第八章-材料的压电性能和铁电性能选编
- 格式:ppt
- 大小:783.50 KB
- 文档页数:41
铁电材料的应用及其性质铁电材料是一种拥有电极化性能的材料,可以在外加电场的作用下产生极化效应,其具有许多重要的物理特性和应用价值。
铁电材料被广泛应用于电容器、传感器、压电材料、振动器、光伏器件、非易失性存储器等领域。
本文将深入探讨铁电材料的性质及应用。
一、铁电材料的性质1.电极化性能:铁电材料表现出极化现象,它们能够在电场的作用下,在晶体中产生电偶极矩,同时使晶体的电荷分布发生改变。
铁电材料的电极化是由于离子偏移所导致的,离子的偏移可导致电流产生。
经过组合后,可以得到电信号的输出。
2.压电性能:铁电材料具有压电性能,亦即当外力作用于铁电材料时,晶体结构会产生变化,而反过来当外加电场作用于铁电晶体时,也能感受到压力的变化。
其作用的原理是,当材料受到外力的作用时,内部离子的晶格结构也会产生变形,从而产生相应的电信号。
压电传感器就是利用这种原理来实现高精度测量。
3.热释电性能:一些铁电材料还表现出热释电性能。
当这类材料被局部加热时,就会产生电荷,从而产生电信号。
这种特性可用于温度变化传感器,甚至是毒气检测器中。
4.非线性光学性能:铁电材料在非线性光学方面有很出色的表现,可以利用其将光束加工成符号、滤色器和测量仪器的功能。
二、铁电材料的应用1.电容器:由于铁电材料的电极化和解极化响应速度快,它们可用于电容器中,主要用于储存电料以及印刷电路板制作等领域。
2.传感器:由于铁电材料的压电特性,它们可以被用于制作各种类型的传感器,如液体容器液位感应器、汽车摩擦感应器等等。
3.振动器:由于铁电材料的压电特性和极化性能,它们可用于制造各种类型的振动器,如石英晶体振荡器等。
4.光伏器件:铁电材料在光伏器件中的应用越来越广泛。
铁电效应能够使太阳能电池在太阳光照射下提高光电转换效率,而且在成本上也具有一定优势。
5.非易失性存储器:铁电材料的极化状态可以长时间维持,因此它们可以被用于非易失性存储器中。
这种材料可以将电信号转化成二进制代码,从而实现信息存储和检索。
铁电材料的特性与应用随着科技的不断进步,人们对材料的性能和应用的要求越来越高,铁电材料作为一种特殊的功能材料,因其特殊的性质内在吸引着越来越多的科学家和工程师的关注。
铁电材料具有很多的特点和应用,本文将从以下几个方面进行探讨。
一、铁电材料的概述铁电材料是一种能够在外加电场的作用下,产生永久电极化或瞬时电极化,并能在无电场的作用下保持这种电极化状态的材料。
铁电材料的特殊性质有以下特点:1、储存强电场:铁电材料能够在强电场的作用下产生强电极化,并且能够在不加电场的情况下保持这种极化状态。
2、非线性介电性:铁电材料的介电常数随电场强度的变化不是线性的,而是具有一定的非线性。
铁电材料的非线性介电性具有在光通讯、信息传输等方面的应用前景。
3、电光效应:铁电材料在外界电场的作用下,其晶体结构出现对称性破缺,从而导致光学性能出现改变,这种现象即为电光效应。
4、压电效应:铁电材料在外界力的作用下,会产生电势差,形成电场分布而产生的现象就是压电效应。
二、铁电材料的应用铁电材料由于其具有特殊的性质,在各个行业中有着广泛的应用。
下面简述一下铁电材料在各个行业中的应用。
1、电子电器领域:铁电材料可用于存储器件、传感器、高频陶瓷器等方面。
石英陶瓷是一种常用的高频陶瓷,如果在其表面形成压电陶瓷层,就能够提高其机械振动的效率,达到提高声波频率和集中能量的目的。
