生物化学实验技术复习重点汇编详细
- 格式:doc
- 大小:2.39 MB
- 文档页数:12
生物化学重点整理生物化学是一门研究生物体化学组成和生命过程中化学变化的科学。
它涵盖了广泛的领域,从分子水平揭示生命的奥秘。
以下是对生物化学重点内容的整理。
一、蛋白质化学蛋白质是生物体内最为重要的大分子之一。
1、蛋白质的组成蛋白质主要由碳、氢、氧、氮等元素组成,其基本组成单位是氨基酸。
氨基酸通过肽键相连形成多肽链,进而折叠形成具有特定空间结构的蛋白质。
2、蛋白质的结构蛋白质具有一级、二级、三级和四级结构。
一级结构指的是氨基酸的排列顺序;二级结构包括α螺旋、β折叠等;三级结构是整个多肽链的三维构象;四级结构则是由多个亚基组成的蛋白质的空间排列。
3、蛋白质的性质蛋白质具有两性解离、胶体性质、变性与复性等特性。
变性会导致蛋白质的空间结构破坏,从而失去生物活性,但在一定条件下可以复性。
二、核酸化学核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
1、核酸的组成核酸由核苷酸组成,核苷酸包含碱基、戊糖和磷酸。
DNA 中的碱基有腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C);RNA 中的碱基用尿嘧啶(U)代替了胸腺嘧啶。
2、 DNA 的结构DNA 是双螺旋结构,两条链反向平行,碱基之间遵循互补配对原则(A 与 T 配对,G 与 C 配对)。
3、 RNA 的种类与功能RNA 包括信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体RNA(rRNA)。
mRNA 携带遗传信息,指导蛋白质合成;tRNA 转运氨基酸;rRNA 是核糖体的组成部分。
三、酶酶是生物体内具有催化作用的蛋白质或 RNA。
1、酶的特点酶具有高效性、专一性和可调节性。
高效性使得酶能够大大加快反应速率;专一性保证了酶对特定底物的作用;可调节性使酶的活性能够适应生物体的需求。
2、酶的作用机制酶通过降低反应的活化能来加速反应。
它与底物结合形成酶底物复合物,然后经过一系列的中间步骤完成催化反应。
3、影响酶活性的因素温度、pH 值、底物浓度、酶浓度、抑制剂和激活剂等都会影响酶的活性。
生物化学实验知识点整理实验一 还原糖的测定、实验二 粮食中总糖含量的测定1.还原糖测定的原理3,5-二硝基水杨酸与还原糖溶液共热后被还原成棕色的氨基化合物,在550nm 处测定光的吸收增加量,得出该溶液的浓度,从而计算得到还原糖的含量2.总糖测定原理多糖为非还原糖,可用酸将多糖和寡糖水解成具有还原性的单糖,在利用还原糖的性质进行测定,这样就可以分别求出总糖和还原糖的含量3.电子天平使用4.冷凝回流的作用:使HCl 冷凝回流至锥形瓶中,防止HCl 挥发,从而降低HCl 的浓度。
5.多糖水解方法:加酸进行水解6.怎样检验淀粉都已经水解:加入1-2滴碘液,如果立即变蓝则说明没有完全水解,反之,则说明已经完全水解。
7.各支试管中溶液的浓度计算8.NaOH 用量:HCl NaOH n n =9.不能中途换分光光度计,因为不同的分光光度计的光源发光强度不同10.分光光度计的原理:在通常情况下,原子处于基态,当通过基态原子的某辐射线所具有的能量(或频率)恰好符合该原子从基态跃迁到激发态所需的能量(或频率)时,该基态原子就会从入射辐射中吸收能量,产生原子吸收光谱。
原子的能级是量子化的,所以原子对不同频率辐射的吸收也是有选择的。
这种选择吸收的定量关系服从式/E h h c νλ∆==。
实验证明,在一定浓度范围内,物质的吸光度A 与吸光样品的浓度c 及厚度L 的乘积成正比,这就是光的吸收定律,也称为郎伯-比尔定律分光光度计就是以郎伯比尔定律为原理,来测定浓度11.为什么要水解多糖才能用DNS因为DNS 只能与还原糖溶液在加热的条件下反应生成棕红色的氨基化合物,不能与没有还原性的多糖反应。
12.为什么要乘以0.9以0.9才能得到多糖的含量。
13.为什么要中和后再测?因为DNS 要在中性或微碱性的环境下与葡萄糖反应实验三 蛋白质的水解和纸色谱法分离氨基酸、实验四 考马斯亮蓝法测定蛋白质浓度1.纸色谱分离氨基酸分离原理由于各氨基酸在固定相(水)和流动相(有机溶剂)中的分配系数不同,从而移动速度不同,经过一段时间后,不同的氨基酸将存在于不同的部位,达到分离的目的。
完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。
本章节将讨论酶在生化反应中的作用机制和催化过程。
包括酶的分类、酶动力学和酶抑制剂等内容。
本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。
本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。
本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。
DNA复制DNA复制是遗传信息传递的第一步。
在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。
复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。
RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。
