第六章 高温气冷堆
- 格式:pdf
- 大小:1.99 MB
- 文档页数:27
高温气冷堆的特点高温气冷堆(High Temperature Gas-cooled Reactor,HTGR)是一种利用气体作为冷却剂和工质的核电反应堆。
它具有许多独特的特点,使其成为目前研究和开发的热点。
首先,高温气冷堆具有高温工质。
其出口温度可达到800℃以上,远高于传统水冷反应堆的温度。
这种高温工质使得高温气冷堆具有更高的热效率,从而提高了能源利用率。
此外,高温工质还具有一定的热储存能力,可以在需求峰值时释放储存的热能,满足热能需求。
其次,高温气冷堆具有固态燃料。
与传统的液态燃料相比,固态燃料具有更高的热效率和更低的安全风险。
固态燃料不易泄漏,且燃料粒子更易于密封和控制。
此外,固态燃料具有更高的燃烧温度和更低的熔点,使其更加适合高温气冷堆的运行。
第三,高温气冷堆具有气冷循环系统。
传统的水冷反应堆依赖于水冷却剂来带走核反应堆产生的热量。
而在高温气冷堆中,气体是冷却剂和工质,不但可以有效地冷却反应堆,还可以通过燃气涡轮机转换热能为电能。
这种气冷循环系统不仅避免了水蒸汽泄漏和腐蚀等问题,还提高了能量转换效率。
第四,高温气冷堆具有更高的安全性。
由于高温气冷堆采用了固态燃料和气冷循环系统,不存在水蒸汽爆炸和核泄漏等传统核电反应堆常见的事故风险。
此外,高温气冷堆还具有自动衰变热分散和机械停堆等安全特性,可以有效地降低事故风险。
高温气冷堆也是一种固定床反应堆,核燃料颗粒被完全包裹在球状燃料颗粒堆中,有利于减少放射性物质的扩散和释放。
第五,高温气冷堆具有多能级应用优势。
由于其高温工质和固态燃料的特点,高温气冷堆可以广泛应用于电力、石化、冶金、化工和航天等领域。
例如,高温气冷堆可以用来产生高温高压的蒸汽,用于发电和工业生产;还可以通过高温换热器提供工业或城市的热水和蒸汽供应。
最后,高温气冷堆具有较长的运行寿命。
由于固态燃料和气冷循环系统的采用,高温气冷堆的燃料更易于密封和控制,反应堆更易于维护和远程管理。
这使得高温气冷堆具有更长的运行寿命和更低的维护成本。
高温气冷堆的工作原理
高温气冷堆作为重要的储能设备,其原理比较简单,但是由于它的性能特性,在大量能源相关的领域有着广泛的应用,因此本文将主要介绍其工作原理。
高温气冷堆的基本原理是将气体压缩到一定温度和压力,从而形成为热力学的低温或高温区域。
当气体进行低温压力膨胀时,释放热量,而当它经过高温压力缩凝时,则贮存热量。
这样一来,在一定热能互换系统内,可以实现气体在低温方面扩散热量,而在高温方面贮存热量,从而形成气体可以为热力机械发电产生能量。
当高温气冷堆处于充电状态时,将气体通过压缩机(compressor)压缩到某一设
定的高温高压,接着气体流向加热(heat)器,最后在冷凝(condenser)器内实现溶液
的热贮FM的的工作原理,使得气体与热热机的耦合发挥着作用,从而产生可用能。
而放电状态下,气体将从冷凝器出发,经过溶液膨胀阀,最后进入膨胀器,完成气体的低温膨胀,释放热量,此时气体经过冷却器冷却,压力降低,气体排出到大气中,一定的热量被用于机械发电机的发电。
以上就是高温气冷堆的工作原理。
它通过改变气体的温度和压力,并配合加热和冷却装置,实现“热量的迁移”,达到热力发电的效果,给航空航天、船舶工程、核能、石油化工等诸多领域带来了极大的变革。