2、光电子领域:铁电材料由于具备优异的光电性能,使其非常适用于薄膜反射镜、光阀、空间光学器件等方面。
3、声学领域:铁电材料由于具有压电效应,使其在锂电池、面板电池、防爆弹等方面有着广泛的应用。
4、航空领域:铁电材料由于其性质稳定,可在高温、高压等恶劣环境下使用,所以在火箭发动机、超音速飞行器等方面被广泛应用。
三、未来发展前景随着科技不断发展,人们对材料的性能和应用的要求越来越高,铁电材料作为一种特殊的功能材料,在绿色环保、节能减排、信息传输、生物医药等领域发挥着越来越大的作用,有着广泛的应用前景。
注:粗体为重点或要求掌握的内容,斜体为拓展延伸内容,其余为基本内容。
一、磁学性能1、材料磁性的本源是由材料内部电子循轨和自旋运动产生的。
任一封闭电流都具有磁矩。
2、材料磁性分类——抗磁性物质:使磁场减弱的物质;顺磁性物质:使磁场略有增强的物质;铁磁性物质:使磁场强烈增加的物质。
材料被磁化后,磁化矢量与外加磁场方向相反的称为抗磁性;材料被磁化后,磁化矢量与外加磁场方向相同的称为顺磁性。
材料的抗磁性来源于电子循轨运动时受外加磁场作用所产生的抗磁矩。
材料的顺磁性主要来源于原子(离子)的固有磁矩。
铁磁性来源于原子未被抵消的自旋磁矩和自发磁化。
3、抗磁性、顺磁性、铁磁性特点:抗磁与顺磁性材料的磁化强度与磁场强度之间均呈直线关系,磁化率常数很小,但磁化方向相反,而且当初去外磁场之后,仍恢复到未磁化前的状态,及存在磁化可逆性。
铁磁性不存在直线关系,也不是可逆的,去处外磁场,不恢复未磁化前的状态。
4、原子内层电子交互作用其积分常数A>0,使彼此的自旋磁矩同向排列形成自发磁化;铁、钴、镍因其交换积分常数A具有较大的正值,有较强的自发磁化倾向;还有一些稀土元素虽然也具有自发磁化倾向,但其A值很小,相邻原子间的自旋磁矩同向排列作用很弱,原子振动极易破坏这种同向排列,即它们的居里点很低,所以在常温下为顺磁性。
5、磁化曲线和磁滞回线1)磁化曲线:第一部分,在微弱的磁场中,磁感应强度B和磁化强度M均随外磁场强度H的增大缓慢增大。
磁化是可逆的。
第二部分:随外磁场强度H继续增大,磁感应强度B和磁化强度M急剧增高,磁导率μ增长非常快,并且出现极大值。
磁化是不可逆的。
第三部分:随外磁场强度H进一步增大,B和M增大的趋势逐渐变缓,磁化进行得越来越困难。
磁导率减小,并趋向稳定。
当磁场强度达到Hs时,磁化强度便达到饱和值,即外磁场强度再继续增大时,磁化强度不再变大。
而此时磁感应强度(B=M+H)仍随外磁场强度而增大。
磁化强度的饱和值称为饱和磁化强度,M S;与其对应的磁感应强度称为饱和磁感应强度,B S。
简述铁电、压电和热电纳米材料的催化研究铁电、压电和热电纳米材料近年来在催化研究领域引起了广泛关注。
这些材料具有特殊的结构和性质,对催化反应具有重要作用。
本文将对铁电、压电和热电纳米材料的催化性能进行简要介绍,并分析其应用前景。
铁电材料是一类具有铁电性质的材料,其具有正负两个永久电偶极矩的材料。
研究表明,铁电材料可以用作催化剂,提高催化反应的速率和选择性。
铁电材料的催化性能主要归因于其特殊的电荷分布和表面性质。
例如,铁电材料可以通过调节电荷重排来改变催化活性位点的结合能,从而影响催化反应的速率和选择性。
此外,铁电材料还可以通过外加电场和应力来调控其催化性能。
因此,铁电材料已被广泛应用于氧化还原反应、电催化和光催化等领域。