在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。
转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。
蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。
蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。
翻译过程可分为启动、延伸和终止三个阶段。
以上是生物体内遗传信息的传递过程的重要步骤。
深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。
本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。
生物化学知识点重点整理生物化学是研究生物体内的化学反应过程的一个分支学科。
它主要研究生物大分子的合成和降解过程、生命活动的调节和调控、以及生物能量代谢等。
下面是生物化学中一些重要的知识点。
1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它的功能多种多样,包括构成细胞器和细胞骨架的结构蛋白质,酶和激素等。
核酸是DNA和RNA存储和传递遗传信息的分子。
多糖是一类碳水化合物,主要用于能量储存和结构支撑。
脂类是一类有机化合物,包括脂肪、油和脂肪酸等,主要用于能量储存和细胞膜的组成。
2.酶和酶动力学:酶是生物体内的一类蛋白质,具有催化化学反应的功能。
酶速度常常受到底物浓度、温度和pH值等因素的影响。
酶动力学研究酶速度与底物浓度的关系,揭示了酶催化机理和底物结合方式。
3.代谢物和代谢途径:代谢是生物体内发生的化学反应的总和。
代谢途径包括物质的合成和降解,以及能量的产生和消耗。
代谢物主要包括ATP、ADP、NADH、NAD+等,它们在细胞内起到能量储存和传递的重要作用。
4.蛋白质合成和降解:蛋白质合成是细胞内最重要的生化过程之一,包括转录和翻译两个阶段。
转录是将DNA上遗传信息转写成mRNA的过程,翻译是将mRNA上的遗传信息转化为蛋白质的过程。
蛋白质降解是将细胞内的蛋白质分解为小分子的过程,通过细胞骨架上的蛋白酶进行。
5.核酸合成和修复:核酸合成是将碱基、糖和磷酸酯键组合成核酸链的过程,包括DNA和RNA的合成。
核酸修复是维护细胞遗传信息稳定性的重要机制,通过修复酶修复DNA中的损伤。
6.糖代谢和糖酵解:糖代谢是指葡萄糖在细胞内的合成、降解和利用过程。
糖酵解是将葡萄糖降解为乳酸或乙醇产生能量的过程,这是细胞内产生ATP的主要途径之一7.脂类代谢和脂类合成:脂类代谢是指脂类在细胞内的合成、降解和利用过程。
脂类合成主要发生在肝脏和脂肪组织中,通过合成酶和脂蛋白来合成三酰甘油。
生化检验复习重点详解11.与糖尿病相关生化检测指标有哪些?它们的临床意义有何不同?2.简述目前糖尿病的诊断标准3.简述OGTT4.黄疸的形成机制有哪些5.反映肾小球滤过功能的试验有哪些6.简述临床检验生物化学的进展及发展趋势:7.根据米-曼式方程计算,当[s]=3Km时,其反应速度V为多大7.简述正常血浆中的酶动态特点及影响酶浓度的因素8.简述病理性血浆中酶浓度异常的机制9.简述酶浓度的测定方法10.简述酶偶联反应法的原理:11.简述临床同工酶的分析方法:12.简述体液中酶浓度测定的主要影响因素及控制13.临床酶学测定之前,标本的采集、处理与贮存有何注意点?14.简述自动生化分析仪进行临床酶学测定时系数K值的计算与应用15.简述ALT测定及其临床意义:16. AAT的临床意义有17.简述CK及其同工酶测定的临床意义50. Apolipoprotein 检测的临床意义。
51.DHLC 抗动脉粥样硬化的功能成的α2β2四聚体。
11氨基酸代谢库(metabolic pool):食物蛋白质经过消化而被吸收的氨基酸与体内组织蛋白质降解产生的氨基酸混在一起,分布在体内各处,参与代谢,称为氨基酸代谢库。
12氨基酸血症(amino-acidemia):当酶缺乏出现在代谢途径的起点时,其作用的氨基酸将在血液环中增加,称为氨基酸血症。
这种氨基酸如从尿中排出,则称为氨基酸尿症(amino-aciduria)。
13高糖血症(hyperglycemia):是糖代谢紊乱导致血糖浓度高于参考范围上限的异常现象,主要表现为空腹血糖损伤,糖耐量减退和糖尿病。
14糖尿病(diabetes mellitus,DM):是一组由于胰岛素分泌不足和或胰岛素作用低下而引起的糖代谢紊乱性疾病,其特征是高血糖症。
15OGTT:是在口吸一定量葡萄糖后2h内进行系列血糖浓度测定,以评价不同个体的血糖调节功能的一种标准方法。
16高脂蛋白血症:指血浆中CM,VL,DL,LDL,HDL等脂蛋白有一种或几种浓度过度升高的现象。
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成蛋白质的元素1、主要有C、H、O、N和S,有些蛋白质含有少量磷或金属元素铁、铜、锌、锰、钴、钼,个别蛋白质还含有碘。
2、蛋白质元素组成的特点:各种蛋白质的含氮量很接近,平均为16%。
