⎩,∴Rt △ABE ≌Rt △CDE (HL );故A 选项正确;折叠后∠ABE+2∠CBD=90°,∠ABE 和∠CBD 不一定相等(除非都是30°),故D 选项错误;∵Rt △ABE ≌Rt △CDE ,又∵△EBD 为等腰三角形,∴折叠后得到的图形是轴对称图形;故C 此选项正确;综上所述,错误的结论是D 选项,故选:D .【点睛】本题考查的是翻转变换的性质、直角三角形的性质,解题的关键是翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.B【分析】首先证明∠A=∠ABD=∠CBD=30°,再证明AB=2BC ,DA=DB ,,可得结论.【详解】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵将△ABC 沿DE 所在直线折叠,则点A 恰好与点B 重合,∴∠A=∠ABD=∠CBD ,DA=DB ,∵DE ⊥AB ,∴AE=EB ,∴DE 垂直平分线段AB ,故①正确,∵∠C=90°,∴∠A+∠ABC=90°,∴3∠A=90°,∴∠A=30°,故②正确,∵∠CBD=30°,∠C=90°,∴,故③错误,∵∠C=90°,∠A=30°,∴AB=2BC ,∴BE=BC ,∵DC ⊥CB ,DE ⊥AB ,BD 平分∠ABC ,∴DC=DE ,∴△DEB 的周长=DE+BE+BD=CD+BC+AD=AC+BC ,故④正确.故选:B .【点睛】本题考查命题与定理,角平分线的性质定理,轴对称的性质,含30°角的直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.()23m n +【分析】提公因式法和应用公式法因式分解.【详解】解:()()222mn +6mn+9m=m n +6n+9=m n+3.故答案为:()23m n +12.32x y -【分析】根据整式的除法法则计算可得解.【详解】()22(1510)5x y xy xy -÷22155105x y xy xy xy=÷-÷32x y=-故答案是:32x y -.13.(3,3)【分析】平面直角坐标系中任意一点A(x,y),关于y轴的对称点是(−x,y),从而可得出答案.【详解】根据轴对称的性质,得点A(−3,3)关于y轴对称点的坐标A1(3,3).故答案是:(3,3).14.-5【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式y55y--的值等于0,则|y|-5=0,y=±5.又∵5-y≠0,y≠5,∴y=-5.若分式y55y--的值等于0,则y=-5.故答案为-5.15.115°或65°【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°-25°=65°.故答案为115°或65°【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况,同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.16.∠2>∠1>∠A【分析】根据三角形外角的性质可求解.【详解】解:∵∠1是△ACE的外角,∴∠1>∠A ,∵∠2是△CDE 的外角,∴∠2>∠1,∴∠2>∠1>∠A .故答案为:∠2>∠1>∠A .【点睛】本题主要考查三角形外角的性质,掌握三角形的外角大于和它不相邻的任意一个内角是解题的关键.17.120【详解】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米,故答案为:120.18.11AB A B =或11BC B C =或1A A ∠=∠或1B B ∠=∠【分析】此题是一道开放型的题目,答案不唯一,只要符合两直角三角形全等的判定定理即可.【详解】解:添加的条件是∠A =∠A 1,理由是:在△ABC 和△A 1B 1C 1中,1111A A AC AC C C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△A 1B 1C 1,(ASA ),故答案为:∠A =∠A 1(答案不唯一).【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.19.2a-【分析】利用平方差公式和多项式乘多项式的运算法则计算乘法,然后去括号,合并同类项进行化简.【详解】原式=()22333a a a a ---+-=22323a a a ---+=2a-【点睛】本题考查二次根式的混合运算,理解二次根式的性质,掌握平方差公式(a+b )(a-b )=a 2-b 2是解题关键.20.12a -,411-【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用幂的混合运算求得a 的值代入计算可得.