压电材料是一类具有压电效应的材料,其具有在外力作用下产生电荷分离的特性。
研究表明,压电材料可以用作催化剂,提高催化反应的速率和选择性。
压电材料的催化性能主要归因于其特殊的结构和电荷分布。
例如,压电材料的晶格变形可以改变催化活性位点的结合能,从而影响催化反应的速率和选择性。
此外,压电材料还可以通过外加电压来调控其催化性能。
因此,压电材料已被广泛应用于氧化还原反应、电催化和光催化等领域。
热电材料是一类具有热电效应的材料,其具有在温度梯度下产生电荷分离的特性。
研究表明,热电材料可以用作催化剂,提高催化反应的速率和选择性。
热电材料的催化性能主要归因于其特殊的热导率和电子结构。
例如,热电材料的热导率可以影响催化反应的热量传递和分子扩散,从而调控反应速率。
此外,热电材料的电子结构可以影响催化活性位点的结合能和反应中间体的稳定性,从而影响反应选择性。
因此,热电材料已被广泛应用于热催化和光催化等领域。
目前,铁电、压电和热电纳米材料在催化研究中的应用还处于起步阶段,但已经取得了一些重要的进展。
例如,一些研究发现,通过调控铁电、压电和热电纳米材料的晶格结构和表面性质,可以实现催化活性位点的精确定位和调控。
压电铁电材料压电铁电材料是一类具有压电和铁电性质的功能材料,具有广泛的应用前景和重要的科学价值。
压电效应是指在外加压力下产生电荷分离,从而产生电压的现象,而铁电效应是指在外电场作用下产生电偶极矩的现象。
压电铁电材料同时具有这两种性质,因此在传感器、换能器、存储器、电子器件等领域具有重要的应用价值。
压电铁电材料的研究历史可以追溯到19世纪,最早的压电材料是石英晶体。
20世纪50年代,人们发现了铁电材料的存在,随后压电铁电材料的研究逐渐兴起。
目前,压电铁电材料已经成为功能材料领域的研究热点之一,其在电子、信息、能源等领域的应用前景广阔。
压电铁电材料具有许多优异的性能,如高压电系数、良好的稳定性、宽温度范围内的性能稳定性等。
这些性能使得压电铁电材料在传感器领域具有重要的应用价值,可以用于压力传感器、加速度传感器、声波传感器等。
此外,由于其铁电性质,压电铁电材料还可以用于存储器、电子器件等领域,具有巨大的商业潜力。
目前,压电铁电材料的研究重点主要集中在材料的合成、性能的调控和应用的拓展等方面。
在材料的合成方面,人们通过掺杂、微结构调控、复合材料等方法,不断改进材料的性能,提高其压电铁电性能。
在性能调控方面,人们通过外场调控、表面修饰等手段,进一步拓展了材料的应用范围。
在应用拓展方面,人们不断探索压电铁电材料在新能源、环保、医疗等领域的应用,为其商业化应用打下坚实的基础。
总的来说,压电铁电材料是一类具有重要科学价值和广泛应用前景的功能材料,其研究和应用对于推动材料科学和技术的发展具有重要意义。
随着人们对其认识的不断深入和技术的不断进步,相信压电铁电材料必将在更多领域展现出其独特的魅力,为人类社会的进步和发展做出更大的贡献。
铁电材料和压电材料的制备和应用铁电材料和压电材料是一类极具应用前景的功能材料。
铁电材料可以在外加电场下呈现出独特的电极化性质,而压电材料则可以在外加压力下呈现出独特的电荷分布。
因此,这两种材料不仅在电器领域有广泛的应用,还在光电子学、医疗、生物等领域具有潜在的应用价值。
本文将从铁电材料和压电材料的制备和应用两个方面进行探讨。
一、铁电材料的制备铁电材料在电器领域中具有广泛的应用价值,如传感器、存储材料、场效应管等。
一般而言,铁电材料含有钙钛矿结构,其中钙和钛在晶体中呈现出不同的价态,因此具有极性。