3、由于体内的含氮物质以蛋白质为主,因此,只要测定生物样品中的含氮量,就可以根据以下公式推算出蛋白质的大致含量:100克样品中蛋白质的含量( g % )= 每克样品含氮克数× 6.25×100二、氨基酸——组成蛋白质的基本单位(一)氨基酸的分类1.非极性氨基酸(9):甘氨酸(Gly)丙氨酸( Ala)缬氨酸(Val)亮氨酸(Leu)异亮氨酸(Ile)苯丙氨酸(Phe)脯氨酸(Pro)色氨酸(Try)蛋氨酸(Met)2、不带电荷极性氨基酸(6):丝氨酸(Ser)酪氨酸(Try) 半胱氨酸 (Cys) 天冬酰胺 (Asn) 谷氨酰胺(Gln ) 苏氨酸(Thr )3、带负电荷氨基酸(酸性氨基酸)(2): 天冬氨酸(Asp ) 谷氨酸(Glu)4、带正电荷氨基酸(碱性氨基酸)(3):赖氨酸(Lys) 精氨酸(Arg)组氨酸( His)(二)氨基酸的理化性质1. 两性解离及等电点等电点 :在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
2. 紫外吸收(1)色氨酸、酪氨酸的最大吸收峰在 280 nm 附近。
(2)大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法。
3. 茚三酮反应氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。
由于此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法三、肽(一)肽1、肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键。
2、肽是由氨基酸通过肽键缩合而形成的化合物。
生物化学重点知识点总结生物化学是研究生物体及其组成部分的化学性质和化学过程的科学,它主要关注生物大分子的组成、结构和功能以及生物体内的各种化学反应。
以下是生物化学的重点知识点总结:1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它是组成细胞和组织的基本结构单元,参与几乎所有的生物功能。
核酸是存储和传递遗传信息的重要分子,包括DNA和RNA。
多糖是由单糖分子组成的长链聚合物,如淀粉和纤维素。
脂类是由甘油和脂肪酸组成的生物大分子,它们在细胞膜的构建和能量的储存中起重要作用。
2.生物大分子的结构和功能:生物大分子的结构决定了它们的功能。
蛋白质的结构包括四个层次:一级结构是由氨基酸的线性序列决定的,二级结构是由氢键形成的α螺旋和β折叠,三级结构是蛋白质的立体构象,四级结构是由多个蛋白质亚基组成的复合物的空间结构。
核酸的结构包括双螺旋的DNA和单链的RNA。
多糖的结构包括淀粉的分支链和纤维素的线性链。
脂类的结构包括单酰甘油、双酰甘油和磷脂。
3.生物体内的化学反应:生物体内的化学反应包括代谢途径和信号传导。
代谢途径包括蛋白质、核酸、多糖和脂类的合成和降解过程。
信号传导是细胞内外信息传递的过程,包括细胞膜受体介导的信号转导、细胞内信号分子的产生和调控。
4.酶和酶动力学:酶是催化生物体内化学反应的蛋白质,它们可以提高反应速率。
酶的催化机理包括亲和性和瞬态稳定性理论。
酶动力学研究酶的催化速率和底物浓度的关系,包括酶的速率方程、酶的底物浓度和酶的浓度对速率的影响。
5.代谢途径和调控:代谢途径是生物体内化学反应的网络,包括能量代谢途径和物质代谢途径。
能量代谢途径包括糖酵解、细胞呼吸和光合作用。
物质代谢途径包括核酸合成、脂类合成和蛋白质合成。
代谢途径的调控通过正反馈和负反馈机制来维持生物体内化学平衡,包括酶的合成和降解、调控基因表达和细胞信号传导。
6. 遗传信息的传递和表达:遗传信息通过DNA的复制和转录转化为RNA,再经过翻译转化为蛋白质。
生物化学考试重点概要
一、概述
生物化学是研究生物体内的化学成分及其相互关系的学科,涉及生物大分子、代谢途径、酶的功能等领域。
本文档将重点概括生物化学考试中的重要内容。
二、生物大分子
1. 蛋白质:结构、功能、合成与降解
2. 核酸:DNA和RNA的结构、功能和复制过程
3. 碳水化合物:单糖、多糖的组成和功能
4. 脂类:脂肪酸、甘油与脂质的分类和代谢
三、代谢途径
1. 高级碳水化合物代谢:糖原合成与分解、糖酵解、柠檬酸循环
2. 氨基酸代谢:氨基酸合成与降解、尿素循环
3. 脂类代谢:脂肪酸合成与降解
4. 核酸代谢:核苷酸合成与降解
四、酶的功能
1. 酶的分类与特性:氧化还原酶、转移酶、水解酶等
2. 酶促反应:酶的动力学参数、酶反应速率与底物浓度的关系
3. 酶的调控机制:酶的诱导与抑制、酶活性调节因子
五、其他重要知识点
1. 酶联免疫吸附测定(ELISA)原理与应用
2. PCR技术的原理与应用
3. 蛋白质电泳的原理与应用
六、复建议
1. 重点记忆各个代谢途径的关键酶与反应物
2. 针对酶的功能和调控机制进行重点理解与实例分析
3. 多做题和模拟考试,加强对知识点的掌握和应用能力
以上是生物化学考试重点概要的完整版。
希望本文档能帮助你全面复生物化学知识,取得优异的考试成绩。
生物化学的复习重点,名词解释!(2010-02-03 18:37:38)转载▼标签:教育1必需脂肪酸:在多不饱和脂肪酸中,亚油酸、亚麻酸和花生四烯酸是维持人和动物正常生命活动所必需的,但哺乳动物体内不能合成或合成量不足,需由食物提供,称为必需脂肪酸。
2变性:天然蛋白质在某些物理和化学因素作用下,其待定的空间结构被破坏,从而导致理化性质改变和生物活性的丧失,称之为蛋白质的变性。
3复性:有些蛋白质变性后,去除变性因素,能恢复或部分恢复其天然构象和生物学活性的过程。