高温气冷堆高温气冷堆来源:中国核电信息网发布日期:2009-07-06【英文名】:high temperature gas cooled reactor用氦气作冷却剂,出口温度高的核反应堆。
高温气冷堆采用涂敷颗粒燃料,以石墨作慢化剂。
堆芯出口温度为850~1000℃,甚至更高。
核燃料一般采用高浓二氧化铀,亦有采用低浓二氧化铀的。
根据堆芯形状,高温气冷堆分球床高温气冷堆和棱柱状高温气冷堆。
高温气冷堆具有热效率高(40%~41%),燃耗深(最大高达20MWd/t铀),转换比高(0.7~0.8)等优点。
由于氦气化学稳定性好,传热性能好,而且诱生放射性小,停堆后能将余热安全带出,安全性能好。
【实际应用】10兆瓦高温气冷实验堆:在国家"863"计划的支持下,自上世纪八十年代中期,我国开展了10MW高温气冷实验堆的研究、开发,于2000年12月建成临界,2003年1月实现满功率并网发电,我国对高温气冷堆技术的研发取得了突破性成果,基本掌握了核心技术和系统设计集成技术。
这一科技成果在国内外引起广泛的影响,使我国在高温气冷堆技术上处于国际先进行列。
2006年1月,国务院正式发布的"国家中长期科学和技术发展规划纲要(2006--2020年)"中,将"大型先进压水堆和高温气冷堆核电站示范工程"列为国家重大专项。
第四代先进核能系统近年来,国际上提出了"第四代先进核能系统"的概念,这种核能系统具有良好的固有安全性,在事故下不会对公众造成损害,在经济上能够和其它发电方式竞争,并具有建设期短等优点,高温气冷堆是有希望成为第四代先进核能系统的技术之一。
我国高温气冷堆的研究发展工作始于70年代中期,主要研究单位是清华大学核研院。
值得一提的是,建成的首座高温气冷堆的压力壳直径4.7米,高12.6米,重150吨,是我国自己设计和制造的迄今体积最大的核安全级压力容器。
高温气冷堆的工作原理高温气冷堆的工作原理高温气冷堆(High-Temperature Gas-Cooled Reactor,简称HTGR)是一种基于气冷技术的新型核反应堆。
相比传统的水冷堆,高温气冷堆具有更高的温度和更高的燃烧效率,同时还具备较高的安全性和可靠性。
本文将详细介绍高温气冷堆的工作原理。
高温气冷堆的核燃料是以富集铀或钚等核材料制成的小型球体,被称为“球形颗粒堆”,这些颗粒由包层材料包围,形成可在高温下工作的燃料元件。
燃料元件堆叠在一起形成一个燃料堆芯。
在堆芯外部,布置有气体冷却剂,通常使用大气中常见的氦气作为冷却剂。
由于氦气无毒、无腐蚀性、低密度等特点,使得高温气冷堆具备了较高的安全性和可靠性。
高温气冷堆的工作过程包括燃料核裂变产生热能、热能转化为动能、动能转化为电能等多个步骤。
首先,燃料堆芯中的核燃料颗粒发生裂变反应,产生大量的热能。
这些裂变反应会持续引发新的核裂变反应,使得燃料堆芯内的温度升高。
然后,燃料堆芯内的热能会传导到燃料元件表面的包层材料中。
包层材料具有较低的热导率,能够有效地阻止热能向外传递,使得燃料堆芯温度不断上升。
接下来,燃料堆芯外的氦气冷却剂会通过管道进入堆芯内,吸收燃料元件表面的热能。
在这个过程中,氦气会被加热,温度逐渐升高。
随后,加热后的氦气会流出堆芯,通过热交换器与其他工质进行热交换。
热交换器中的工质(通常是水)会受热变成蒸汽,然后推动涡轮发电机转动,将热能转化为动能。