为了制备具有优良铁电性能的材料,需要注意以下几点:1、选择适当的基质材料:钙钛矿结构的铁电材料需要与其他元素形成晶体结构,这个过程中可以加入稀土元素、碱金属元素、过渡金属元素等。
选择不同的元素可以对材料的铁电性能和晶体结构产生影响,因此需要结合具体应用需求选择适当的基质材料。
2、优化材料生长条件:材料生长条件对材料的晶体结构和铁电性能影响很大,因此需要进行适当的优化。
一般而言,可以通过控制生长温度、氧分压、生长速度等条件来获得具有优良铁电性能的材料。
3、表面处理:铁电材料在制备过程中容易受到表面缺陷和氧化等因素的干扰,因此需要进行表面处理。
表面处理可以包括化学处理、等离子体处理、超声波清洗等。
表面处理可以减少杂质的存在,在一定程度上提高了材料的性能。
二、铁电材料的应用铁电材料在传感器、储存器、场效应管等领域中具有广泛的应用。
这些应用可以通过对材料的电极化性质进行调控来实现。
以下是铁电材料在不同领域的应用:1、传感器:铁电材料在传感器领域中具有广泛的应用,例如,在生物传感器中,铁电材料可以通过将生物分子与其结合,实现生物检测的目的。
2、储存器:铁电材料可以用于制造非易失性随机存取存储器(NVRA),这种存储器可以在断电的情况下保存数据,具有快速读取速度和低功耗的特点。
3、场效应管:铁电材料可以用于制造场效应管,这种管可以在电场的作用下调控电流,在集成电路中具有重要的应用价值。
材料的铁电性能综述摘要:回顾了铁电现象的发现及发展,简述了铁电性的机理,描述了铁电材料应用现状与前景,并介绍了几类前景很好的铁电材料。
指出目前对于铁电性的还需要进行更多的和更深入全面的研究。
关键词:铁电性,电畴,铁电薄膜,存储器前言:铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。
铁电材料是一类重要的功能材料,是近年来高新技术研究的前沿和热点之一。
在一些电介质晶体中,晶胞的结构使正负电荷重心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,晶体的这种性质叫铁电性(ferroelectricity)。
铁电性:铁电性是某些绝缘体材料中在外加电场的作用下自发极化可以被反转的特性。
多数材料的极化是与外加电场线性成正比的,非线性效应是不显著的。
这种极化叫做电介质极化。
有些称作顺电体的材料,线性的极化效应更加显著。
于是与极化曲线斜率相对应的介电常数是以一个外加电场的函数。
除了非线性效应以外,铁电材料中还存在自发极化。
这种材料称作焦电材料。
铁电材料与其不同之处在于它的自发极化可以在外加电场作用下被反转,产生一个电滞归线。
一般来说,材料的铁电性只存在于某一相变温度以下,称为居里温度。
在这个温度以上,材料变为顺电体。
铁磁体中的原子有固定的磁偶极矩,这些磁矩自发排列起来。
自发排列的原因是固体中电子的量子力学效应。
铁磁体的居里温度指向顺磁体转变的温度,同理对铁电体,指材料不再是铁电体的温度。
对于一块未极化铁电晶体,电畴随机排列,净极化强度为零。
当外加一个电场时,电畴同时向电场方向转动,当电场足够强时,全部电畴沿电场方向排列一致,这时晶体变成一个大电畴,处于极化饱和状态。
当扭转电场时,极化反转但不回零,晶体获得一个剩余极化强度PR,当电场被扭转到矫顽场Ec时,剩余极化强度被去除。
铁电相是一个相当严格的状态,大多数材料都是顺电状态,顺电相指即使没有固有电偶极子,电场也可诱发极化。