4减色效应:DHA复性,随着两条链重新互补结合成双链,其紫外吸收值降低,称为减速效应。
5DNA的变性:核酸在某些理化因素作用下双链DNA解开,氢键断裂,双螺旋松散或无规则线团结构。
6酶的活性中心:必需基团在酶蛋白一级结构上可能相距甚远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。
这一区域称为酶的活性中心。
7底物水平磷化酸:在代谢分解过程中,底物因脱氢、脱水等作用而使能量在分子内部重新分布,形成高能磷化酸合物,然后将高能磷酸基因转移给ADP形成ATP的过程。
称为底物水平磷酸化。
8氢化磷酸化:在生物氢化过程中,代谢物脱下的氢经呼吸链氧化生成水时,所释放的能量能够偶联ADP磷酸化生成ATP。
此过程称为氢化磷酸化。
9脂肪动员:贮存在脂库中的三酰甘油,被脂肪酶逐步水解为游离脂肪酸及甘油并释放入血供给全身各组织氢化利用的过程,称为脂肪动员。
10酮体:脂肪酸在肝脏氢化分解时所形成的特有的中间代谢物,包括乙酰乙酸。
B——羟丁酸和丙酮。
11氮平衡:是指摄入氮与排出氮之间的平衡关系,依次可以估计体内蛋白质代谢状况。
12必需氨基酸:指体内需要,但体内自身不能合成或合成量太少不能满足机体需要,必须由食物蛋白质提供的氨基酸,包括异亮氨酸,甲流氨酸,颉氨酸,亮氨酸,色氨酸,苯丙氨酸,苏氨酸和赖氨酸等8种。
13一碳单位:某些氨基酸在体内分解代谢过程中可以产生含1个碳原子的活性某些基团,称一碳单位。
博士生生物化学实验技巧知识点归纳总结在博士生的研究工作中,生物化学实验技巧是非常重要的一环。
掌握一些实验技巧能够提高实验效率、减少实验误差,并且为研究工作提供可靠的数据支持。
本文将对博士生生物化学实验技巧的一些重要知识点进行归纳总结。
一、样品制备技巧在生物化学实验中,样品的制备对实验结果的准确性和可重复性起着至关重要的作用。
以下是一些样品制备技巧的要点:1. 样品的采集与保存:对于不同类型的样品,采集和保存的方法有所不同。
一般来说,要注意样品的采集时间和方式,以避免污染和降解;同时,合适的保存方法(如低温保存、添加保护剂等)也能有效延长样品的寿命。
2. 样品的预处理:对于某些复杂的样品,在进行实验分析之前需要进行预处理。
比如,可以进行样品的筛选、过滤、离心等操作,去除其中的杂质或者分离出需要的组分。
3. 样品浓度的调整:有些实验需要样品的浓度在一定范围内,因此在实验前可能需要对样品进行稀释或者浓缩,确保实验结果的有效性。
二、实验仪器操作技巧在博士生的研究工作中,生物化学实验常常需要使用一些仪器设备,掌握正确的操作技巧对实验结果至关重要。
以下是一些常见实验仪器的操作技巧要点:1. 使用分光光度计:在使用分光光度计时,应注意正确设置波长和样品量,并保证样品室干净,以避免附着物的干扰。
2. 培养基制备与使用:在进行细胞培养实验时,培养基的制备和使用要非常严谨。
应按照配方准确称取各种物质,使用无菌技术制备,以确保培养基的质量和无菌状态。
3. 凝胶电泳技巧:凝胶电泳是生物化学中常用的分离和检测方法。
正确制备凝胶、使用适当的电压和运行时间,以及正确染色和图像处理等步骤都是保证凝胶电泳结果准确可靠的关键。
三、数据分析和结果解读生物化学实验的结果需要进行数据分析和解读,以得出科学结论。
以下是一些数据分析和结果解读的技巧和要点:1. 使用统计学方法分析数据:在进行数据分析时,可以运用统计学方法(如t检验、方差分析等)进行数据的比较和处理,以验证实验结果的显著性和可靠性。
生物化学重点知识点归纳总结生物化学是研究生物体内生物分子的组成、结构、功能和相互作用的科学,这里给出一些生物化学的重点知识点的归纳总结。
1.氨基酸和蛋白质:氨基酸是构成蛋白质的基本单位,共有20种常见的氨基酸。
氨基酸之间通过肽键连接形成多肽链,进一步折叠形成蛋白质。
蛋白质的结构包括一级、二级、三级和四级结构,这些结构决定了蛋白质的功能。
2.核酸:核酸是遗传物质的基本单位,包括DNA和RNA。
DNA负责储存遗传信息,RNA负责转录和转译遗传信息。
核酸由核苷酸组成,包括碱基、磷酸和核糖(RNA)或脱氧核糖(DNA)。
3.酶和酶促反应:酶是生物体内催化化学反应的蛋白质,具有高度特异性和高效催化作用。
酶促反应是通过降低活化能来加速化学反应速率。
酶的催化作用受到温度、pH值、底物浓度等因素的影响。
4.代谢途径:代谢是生物体内发生的各种化学反应的综合体。
常见的代谢途径包括糖酵解、脂肪酸合成和分解、蛋白质合成和降解等。
这些途径通过一系列的酶促反应来完成能量的转化和物质的合成。
5.能量转化:细胞内能量的转化主要通过三个主要过程进行,即酵解、有氧呼吸和光合作用。
酵解是无需氧气的糖代谢过程,有氧呼吸是需要氧气的糖代谢过程,光合作用则是通过光能转化为化学能。
6.细胞膜:细胞膜是包裹细胞的薄膜,具有选择性通透性。
细胞膜由脂质双层构成,这些脂质双层中嵌入了多种蛋白质。
细胞膜还具有糖脂、胆固醇等成分,这些成分在细胞膜的结构和功能中起着重要作用。
7.生物催化:生物体内许多化学反应都需要催化剂来加速反应速率,这些催化剂主要是酶。
酶对于反应底物的选择性较高,催化速率也很快,并且能够通过调整活性来适应细胞内不同环境。
8.免疫系统:免疫系统是人体内对抗病原体的防御系统,包括先天免疫和获得性免疫。
免疫系统主要通过抗体和免疫细胞来识别和清除病原体。
9.信号转导:细胞内外的信号物质通过特定的受体与细胞膜上的受体结合,从而启动细胞内的信号转导路径。