最后,动能通过涡轮发电机转化为电能。
这样,从核裂变产生的热能最终转化为了实用的电能。
高温气冷堆的这一工作过程具备多重安全性措施。
首先,堆芯材料和冷却剂均为无毒无腐蚀性材料,避免了放射性物质泄漏和腐蚀问题。
其次,高温气冷堆具有自动关闭和冷却功能,一旦超温或故障发生,系统会自动停止工作并冷却下来。
此外,高温气冷堆还具备较高的热效率,能够更好地利用燃料资源,减少对环境的影响。
综上所述,高温气冷堆是一种基于气冷技术的新型核反应堆。
高温气冷堆技术研究一、综述高温气冷堆(High Temperature Gas-Cooled Reactor,HTGR)是一种基于氦气作为冷却剂,球形燃料颗粒构成燃料元件,使用含有放射性210Pb和226Ra的天然矿石球团体作为反应堆壳的中子反射层的一种核反应堆。
由于其独特的设计和系统性能,HTGR 已经成为当前核电技术研究的热点之一,具有开发和推广的潜力。
本文将在深入分析HTGR技术原理的基础上,对不同类型的HTGR技术进行研究论述和探讨。
二、技术原理1.堆芯设计HTGR堆芯设计一般采用球形燃料颗粒构成燃料元件,燃料颗粒由内而外分布不同结构,包括燃料核心、内降温层、内热输出层、外降温层和外热输出层五个部分。
燃料元件都串联在控制棒组、反应堆内壳、中子反射层和球壳之间,构成了HTGR的正常燃料链。
2.冷却剂拥堵特性HTGR使用氦气作为冷却剂,其特性是高热传导、惰性和透明,对于核燃料具有优异的散热性和防护性能,在HTGR的设计和控制中发挥了重要的作用。
HTGR 氦气冷却系统的主要功能是通过散热管式燃料元件的外壳和头部将热量传递到冷却剂中,而氦气冷却通过各种机制保证在一定范围内的温度水平来有效地控制燃料和减轻设备运行过程中的冷却剂拥堵。
3.安全特性HTGR对安全性的关注已经在其设计和应用阶段中进行了鉴定和评价。
HTGR通过基础防线和二次防线两种符合原则和目的的安全机制来保证其安全性能。
基础防线工作原理是在堆芯内部设计足够的容量来保证对堆芯内部故障的快速响应和封堵,而二次防线的目的是在基础防线封闭之前保证超额保护能力。
三、技术类型1.复合型复合型气冷堆用于煤制气合成,采用下列动力学模拟方法,在反应器水平开堆模式下,达到化学品的高度稳定的水平:1) 分层模拟:通过解决运动方程和固定基本参数来进行模拟。
2) 长程热效应模拟:通过区分化学反应机理,通过 MATLAB 来进行模拟。
3) 质量传递模拟:通过分析气固反应的动力学过程,来达到气体的质量传递。
高温气冷堆原理高温气冷堆(HTGR)是一种新型的核能反应堆,其核心原理是利用高温气体来驱动温度较高的热交换器,并产生高温蒸汽以供发电或其他应用。
HTGR是目前最具有发展潜力和安全可靠性的核能反应堆之一,本文将重点介绍其原理和应用。
高温气冷堆主要由燃料元件、反应堆压力容器、热交换器、气轮机以及辅助系统组成。
燃料元件是核反应的关键部分,它通常由燃料微球组成,每颗微球都包裹在一个由防腐蚀材料制成的包层中。
这种设计可以提高堆芯的安全性,并降低核燃料的溶解和泄露的风险。
在高温气冷堆中,燃料微球被装载在一系列的蜂窝状燃料矩阵中,形成一个核反应区。
当中子被释放并与燃料微球进行碰撞时,会引发核裂变反应,释放出大量的热量。
这些高温气体通过热交换器传递给工作介质,并进一步驱动气轮机发电。