【详解】22113(1)4442a a a a a a --÷-+-++-()()()2213222122a a a a a a a a +--⎛⎫=⨯-+ ⎪+----⎝⎭2122a a a a ++=---212a a a +--=-12a =-;()()202122333a π--=⨯---⨯2111943⎛⎫=⨯--⨯ ⎪⎝⎭114=-=34-,将34a =-代入12a -得1431124=---.【点睛】本题主要考查分式的化简求值以及幂的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.1x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:原方程可化为:13122121x x x -=---()方程的两边同乘()221x -得()2132x x --=-1x =检验:当1x =时,()2210x -≠,∴1x =是原方程的解.∴原分式方程的解为1x =.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)5(2)9,见解析【分析】(1)作A 点关于x 轴的对称点A′,连接A′B 与河道交于点C ,C 点即为所求点;(2)作线段AB 的垂直平分线与河道交于点D ,则D 点到两村的距离相等;(1)解:如图:作点A 关于x 轴的对称点A′,连结A′B ,交x 轴于C ,连结AC ,∵AC=A′C ,∴AC+BC=A′C+BC≥A′B ,设A′B 所在的直线为y=kx+b ,则直线过A′(2,-3),B (12,7)两点,∴32712k b k b-=+⎧⎨=+⎩,解得15k b =⎧⎨=-⎩,∴y=x-5,令y=0,则x=5(千米),故答案为:5;(2)解:如图,分别以点A 、B 为圆心,以AB 长为半径作弧交直线AB 两侧于M 、N 两点,连接MN 交x 轴于点D ,连接DA 、DB 则DA=DB ;设D 点坐标为(a ,0),由两点距离公式得:()()()()22222031207a a -++=-+-,()()()()22222031207a a -++=-+-,20a=180,a=9(千米),故答案为:9;【点睛】本题考查了轴对称图形的实际应用,一次函数的实际应用,平面坐标系上两点距离公式的应用,线段垂直平分线的作法和性质;掌握作图方法是解题关键.23.(1)25元(2)350元【分析】(1)设第一批悠悠球每套的进价是x 元,由题意:东东玩具商店用500元购进一批悠悠球,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.列出分式方程,解方程即可;(2)结合(1)的结果列式计算即可.(1)设第一批悠悠球每套的进价是x 元,由题意得:5009001.55x x ⨯=+,解得:x =25,经检验,x =25是分式方程的解,且符合题意,答:第一批悠悠球每套的进价是25元.(2)3550025⨯(1+1.5)﹣(500+900)=350,答:该玩具商店可获得350元的利润.24.(1)这项工程的规定时间是30天;(2)该工程的施工费用为180000元.【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.(1)解:设这项工程的规定时间是x 天,根据题意得:115()1511.5x x x+⨯+=,解得x=30,经检验x=30是方程的解,答:这项工程的规定时间是30天;(2)解:该工程由甲、乙合做完成,所需时间为:111()1830 1.530÷+=⨯,则该工程的施工费用是:18×(6500+3500)=180000(元),答:该工程的施工费用为180000元.25.AD EB ∥,见解析【分析】由线段垂直平分线的性质得出CD=CE ,证明△ADC ≌△BCE (SSS ),由全等三角形的性质得出∠A=∠B ,则可得出结论.【详解】解:AD EB ∥,理由如下:证明:∵CF 为线段DE 的垂直平分线,∴CD =CE ,在△ADC 和△BCE 中,CD CE AC EB AD BC =⎧⎪=⎨⎪=⎩∴△ADD ≌△BCE∴∠A =∠B ,∴AD EB ∥.【点睛】本题考查了平行线的判定,线段垂直平分线的性质,全等三角形的判定与性质,解题的关键是证明△ADC ≌△BCE .26.(1)见解析(2)见解析【分析】(1)证出EF=EB ,由角平分线的性质得出结论;(2)证明Rt △ABE ≌Rt △AFE (HL ),由全等三角形的性质得出AB=AF ,由等腰三角形的性质可得出结论.