完整版)生物化学知识点重点整理蛋白质是由C、H、O、N、S等元素构成的,其中N是其特征性元素。
根据含氮量可以计算蛋白质的含量,即样品蛋白质含量=样品含氮量*6.25(各种蛋白质的含氮量接近,平均值为16%)。
蛋白质由20种氨基酸构成,其中酸性氨基酸/带负电荷的R基氨基酸有天冬氨酸(D)和谷氨酸(E);碱性氨基酸/带正电荷的R基氨基酸有赖氨酸(K)、组氨酸(H)和精氨酸(R);非极性脂肪族R基氨基酸有甘氨酸(G)、丙氨酸(A)、脯氨酸(P)、缬氨酸(V)、亮氨酸(L)、异亮氨酸(I)和甲硫氨酸(M);极性不带电荷R基氨基酸有丝氨酸(S)、苏氨酸(T)、半胱氨酸(C)、天冬酰胺(N)和谷氨酰胺(Q);芳香族R基氨基酸有苯丙氨酸(F)、络氨酸(Y)和色氨酸(W)。
肽是蛋白质的基本组成单元,其基本特点包括:一级结构的定义通常描述为蛋白质多肽链中氨基酸的连接顺序,简称氨基酸序列(由遗传信息决定)。
维持稳定的化学键有肽键(主)和二硫键(可能存在)。
二级结构的种类包括α螺旋、β折叠、β转角、无规卷曲和超二级结构。
四级结构的特点是肽键数≧2,肽链之间无共价键相连,可独立形成三级结构,是否具有生物活性取决于是否达到其最高级结构。
蛋白质的一级结构与功能密切相关,因为一级结构决定了蛋白质的构象,一级结构相似则其功能也相似,改变蛋白质的一级结构可以直接影响其功能。
基因突变可能导致蛋白质结构或合成量异常而导致的疾病称为分子病,如镰状细胞贫血(溶血性贫血)和疯牛病是二级结构改变引起的。
等电点(pI)是蛋白质的一个重要指标,定义为在某一pH值条件下,蛋白质的净电荷为零。
蛋白质在不同pH条件下的带电情况取决于该蛋白质所带酸碱基团的解离状态。
若溶液pHpI,则蛋白质带负电荷,在电场中向正极移动。
碱性蛋白质含碱性氨基酸多,等电点高,在生理条件下净带正电荷,如组蛋白和精蛋白;酸性蛋白质含酸性氨基酸多,等电点低,在生理条件下净带负电荷,如胃蛋白酶。
生物化学专业知识要点整理生物化学是研究生物体内分子结构、组成、代谢和功能的一门学科,它涉及到生物体内各种生物大分子的结构、性质和功能等方面的内容。
本文将对生物化学专业的一些重要知识要点进行整理,以帮助读者更好地理解和掌握这门学科。
一、生物大分子的结构和功能1. 蛋白质:蛋白质是生物体内最重要的大分子,它具有多种功能,包括酶催化、结构支持、运输传递、免疫防御等。
蛋白质的结构包括一级结构(氨基酸序列)、二级结构(α-螺旋、β-折叠)、三级结构(立体构象)和四级结构(多个蛋白质亚基的组装)。
2. 核酸:核酸是遗传信息的携带者,包括DNA和RNA两类。
DNA是双链结构,RNA是单链结构。
DNA的功能是存储和传递遗传信息,RNA参与蛋白质的合成。
3. 碳水化合物:碳水化合物是生物体内重要的能量来源,也参与到细胞识别和信号传导等过程中。
常见的碳水化合物有单糖、双糖和多糖,如葡萄糖、蔗糖和淀粉等。
4. 脂质:脂质是生物体内重要的结构和能量储存物质,包括甘油三酯、磷脂和固醇等。
脂质在细胞膜的形成和维持、能量代谢等方面发挥重要作用。
二、酶的性质和功能1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和效率。
酶的活性受到温度、pH值和底物浓度等因素的影响。
2. 酶的功能:酶在生物体内参与几乎所有的代谢过程,包括消化、呼吸、光合作用等。
常见的酶包括氧化还原酶、水解酶、脱羧酶等。
三、能量代谢1. ATP:三磷酸腺苷是生物体内最重要的能量储存和释放分子,其通过磷酸键的形成和断裂实现能量的转换。
2. 糖酵解:糖酵解是生物体内糖类分子的分解过程,通过一系列的反应将葡萄糖转化为乳酸或乙醇释放能量。
3. 女性酸循环:女性酸循环是生物体内氧化葡萄糖、脂肪和氨基酸产生能量的过程,其产生的还原剂NADH和FADH2通过呼吸链参与ATP的合成。
4. 光合作用:光合作用是植物和一些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程,它是地球上最重要的能量来源。
生物化学复习资料重点生物化学是生物学中的一门基础学科,它主要研究生物分子及其在细胞中的结构、功能、代谢、调控等方面的基本规律。
因此,对于学习生物化学的学生来说,必须留心掌握一些重点复习资料。
本文将针对这一问题进行一些讨论。
1.氨基酸和蛋白质的结构与功能氨基酸是蛋白质的基本组成单元,而蛋白质则是生物体内最重要的大分子有机化合物之一。
因此,学生需要深入了解氨基酸和蛋白质的结构与功能。
氨基酸的结构包含氮基、羧基、侧链分别连接在中央的碳原子上。
侧链的化学性质、结构和分布情况等是决定蛋白质分子结构和功能的重要因素。
蛋白质分子在生物体内具有多种功能,如酶催化作用、运输、抗原性、调节等。
2.酶和酶促反应酶是生物体内最重要的催化剂,可以加速生物化学反应的速率。
学生需要了解酶的性质、分类、活性位点、催化机理等方面的知识。
在酶促反应方面,学生需要了解酶与底物的结合方式、反应物与产物的转化关系等问题。
同时,生物体内的酶促反应还涉及到许多相关的调节机制,学生需要深入了解这些调节机制的原理和作用。
3.生物膜的结构与功能生物膜是生物体内细胞的界面结构,它在细胞内外起着分隔单元、维持稳定、运输和信息传递等重要功能。
学生需要掌握生物膜的组成、结构和功能等方面的知识。
生物膜主要由磷脂双层、蛋白质和糖类等组成,其中磷脂双层起着屏障和选择通道等作用。
同时,膜蛋白在细胞膜的粘合、检测、传输等方面发挥着重要的作用。