热交换器是高温气冷堆的核心部件之一,它能够有效地传递燃料中释放出的热量,并将其转化为可以用于发电的热能。
热交换器通常采用管壳式结构,其中高温气体通过壳侧传递,而工作介质则通过管侧传递。
通过这种方式,高温气体的热能能够直接传递给工作介质,从而实现高效率的能量转换。
气轮机是高温气冷堆发电系统的关键组件,它将通过热交换器传递给工作介质的热能转化为电能。
在气体进入气轮机之前,通常会经过多级压缩,以提高气体的压力和温度。
当气体进入气轮机后,叶片会受到气流的推动而旋转,从而带动发电机产生电能。
由于高温气冷堆运行时产生的气体具有较高的温度和压力,因此可以实现高效率的发电。
高温气冷堆除了可以用于电力发电之外,还可以通过热解过程产生氢气。
热解是将高温气冷堆的高温气体通过特定的催化反应转化为氢气的过程。
这种方式不仅可以提高氢气的产量,而且还可以将高温气冷堆的热能充分利用,实现能源的高效转换。
高温气冷堆具有多种优点和应用前景。
首先,高温气冷堆的燃料元件可以高效地防止核燃料的溶解和泄露,因此具有很高的安全性。
其次,高温气冷堆能够产生高温的热量,可以广泛应用于化学工业、石油加工和其他高温要求的工业领域。
高温气冷堆的原理高温气冷堆是一种先进的核能发电技术,它能够通过气体冷却来驱动和冷却核反应中的燃料。
相比于传统的水冷堆,高温气冷堆具有更高的工作温度,更高的热效率以及更强的安全性能。
本文将详细介绍高温气冷堆的原理。
首先,高温气冷堆的核心部分是核燃料。
核燃料一般选择铀或钍等放射性元素,通过核反应产生的热能来驱动发电机组发电。
而与传统的水冷堆不同,高温气冷堆采用气体冷却介质,例如气体冷却堆可以使用氦气,氦气作为冷却介质能够在高温下具有很好的热导性能,并且不易发生化学反应。
其次,高温气冷堆的核反应基于核裂变原理。
核裂变是指将重核(例如铀、钍)撞击中子后裂变成两个或多个轻核的过程。
核反应发生时,会释放出大量的能量。
在高温气冷堆中,裂变产生的热能被传递给气体冷却剂,通过气体冷却剂暖气器传递给热交换器或直接用于发电。
第三,高温气冷堆中的热交换器是实现热能转换的关键。
热交换器一般由管子组成,通过管道内的气体冷却剂与裂变燃料之间的热传递,将高温气体中的热能通过换热传递给工作介质,例如用于蒸汽发电的水。
通过这种方式,可以将核反应释放的热能高效地转化为电能。
此外,高温气冷堆的安全性能也值得关注。
高温气冷堆采用气体冷却剂,相比水冷堆而言,气体冷却剂更不易发生蒸汽爆炸等事故,避免了放射性物质的泄漏和生态环境的影响。
而且,高温气冷堆通过设计安全堆芯结构和控制系统,能够自动响应异常情况,使堆芯安全地关闭。
最后,高温气冷堆的优势不仅体现在高效能转换和安全性上,还可以用于热利用,使核能发电进一步提高经济效益。
高温气冷堆的高温热能可以用于工业生产过程中的蒸汽供应、海水淡化、油砂开采等,进一步满足社会需求。
总的来说,高温气冷堆是一种既高效又安全的核能发电技术。
通过核裂变原理和气体冷却介质的选择,高温气冷堆能够实现核能的高效转化,并且具有更好的安全性能。
随着科技的不断进步,高温气冷堆必将在未来的核能发电领域发挥重要作用。
高温气冷堆原理
高温气冷堆是一种能够产生高温热能并以气体冷却工质的核能反应堆。
其原理主要包括燃料选择、反应堆结构和冷却循环三个方面。
首先,高温气冷堆可以选择不同类型的燃料。