7.4 热电、压电和铁电材料根据固体材料对外电场作用的响应方式不同,我们可以把它们分成两类。
一类是导电材料,即超导体、导体、半导体和绝缘体,它们是以传导方式传递外界电场的作用和影响(可以是电子传导、空穴传导和离子传导)。
另一类固体材料则是以感应方式来传递外界电场的作用和影响,这类材料叫做介电材料或电介质材料。
电介质材料置于外电场作用下,电介质内部就会出现电极化,原来不带电的电介质,其内部和表面将受感应而产生一定的电荷。
电极化可以用极化强度P 表示(单位体积内感应的偶极矩),这种电极化可以分为电子极化、离子极化和取向极化。
有一类电介质即使无外电场的作用其内部也会出现极化,这种极化称为自发极化,它可用矢量来描述。
由于这种自发极化的出现,在晶体中形成了一个特殊的方向,具有这种特殊结构的电介质,每个晶胞中原子的构型使正负电荷重心沿这个特殊方向发生相对位移,形成电偶极矩,使整个晶体在该方向上呈现了极性,一端为正,一端为负,这个特殊方向称为特殊极性方向,在晶体学中通常称为极轴。
而具有特殊极性方向的电介质称为极性电介质。
晶体的许多性质,诸如介电、压电、热电和铁电性,以及与之相关的电致伸缩性质、非线性光学性质、电光性质、声光性质、光折变性质等,都是与其电极化性质相关的。
晶体在外电场作用下,引起电介质产生电极化的现象,称为晶体的介电性。
7.4.1热电材料1. 热电效应(1) 塞贝克(Seebeck)效应当两种不同金属接触时,它们之间会产生接触电位差。
如果两种不同金属形成一个回路时,两个接头的温度不同,则由于该两接头的接触电位不同,电路中会存在一个电动势,因而有电流通过。
电流与热流之间有交互作用存在,其温度梯度不但可以产生热流,还可以产生电流,这是一种热电效应,称为塞贝克效应,其所形成的电动势,称为塞贝克电动势。
塞贝克电动势的大小既与材料有关,也是温度差的函数。
在温度差∆T较小时,塞贝克电动势E AB与温度差呈线性关系,即E AB=S AB∆T,式中S AB为材料A和B的相对塞贝克系数。
材料性能学复习(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《材料性能学》复习第一章 材料单向静拉伸的力学性能一、力-伸长曲线(拉伸图) 1、曲线上变形三阶段 (1)、弹性变形(2)、塑性变形 (屈服现象)(3)、不均匀变形(颈缩阶段)及断裂阶段(会画) 2、拉伸图的种类曲线1 为淬火、高温回火后的高碳钢 曲线2 为低合金结构钢 曲线3 为黄铜 曲线4 为陶瓷、玻璃 曲线5 为橡胶类(会画)二、应力一应变曲线(σ-ε曲线)1、应力: 应变:2、 应力-应变曲线(工程应力-应变曲线)0A F =σ0L L ∆=ε3、各种性能指标(1)、强度指标①弹性极限:σe=Fe / S0②比例极限:σp=Fp / S0③屈服极限:σs=Fs / S0 ;屈服强度σ= / S0④强度极限:σb=Fb / S0⑤断裂强度: Sk=Fk / Sk(2)、塑性指标①延伸率:δk=(Lk-L0) / L0 X 100 %②断面收缩率:ψk=( S0- Sk)/ S0 X 100 %4、真应力-真应变曲线(S-e曲线)真应力:其中, F -瞬时载荷, A-瞬时面积真应变:则:两曲线比较0 0ln)LLLdLdee e LL⎰⎰===)1(ψσ-=SAFS=三、弹性变形及其实质(一)、弹性变形的特点•1、可逆性;•2、单值线性关系;•3、弹性变形量较小(ε<~1%)(二)、双原子模型解释弹性变形引力四、弹性的不完整性与内耗(一)、滞弹性(弹性后效)1.