学生还需要了解生物膜内外物质传递的机制和影响因素等方面的知识。
4.核酸的结构与功能核酸是生物体内负责储存和传递遗传信息的大分子有机化合物,其中DNA是基因物质的主要组成成分。
学生需要了解核酸的组成、结构和功能等方面的知识。
DNA分子的结构包括碱基对、磷酸骨架和螺旋结构等,它在生物体内的作用是存储、传递和维护遗传信息。
RNA是DNA信息的复制、转录和翻译过程中的直接参与者,主要包括mRNA、tRNA和rRNA等。
在这些方面,学生需要系统地了解核酸分子的结构、特性和功能等。
生化实验五大技术一.分光光度技术1.定义:根据物质对不同波长的光线具有选择性吸收,每种物质都具有其特异的吸收光谱,而建立起来的一种定量、定性分析的技术。
2.基本原理:透光度T=It / Io吸光度A=l g (Io/ It)朗伯-比尔(1ambert-Beer)定律 :A =KLc 【K 为吸光率,L 为溶液厚度(cm ),c 为溶液浓度 (mol/L )】摩尔吸光系数ε:1摩尔浓度的溶液在厚度为1cm 时,在某一特定波长下 的吸光度。
c=A/ε3.定量分析:(1)标准曲线(工作曲线)法 (2)对比法(3)计算法: c=A/ε(4)差示分析法(适用于浓度过浓或过稀) (5)多组分混合物测定4.技术分类分子吸收法&原子吸收法;可见光(400~760 nm )&紫外光(200~400 nm )&红外光(大于760 nm )分光光度法;5.应用方向有机物成分分析&结构分析——红外分光光度法 测定人体内的微量元素——原子吸收分光光度法二.电泳技术1.定义:带电荷的供试品在惰性支持介质中,在电场的作用下,向其对应的电图1-1 光吸收示意图极方向按各自的速度进行泳动,使组分分离成狭窄的区带,用适宜的检测方法记录其电泳区带图谱或计算其百分含量的方法。
2.基本原理:球形质点的迁移率与所带电量成正比,与其半径及介质粘度成反比。
ν=Q/6πrη3.影响电泳迁移率的因素:电场强度:电场强度大,带电质点的迁移率加速溶液的pH值:溶液的pH离pl越远,质点所带净电荷越多,电泳迁移率越大溶液的离子强度:电泳液中的离子浓度增加时会引起质点迁移率的降低电渗:在电场作用下液体对于固体支持物的相对移动称为电渗4.技术分类:自由电泳(无支持体)区带电泳(有支持体):滤纸电泳(常压及高压)、薄层电泳(薄膜及薄板)、凝胶电泳(琼脂、琼脂糖、淀粉胶、聚丙烯酰胺凝胶)等5.电泳分析常用方法及其特点:小分子物质——滤纸、纤维素、硅胶薄膜电泳复杂大分子物质——凝胶电泳(1)醋酸纤维素薄膜电泳①这种薄膜对蛋白质样品吸附性小,消除纸电泳中出现的“拖尾”现象②分离速度快,电泳时间短③样品用量少④经过冰醋酸乙醇溶液或其它透明液处理后可使膜透明化,有利于对电泳图谱的光吸收扫描测定和膜的长期保存→特别适合于病理情况下微量异常蛋白的检测(胰岛素、溶菌酶、胎儿甲种球蛋白)(2)琼脂糖凝胶电泳①琼脂糖凝胶孔径较大,对一般蛋白质不起分子筛作用②琼脂糖凝胶弹性差,不适合管状电泳→用于等电聚焦、免疫电泳、血清脂蛋白等蛋白质电泳,以及DNA、RNA、核苷酸的分析(3)聚丙烯酰胺凝胶电泳①可调节孔径大小②机械强度好,有弹性③分辨率高,用途广④无电渗→用于不同分子量蛋白质的电泳分离(4)SDS聚丙烯酰胺凝胶电泳该种电泳使蛋白分子相对迁移率(Rf)的大小完全取决于分子量的高低,因此可从已知分子量的标准蛋白的对数和相对迁移率所作的标准曲线中求出供试品的分子量→最常用定性分析蛋白质的电泳方法,特别用于蛋白质纯度检测&分子量测定(5)等电聚焦电泳技术利用有pH梯度的介质分离等电点不同的蛋白质→由于其分辨率可达0.01pH单位,因此特别适合于分离分子量相近而等电点不同的蛋白质组分,适合研究蛋白质的微观不均一性(6)毛细管电泳①高灵敏度②高分辨率③高效快速④样品少⑤成本低→符合对多肽、蛋白质、核苷酸、核酸等生物大分子的分离条件三.层析技术固定相:固体物质或者是固定于固体物质上的成分;流动相:可以流动的物质,如水和各种溶媒1.原理:当待分离的混合物随流动相通过固定相时,由于各组份的理化性质存在差异,与两相发生相互作用(吸附、溶解、结合等)的能力不同,在两相中的分配(含量对比)不同,而且随流动相向前移动,各组份不断地在两相中进行再分配。
检验师生物化学知识点
1. 蛋白质化学:包括蛋白质的结构、性质、分类和功能。
了解氨基酸的结构和性质,以及蛋白质的一级、二级、三级和四级结构。
熟悉蛋白质的理化性质,如溶解性、电泳行为和沉淀反应。
2. 酶学:酶的定义、分类和催化机制。
了解酶的命名法和国际系统分类法。
掌握酶促反应动力学,包括米-曼氏方程和酶活性的调节。
3. 糖代谢:了解碳水化合物的分类和结构。
掌握糖酵解、糖有氧氧化、糖原合成和分解的过程及关键酶。
熟悉糖异生和血糖调节的机制。
4. 脂质代谢:包括脂质的分类、结构和功能。
了解脂肪酸的β-氧化、脂肪酸合成和磷脂的合成与降解过程。
5. 核苷酸代谢:了解核苷酸的结构和功能。
掌握嘌呤核苷酸和嘧啶核苷酸的合成与分解途径。
6. 肝功能检查:包括肝功能试验的目的和意义。
熟悉血清酶学指标(如谷丙转氨酶、谷草转氨酶等)、胆红素、蛋白质和脂质代谢指标在肝功能评估中的应用。
7. 肾功能检查:了解肾功能试验的目的和意义。
掌握血清肌酐、尿素氮、尿酸等指标在肾功能评估中的应用。
8. 分子生物学技术:包括聚合酶链式反应(PCR)、实时荧光定量 PCR、基因测序等技术的原理和应用。
以上是检验师生物化学的一些重要知识点,涵盖了蛋白质、酶、糖、脂质、核苷酸等方面的内容。