(1)证明:∵∠C=90°,∴CE ⊥DC ,又∵EF ⊥AD ,DE 平分∠ADC ,∴EF=CE ,又∵点E 为BC 的中点,∴EB=CE ,∴EF=EB ,∵∠B=90°,∴EB ⊥AB ,又∵EF ⊥AD ,∴AE 是∠DAB 的平分线;(2)证明:在Rt △ABE 和Rt △AFE 中,EF EB AE AE=⎧⎨=⎩∴△ABE ≌△AFE∴AB =AF△ABF 为等腰三角形又∵AE 是∠DAB 的平分线,∴线段AE 垂直平分BF【点睛】本题考查了角平分线的性质,等腰三角形的性质,全等三角形的判定与性质,解题的关键是证明△ABE≌△AFE.27.(1)见解析(2)等腰直角三角形,见解析【分析】(1)证明△DNM≌△CMN(ASA),由全等三角形的性质得出DM=CN;(2)连接OC,证明△NCO≌△MAO(SAS),由全等三角形的性质得出OM=ON,∠NOC=∠MOA,则可得出结论.(1)证明:∵DN//AC,∴∠DNM=∠NMC,∵DM//BC,∴∠DMN=∠CNM,∵MN=MN,∴△DNM≌△CMN(ASA),∴DM=CN;(2)△MON为等腰直角三角形.证明:连接OC,∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵DN//AC,∴∠NDB=∠CAB=45°,∵△DNM≌△CMN,∠ACB=90°,∴∠NDM=∠NCM=90°,∵∠ADM=∠DAM=∠CAB=45°,∴DM=AM=CN ,∵∠ACB=90°,AC=BC ,O 为线段AB 的中点,∴∠BCO=45°,OC ⊥AB ,OA=OC=OB ,∴∠NCO=∠MAO=180°-45°=135°,在△NCO 和△MAO 中,AM CN NCO MAO OA OC ⎧⎪∠∠⎨⎪⎩===,∴△NCO ≌△MAO (SAS ),∴OM=ON ,∠NOC=∠MOA ,∴∠MON=∠MOA+∠NOA=∠NOC+∠NOA=90°.∴△OMN 为等腰直角三角形.【点睛】本题考查了平行线的性质,等腰三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,证明△DNM ≌△CMN 是解题的关键.28.(1)CE ;(2)()3,5C -;(3)存在,()15,2P -,()21,2P -,()33,1P 【分析】(1)证明△ADB ≌△CEA 即可得AD=CE ,从而得到答案;(2)过C 作CD ⊥y 轴于D ,证明△AOB ≌△BDC 即得CD=OB=3,BD=OA=2,故C (-3,5);(3)①当△ABC ≌ABP 时,过P 作PE ⊥y 轴于E ,证明△CDB ≌△PEB (AAS )得PE=CD=3,BE=BD=2,即得P (3,1),②当△ABC ≌△BAP 时,过P 作x 轴平行线,过A 作y 轴平行线交于F ,证明△CDB ≌△PFA (AAS ),得AF=BD=2,PF=CD=3,故P (1,-2),③当△ABC ≌△APC 时,过P 作PH ⊥x 轴于H ,证明△PHA ≌△BDC (AAS ),得PH=BD=2,AH=CD=3,故P (-5,2).【详解】(1)∵∠BAC=90°,BD ⊥AE 于D ,CE ⊥AE ,∴∠DAB=90°-∠EAC=∠ACE ,∠ADB=∠AEC=90°,∵AB=AC ,∴△ADB ≌△CEA (AAS ),∴AD=CE ,故答案为:CE ;(2)过C 作CD ⊥y 轴于D ,如图:∵∠ABC=90°,∴∠CBD=90°-∠ABO=∠BAO,∵∠CDB=∠BOA=90°,AB=BC,∴△AOB≌△BDC(AAS),∴CD=OB=3,BD=OA=2,∴OD=OB+BD=5,∴C(-3,5);(3)存在,①当△ABC≌ABP时,过P作PE⊥y轴于E,如图:∵△ABC≌ABP,∴BC=BP,∠ABC=∠ABP=90°,∴∠ABC+∠ABP=180°,∴C、B、P共线,∴∠CBD=∠EBP,又∠CDB=∠PEB=90°,∴△CDB≌△PEB(AAS),∴PE=CD=3,BE=BD=2,∴OE=OB-BE=1,∴P(3,1),②当△ABC≌△BAP时,过P作x轴平行线,过A作y轴平行线交于F,如图:∵△ABC≌△BAP,∴∠ABC=∠BAP=90°,BC=AP,∴BC∥AP,∴∠DBC=∠BGA=∠FAP,∵∠CDB=∠PFA=90°,∴△CDB≌△PFA(AAS),∴AF=BD=2,PF=CD=3,∴P(1,-2),③当△ABC≌△APC时,过P作PH⊥x轴于H,如图:∵△ABC≌△APC,∴AB=AP,∠BAC=∠PAC=45°,∴∠PAB=90°,∴∠PAH=90°-∠BAO=∠ABO=90°-∠CBD=∠BCD,∵AB=BC,∴BC=AP,而∠PHA=∠CDB=90°,∴△PHA≌△BDC(AAS),∴PH=BD=2,AH=CD=3,∴P(-5,2),综上所述,P的坐标为:(3,1)或(1,−2)或(−5,2).。
辽宁省盘锦市第一中学2015-2016学年八年级数学上学期期末考试
试题
2015——2016八年级第一学期期末数学试题答案及评分标准一、选择题(每题3分,共30分)
11.a(x+4y)(x-4y); 12. 1; 13. 10; 14.