正弹性后效 2.反弹性后效3.产生原因4、危害(二)、包申格效应包申格(Bauschinger)效应:是指金属材料经预先加载产生少量塑性变形(残余应变小于4%),而后再同向加载规定残余伸长应力(或弹性极限)增加,反向加载,规定残余伸长应力(或弹性极限)降低的现象.原因:包申格(Bauschinger)效应可能与第二类内应力有关;危害:包申格(Bauschinger)效应可弱化材料,因而应予以消除;消除办法五、断裂1、断裂概念2、断裂的类型及断口特征3、韧性断裂与脆性断裂概念韧性断裂的特点;脆性断裂的特点4、穿晶断裂与沿晶断裂剪切断裂;解理断裂;准解理断裂5、断裂强度(1).理论断裂强度(会推导)理论断裂强度和实际强度说(2).断裂强度的裂纹理论( Griffith强度理论)Griffith强度理论此公式说明的问题金属材料γs=γe+γp Griffith强度理论212⎪⎭⎫⎝⎛=aEscπγσ22σγπscEa=21(2⎪⎪⎭⎫⎝⎛+=aEpecπγγσ2)(2σγγπpecEa+=第二章材料在其他静载下的力学性能主要讲了硬度试验一、布氏硬度(HB)(1)测定原理(2)、优缺点•优点:压痕面积较大,其硬度值能反映材料在较大区域内各组成相的平均性能,试验数据稳定,重复性强。
铁电材料的性能优化在现代科技领域中,铁电材料是一种非常重要的材料。
铁电材料具有很多优良的性质,例如具有高电介质恒定性、极化自锁定性、压电和矢量电容等特性。
这些性质使得铁电材料成为了研究和应用领域中非常受欢迎的一种材料。
然而,铁电材料在实际应用中还存在一些不足和缺陷。
例如,在现有的铁电材料中,极化强度较低,频率响应度较差且稳定性较差。
因此,为了优化铁电材料的性能,需要从材料的结构、电学、热力学等方面进行深入研究。
首先,结构的优化是铁电材料性能优化的基础。
如果材料的结构不合理,就无法充分发挥其性能。
现有的铁电材料结构包括三类:简单的离子共价材料、复合材料和钙钛矿结构材料。
其中,钙钛矿结构材料是目前应用最广泛和最重要的一类铁电材料。
为了优化钙钛矿结构铁电材料的性能,可以从以下几个方面进行研究。
第一,优化晶格参数。
晶格参数是影响铁电材料性能的重要因素之一。
因此,优化晶格参数可以显著提高铁电材料的极化强度和频率响应度。
研究表明,晶格参数的优化可以通过晶体生长技术和合成方法实现。
第二,改变材料组成。
改变材料组成可以改变铁电材料的晶体结构、电学性能和热力学稳定性。
例如,在铁电材料中加入掺杂剂可以改变其电子结构,从而导致铁电性能的变化。
另外,钙钛矿结构铁电材料中不同原子的占位也会影响其性能。
第三,提高钙钛矿结构铁电材料的稳定性。
钙钛矿结构铁电材料的稳定性是影响其性能的重要因素之一。
受结构缺陷、氧缺位等因素的影响,铁电材料的稳定性通常较差。
因此,研究如何提高铁电材料的稳定性是非常重要的。
除了从结构方面进行优化之外,铁电材料的性能优化还涉及到多个方面。
下面我们将从电学、热力学和化学等方面进行探究。
第一,优化铁电材料的电学性能。
铁电材料的电学性能主要与其极化能力和频率响应度有关。
通过控制铁电材料表面的电场,可以提高其极化能力。
另外,通过合理的材料设计,可以实现铁电材料的多场响应功能。
第二,研究铁电材料的热力学性质。
铁电材料的热力学稳定性是影响其性能的重要因素之一。