这些知识点对于理解生物体的代谢过程、疾病的发生机制以及实验室检测的原理和结果解释都非常重要。
前言1.本课程主要讲述了哪些实验技术,其中被称为生化实验室中三大实验技术的是?答:层析技术、电泳技术、离心技术、分光光度技术、免疫化学技术。
其中层析技术、电泳技术、离心技术是生物学的三大实验技术。
第一章生物化学基本操作与要求1.洗涤液的种类配置与应用答:(1)铬酸洗液(称取5g重铬酸钾粉末置于250mL烧杯中,加水5mL,尽量使其溶解,慢慢加入浓硫酸100mL,边加边搅拌。
冷却后贮存备用,若颜色变绿,表示洗液已失效。
)用于洗涤玻璃器皿。
(2)浓盐酸,洗去水垢或某些无机盐沉淀。
(3)30%硝酸,洗涤CO2测定仪器及微量滴管(4)45%尿素,洗涤蛋白制剂、血样(5)有机溶剂,洗涤油脂、脂溶性染料(6)去污粉,一般污染物2.化学试剂的分级答:3.什么是准确度、精密度?答:准确度表示实验分析测量值与真实值相接近的程度。
误差。
精密度是指在相同条件下多次测量结果互相吻合的程度,表现了测定结果的再现性。
偏差。
4.如何提高实验的准确度、精密度?答:准确度:减少系统误差1.仪器校正2.空白试验3.对照实验;精密度:减少偶然误差1.平均取样2.多次取样。
第二章层析技术1.层析技术及其原理答:层析技术是一种基于被分离物质的物理、化学、生物学特性的不同,使它们在某种机制中移动速度不同而进行分离和分析的方法。
2.名词:固定相、流动相、分配系数答:固定相:固定相是层析的一个基质。
它可以是固体物质(如吸附剂、凝胶、离子交换剂等)也可以是液体物质(如固定在硅胶或纤维素上的溶液),这些基质能与待分离的化合物进行可逆的吸附、溶解、交换等作用。
流动相:在层析过程中,推动固定相上待分离的物质朝着一个方向移动的液体、气体等。
分配系数:是指在一定的条件下,某种组分在固定相和流动相中含量的比值,Kd=固定相中的总量/流动相中的总量。
3.层析法的分类答:按流动相的形式分:气相色谱法1.气固色谱法2.气液色谱法,液相色谱法1.液固色谱法2.液液色谱法;按固定相的形式分:1.柱层析法2.纸层析法3.薄层层析法。
4.几种主要凝胶的中英文名称、型号、及型号数字代表的含义答:葡萄糖凝胶(dextran型号Sephadex G-10~200数字代表凝胶的吸水率)聚丙烯酰胺凝胶(polyacrylamide主要型号有Bio-Gel P-2~300,数字代表它们的排阻极限的10-3)琼脂糖凝胶(agarose Sepharose,Bio-Gel A)5.凝胶层析及其基本原理、操作过程和主要应用答:是利用凝胶把物质按分子大小不同进行分离的一种方法。
原理:由于被分离物质的分子大小不同,洗脱时,大分子物质由于直径大于凝胶网孔不能进入凝胶内部,只能沿着凝胶颗粒间的孔隙,随溶剂向下移动,因此流程短,首先流出层析柱,而小分子物质,由于直径小于凝胶网孔,能自由进出胶粒网孔,使之洗脱流程增长,移动速度慢而后流出层析柱。
应用:1)脱盐及去除小分子杂质2)蛋白质的分离、生物大分子的纯化3)分子量测定4)去热源物质5)溶液的浓缩6.离子交换层析的原理、离子交换剂的类型答:原理:依据各种带电离子或生物大分子与带相反电荷离子交换剂的结合力不同而进行分离纯化的。
阴离子交换剂:吸附阴离子,如DEAE;阳离子交换剂:吸附阳离子,如CM。
7.离子交换色谱的操作和应用答:1.离子交换剂的选择2.离子交换剂的处理和保存3.层析柱的选择4.平衡缓冲液的选择5.洗脱、洗脱速度控制6.样品的浓缩、脱盐7.再生和保存。
应用:1.水处理2.分离纯化小分子物质3.分离纯化生物大分子物质。
8.何谓亲和层析答:是利用生物分子间专一的亲和力而进行分离的一种层析技术。
9.各种层析原理和载体的综合比较(见ppt表)答:第三章电泳技术1.电泳(技术)的概念答:带电物质在电场中向相反电极移动的现象。
2.电泳的分类答:按分离的原理:1.区带电泳2.自由界面电泳3.等速电泳4.等电聚焦电泳;按支持介质的不同:1.纸电泳2.醋酸纤维薄膜电泳(1、2为区带电泳)3.琼脂凝胶电泳4.聚丙烯酰胺凝胶凝胶电泳(PAGE)5.SDS—聚丙烯酰胺凝胶电泳(SDS-PAGE);按支持介质形状不同:1.薄层电泳2.板电泳3.柱电泳;按用途不同:1.分析电泳2.制备电泳3.定量免疫电泳4.连续制备电泳;按所用电压不同:1.低压电泳2.高压电泳。
3.什么是迁移率?影响迁移率、电泳分离的主要因素答:是指带电颗粒在单位电场强度下泳动的速度,m=v/E。
迁移率与带电分子所带净电荷成正比,与分子的大小和缓冲液的粘度成反比,与粒子的形状有关;电泳分离的影响因素:1.带电颗粒的性质(所带净电荷的数量大小及形状)2.溶液的pH 值(离等电点远,快)3.溶液的离子强度(离子强度小泳动快)4.电场强度5.电渗作用(方向一致,快)6.支持介质的筛孔。
4.如何制备聚丙烯酰胺凝胶?答:1.化学聚合:加速剂TEMED使催化剂过硫酸铵形成自由基,这些自由基的产生可引发丙烯酰胺和甲叉双丙烯酰胺的聚合、交联反应形成;2.光聚合:催化剂核黄素经光照形成无色基,再被痕量氧氧化成自由基,引发聚合反应。
TEMED存在可加速聚合。
5.聚丙烯酰胺凝胶电泳和不连续聚丙烯酰胺凝胶电泳的区别、分离效应答:区别:A:整个电泳体系中所用缓冲液,pH值和凝胶网孔都是相同的;B:在电泳系统中采用了两种或两种以上的缓冲液,pH值和孔径。