2
1
-; 15. 7; 16. 3;
17. 1150; 18. 2;
三、19. (1) 223
(7)(23)
x y x y xy xy
--+
=22232
72(7)(3)(7)
x y x y x y xy x y xy
-⨯+-⨯-+-⨯………………2分
=-14x4y2+21x3y4-7x3y2 ……………………4分
(2)22
()()
a a
b b b a
-+-
22
()()
a a
b b a b
=---……………………2分22
()()
a b a b
=--……………………3分
()()()
a b a b a b
=--+……………………4分2
()()
a b a b
=-+……………………5分
(3)解:方程两边乘以x2-4得
(x+2)(x-2)-12=x2-4 ……………………1分
x=-1 ……………………3分
检验:当x=-1时,x2-4≠0 ……………………4分
所以原分式方程的解为x=-1 ……………………5分
四、20.
. …………………………………6分21. 作出∠COD的角平分线和线段AB的垂直平分线之一,且有作图痕迹………3分两者都作出且有作图痕迹……………………………………………………………5分标出点M或有结论……………………………………………………………………6分五22.
…………………3分
根据题意,列方程得10101,23
x x =+ …………………………5分 解得15x = ……………………… 7分
经检验,15x =是原方程得根,
所以骑自行车同学的速度是每小时15千米. ………………………8分
23.
(1)(1)∵AB ⊥BC,PQ ⊥PA
∴∠A+∠APB=90°,∠APB+∠QPC=90°
∴∠A=∠QPC ………………3分 (2)(Ⅰ)当PB=3时,PA=PQ ……4分
证明:∵PB=3
∴PC=AB=2
在△ABP 和△PCQ 中,
∵∠A=∠QPC,∠B=∠QCP,AB=PC
∴△ABP
≌△PCQ (ASA )
∴PA=PQ …………………………………………………(Ⅱ)如图,当PB=7时,PA=PQ 7分 证明:∵PB=7
∴PC=AB=2
∵AB ⊥BC,PQ ⊥PA
∴∠A+∠APB=90°,∠APB+∠QPC=90°
∴∠A=∠QPC ………………………………8分
在△ABP 和△PCQ 中,
∵∠A=∠QPC,∠B=∠QCP,AB=PC
∴△ABP ≌△PCQ (ASA )
∴PA=PQ ………………………………………………10分
六、24. …………………………4分 ……8分
25.(1)证明:∵∠∠2+∠ADE=∠
ADF ∴∠1+∠B=∠2+ADE
∵∠B=∠ADE=60
0 ∴∠1 =∠2 ……………………………………3分
(2)证明:∵DM ∥AC
∴∠BMD=∠BAC=600
∠BDM=∠BCA=600
∵∠B=600
∴∠B=∠BDM=∠BMD
∴△BMD 是等边三角形
∴AB-BM=BC-BD
∴AM=DC ……………………………………5分
22
(2)(2)252a b b a a ab b ++=++x
在△AMD 和△DCE中
∠1=∠2, ∠AMD=∠DCE=1200,AM=DC
∴△AMD≌△DCE(ASA)
∴AD=DE ……………………………………7分 (3)证明:∵∠MAD=∠B+∠ADC
∠CDE=∠ADE+∠ADC
∠B=∠ADE=600
∴∠MAD=∠CDE (10)
(4)证明:由(2)知,△BMD是等边三角形
∴BM-AB=BD-BC
∴AM=DC (12)
在△AMD 和△DCE中
∠MAD=∠CDE, ∠AMD=∠DCE=600,AM=DC
∴△AMD≌△DCE(ASA)
∴AD=DE ……………………………………14分。