目前常用的燃料有两种:一种是铀-235(U-235),另一种是钚-239(Pu-239)。
这两种材料都是裂变反应的燃料,能够释放大量的能量。
铀-235是天然存在的,而钚-239则是通过将铀-238转化而来的。
燃料选择的关键是考虑到材料的丰富度、易获得性和裂变性能。
其次,高温气冷堆的反应堆结构也非常重要。
通常,高温气冷堆采用球堆或柱堆结构。
球堆结构由许多小球形的燃料颗粒组成,这些颗粒被包裹在石墨包层中,形成一个固体球堆。
柱堆结构则是将燃料颗粒混合到石墨粉末中,形成一个石墨柱堆。
反应堆结构的选择基于燃料密度、热扩散性和裂变产物吸收交叉截面等参数。
最后,高温气冷堆的冷却循环也是实现高温处置的关键。
冷却循环通常包括燃料元件、冷却剂、热交换器和功率转化系统等组成部分。
燃料元件是核反应堆中裂变物质的载体,冷却剂则是用来吸收燃料中释放的能量。
热交换器则用来将冷却剂中吸收的能量转移到工作介质中,最终通过功率转化系统将能量转化为电能或其他形式的能量。
这样的循环不仅能够高效地冷却反应堆,还能够利用燃料中的能量产生有用的能源。
总结来说,高温气冷堆是一种能够产生高温热能并以气体冷却工质的核能反应堆。
其原理主要包括燃料选择、反应堆结构和冷却循环三个方面。
通过选择合适的燃料、设计合理的反应堆结构和冷却循环,高温气冷堆能够实现高效的核能利用,为人类提供清洁高效的能源。
1.技术简述模块式高温气冷堆按照堆芯结构的特点,可以分为球床堆和棱柱堆两大类型。
球床堆采用球形燃料元件,利用球在反应堆堆芯中的缓慢移动实现不停堆连续换料。
我国高温气冷堆核电站示范工程(HTR-PM)球形燃料以二氧化铀为核芯,外面包覆热解碳和碳化硅层,形成0.92mm直径的包覆颗粒燃料。
大约12000个包覆颗粒燃料与石墨一起被填充在1个直径60mm的燃料球中。
☝ HTR-PM球形燃料元件结构反应堆堆芯中大约有4.2×105个燃料球,直径为3m,高为11m。
堆芯周边的反射层是耐高温的石墨。
冷却剂氦气从反应堆顶部流过堆芯,然后通过一个内衬保温材料的同轴双层连接结构,流到一个和反应堆肩并肩布置的蒸汽发生器。
☝模块式高温气冷堆的一个反应堆模块冷却后的氦气由布置在蒸汽发生器壳顶部的氦气循环风机加压后通过同轴连接结构的外层流回反应堆,形成一个封闭的反应堆——回路循环。
新燃料元件由顶部装入堆芯,从底部卸料管卸出。
卸出的燃料元件如果未达到预定的燃耗深度,则再送回堆内使用。
一个反应堆和一台蒸汽发生器构成了一个高温气冷堆反应堆模块。
在中国的200MWe HTR-PM中,每个反应堆模块热功率为250MWt。
HTR-PM设计有2个模块,向1台蒸汽轮机供应蒸汽,发电功率为210MWe。
3.HTR-PM工程的考验HTR-PM的核心设备及系统可归纳为九大设备和系统:反应堆压力容器、主氦风机、蒸汽发生器、堆内金属构件、控制棒、吸收球、燃料装卸、氦净化和乏燃料储存,其中大多数为世界首台(套)。
HTR-PM工程于2012年12月9日正式开工,核岛浇筑第一罐混凝土。
2015年现场土建工程全部完成,厂房封顶,设备开始入场安装和调试。
在清华大学建成了年产1×105球的中试生产线,完成了生产设备和工艺定型。
商业规模年产3×105球的球形燃料元件商业化生产厂在内蒙古包头市中核北方核燃料元件有限公司进行建设,2013年3月开工,2016年8月开始正式生产。