分离效应A:分子筛效应(某分子通过这种网孔的能力将取决于凝胶孔隙和分离物质颗粒的大小和形状)B:1.样品的浓缩效应2.电荷效应3.凝胶的分子筛效应。
6.简述等电聚焦及其优缺点答:是根据两性物质等电点(pI)的不同而进行分离的。
优点:1.分辨率高,可达0.01pH单位2.能抵消扩散作用,使区带越走越窄3.可直接测出蛋白质的等电点,精确度可达0.01pH单位。
缺点:1.该法要求用无盐溶液,而在无盐溶液中蛋白质可能发生沉淀2.不适用在等电点不溶或发生变性的蛋白质。
7.什么是双向电泳?答:由第一向等电聚焦(IEF)电泳和第二向SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)结合组成。
第四章离心技术1.离心技术的概念答:是利用转头旋转产生的离心力,根据物质颗粒沉降系数、质量、密度的差异将其分离的方法。
2.名词:相对离心力、沉降速度、沉降系数、沉降常数答:相对离心力:F=mω2r,F常用重力加速度表示,称为相对离心力。
沉降速度:在离心力作用下,单位时间内物质颗粒运动的距离。
沉降系数:单位离心力下的沉降速度。
沉降常数:颗粒在20℃水中的沉降系数。
3.离心机和离心转头(转子)的种类答:离心机的种类:低速、高速、超速离心机,冷冻离心机,台式、地式离心机,制备性、分析性离心机;离心转头的种类:1.角度转头FA2.甩平式转头SW3.垂直转头V4.区带转头Z5.连续流动转头CF。
4.简述离心分离的方法(3种)p99~101答:1.差速沉降离心:不断改变离心速度,使沉降速度不同的颗粒在不同的速度和时间下分批分离的方法,一般用于沉降系数相差较大的颗粒,用角度转头。
2.差速区带离心:在一定离心力的作用下存在沉降系数差的不同颗粒各自以一定速度沉降,后在密度梯度不同的介质上形成区带,用于分离有一定沉降系数差的颗粒或密度相似大小不同的样品和核酸、蛋白质等成分。
3.等密度离心:离心管中预先放好梯度介质离心时,样品的不同颗粒一直移动到与他们密度相等的特定梯度位置上,形成不同的区带,用于分离大小相近而密度不同的样品。
5. 如何进行离心区带的收集?答:1.用注射器和滴管由离心管上部吸出2.用针刺穿离心管底部滴出3.用针刺穿离心管区带部分的管壁,把样品区带抽出4.用一根细管插入离心管底,泵入超过梯度介质最大密度的取代液,将样品和梯度介质压出,用自动部分收集器收集。
第五章分光光度技术1. 名词:朗伯-比尔定律、吸收光谱、吸收光谱曲线答:朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,吸光度与溶液的浓度、液层厚度的乘积成正比A=KCL。
吸收光谱:通常分子处于基态,当他吸收一定能量跃迁到激发态,则产生吸收光谱。
吸收光谱曲线:若逐渐改变照射某物质的入射光的波长,并测定物质对各种波长光的吸收程度或透射程度,以波长λ作横坐标,,“A(吸光度)”或“T(透光度)”为纵坐标,画出连续的“A-λ”或“T-λ”曲线。
5.图示说明分光光度计的基本结构答:6.分光光度计的光源及适用范围答:光源要求:1.能提供连续的辐射;2.光强度足够大;3.在整个光谱区内光谱强度不随波长有明显变化;4.光谱范围宽;5.使用寿命长、价格低。
热辐射光源用于可见光和近红外光区的光源如钨灯和卤钨灯,使用波长范围是320~1100nm,气体放电光源用于紫外光区的如氢灯和氘灯,使用波长范围是195~400nm。
7.分光光度计分析条件的选择(见讲义)答1.仪器测量条件的选择;2.显色反应条件的选择3.参比溶液的选择。
8.为什么要进行显色反应?显色反应需要满足哪些要求?影响显色反应的因素有哪些?答:响显色反应的因素有:显色剂用量,溶液酸度,显色时间,温度,溶剂9.分光光度法在核酸与蛋白质的纯度分析中的应用原理答:可用A260/A280的比值鉴定其纯度纯DNA比值为1.8,纯RNA比值为1.0。
第六章免疫化学技术1.双向免疫扩散法答:是以琼脂为介质的Ag-Ab沉淀反应。
2.阐述2种免疫电泳的原理(对流免疫电泳、火箭免疫电泳)答:3.对流免疫电泳与双向免疫扩散法的异同答:对流免疫电泳:是在凝胶介质中将电泳法和扩散法相结合的一种免疫化学方法。
双向免疫扩散法:是以琼脂为介质的Ag-Ab沉淀反应。
异:对流免疫电泳是抗原、抗体分子在电场作用下定向运动,双向免疫扩散法是自由扩散。
同:都基于琼脂凝胶为介质的一种沉淀反应的特性,根据沉淀出现与否及沉淀量的多寡,可定性定量地检测出样品中抗原或抗体的存在及含量。
4.ELISA及其基本原理答:酶联免疫吸附法是指将可溶性的抗原或抗体吸附到聚苯乙烯等固相载体上,进行免疫反应的定性和定量方法。
第七章固定化技术1.固定化酶、固定化细胞的概念答:固定化酶:将水溶性酶用物理化学方法处理,固定于不溶性载体上,称为不溶于水,但仍有酶活性的一种酶制剂形式。
固定化细胞:就是被限制自由移动的细胞,即细胞受到物理化学等因素约束或限制在一定的空间界限内,但细胞仍保留催化活性并能反复或连续使用。
2.固定化酶的优点,答:优点:1.纯化简单2.酶的稳定性有所改进;3.酶的使用效率提高,可以反复利用;4.反应条件容易控制。
3.固定化酶的制备方法答:1)吸附法:利用离子键、物理吸附等方法,将酶固定在纤维素、琼脂糖、多孔玻璃等载体上;2)包埋法:用物理方法把酶包埋在凝胶细小的格子中,或包围在半透膜或聚合物中,酶本身不参与反应;3)共价结合法:酶与不溶于水的载体以共价键形式结合制备固定话酶的方法;4)交联法:双功能试剂或多功能试剂与酶分子中的氨基酸残基作用,使酶与酶之间交联成网。