引水式水电站概要
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
水电站课程设计任务书及指导书引水式水电站引水系统设计(供水工专业用)水利工程系2019.05.01设计任务书一目的和作用课程设计是工科院校学生在校期间一个较为全面性、总结性、实践性的教学环节。
它是学生运用所学知识和技能,解决某一工程问题的一项尝试。
通过本次课程设计使学生巩固、联系、充实、加深、扩大所学基本理论和专业知识,并使之系统化;培养学生综合运用所学知识解决实际问题的能力和创新精神;培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到一定的锻炼和提高。
二基本资料梯级开发的红旗引水式水电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。
电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。
该电站水库库容较小,不担任下游防洪任务,工程按二等Ⅱ级标准设计。
经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式,安装4台水轮发电机组。
引水系统的布置应考虑地形、地址、水力及施工条件,考虑到常规施工技术条件,引水隧洞洞泾不宜超过12m。
因此,引水系统采用两条引水隧洞,在隧洞末端各设置一个调压室,从每个调压室又各伸出两条压力管道,分别给4台机组供水。
供水方式为单元供水,管道轴线与厂房轴线相垂直,水流平顺,水头损失小。
经水能分析,该电站有关动能指标为:水库调节性能年调节装机容量 16万kw (4台×4万kw)水轮机型号HL240 额定转速107.1r/min校核洪水位(0.1%)194.7m 设计洪水位(1%)191.7m正常蓄水位191.5m 死水位190m最大工作水头38.1 m 加权平均水头36.2 m设计水头36.2 m 最小工作水头34.6 m平均尾水位152.0 m 设计尾水位150.0 m发电机效率 96%-98%单机最大引用流量 Q max=124.91m3/s引水系统长度约800m三试根据上述资料,对该电站进行引水系统的设计,具体包括进水口、引水隧洞、调压室及压力管道等建筑物的布置设计与水电站的调节保证计算等内容。
水电站的根本开发方式及其布置形式由N = 9.81ηQH可知,要发电必须有流量和水头,关键是形成水头。
要充分利用河流的水能资源,首先要使水电站的上、下游形成一定的落差,构成发电水头。
因此就开发河流水能的水电站而言,按其集中水头的方式不同分为坝式、引水式和混合式三种根本方式。
另外,抽水蓄能电站和潮汐电站也是水能利用的重要型式。
一、坝式水电站(一) 坝式水电站特点(1) 坝式水电站的水头取决于坝高。
目前坝式水电站的最大水头不超过300m。
(2) 坝式水电站的引用流量较大,电站的规模也大,水能利用较充分。
(由于筑坝,上游形成的水库,可以用来调节流量〕目前世界上装机容量超过2 000MW的巨型水电站大都是坝式水电站。
此外坝式水电站水库的综合利用效益高,可同时满足防洪、发电、供水等兴利要求。
(3) 坝式水电站的投资大,工期长。
原因:工程规模大,水库造成的淹没范围大,迁移人口多。
适用:河道坡降较缓,流量较大,并有筑坝建库的条件。
(二) 坝式水电站的形式1.河床式电站(power station in river channel)——一般修建在河道中下游河道纵坡平缓的河段上,为防止大量淹没,建低坝或闸。
——适用水头:大中型:25米以下,小型:8~10米以下。
适用于较低水头的水电站——厂房和挡水坝并排建在河床中,共同挡水,使之成为挡水建筑物的一局部,故厂房也有抗滑稳定问题;注:厂房本身起挡水作用是河床式水电站的主要特征——厂房高度取决于水头的上下。
——引用流量大、水头低。
——主要包括:挡水坝、泄水坝、厂房、船闸、鱼道等。
葛州坝水电站坝后式水电站2.坝后式水电站(power staion at dam toe)——当水头较大时,厂房本身抵抗不了水的推力,将厂房移到坝后,由大坝挡水。
厂坝之间设置沉陷缝,是两者之间互不传力,厂房不承受水头。
——坝后式水电站一般修建在河流的中上游。
——库容较大,调节性能好。
——如为土坝,可修建河岸式电站。
引水式水电站设计分析摘要:随着国民经济水平的不断提高,我国的电力事业也得到了很大的发展。
水电站在电力行业中占有很大的比重,其设计、施工质量对于电力企业的生产具有重要的影响。
引水式水电站是较简单的一种引水发电站类型,工程涉及战线长、范围广、考虑因素多。
文章主要讨论引水式水电站设计对坝址、厂址、引水线路的选择及压力前池设计和电站装机容量的确定等,供引水式水电站设计者参考。
关键词:引水式水电站;坝址;厂址;引水渠道;压力前池一、引水式水电站坝址的选择及布置1.1 水电站坝址的选择在引水式水电站的设计过程中,设计人员要注重坝址的选择。
在实际的操作过程中,相关工作人员要加强对相关河道的自然条件进行调查和分析,关注相关的地质问题,而且还要对工程投资以及综合管理进行分析。
在引水设计方面,要选择河床比较稳定并且水量大的河段。
此外,对于要求比较严格的水电站,相关工作人员要将相关的渠道设置在河水溢出带的下游,这样就能够增大河水从河床两侧的溢出量,可以在很大程度上提高水电站的发电量,使得水电站在冬季能够正常运行。
值得注意的是,对于在春季和冬季上游冰量较多的河道,相关工作人员还要采取一定的除冰设计措施。
要设置科学合理的水闸,使得冰块能够顺利通过。
在渠道型式的选择上,要注重选择合理的模式。
一般来讲,当前使用较多的渠道,其正面一般用作排沙、泄洪以及排冰,而侧面则主要是拦河闸和拦河坝。
在实际的河道考察和设计过程中,要密切注意水流方向以及水流条件,使得河道的轴线与排冰、泄洪能够在一条直线上,这样能够切实地保护相关河道不会受到较多破坏,实现耗水量少、流水效果好的目的。
1.2 枢纽布置在引水式水电站的设计过程中,水电站枢纽的布置非常重要。
在实际操作过程中,应根据工程开发的方式以及河流的水流特点,合理布置枢纽。
当前比较常见的枢纽形式主要包括坝、闸混合式以及全闸布置两种形式。
坝、闸混合式枢纽的优点是运行较为方便灵活,投资相对较少,而且具有较强的安全性能,在投入使用之后,其管理控制相对较为方便。
例析引水式发电站的优缺点1.水电站的概述1.1德谷沟水电站的基本情况德谷沟水电站坐落在金阳县城脚下的河沟旁。
德谷沟水电站属于典型的引水式发电站,它只是引水式发电站集群之一。
建设上技术要求较低、投资较小、占地面积少,对生态的影响较弱。
1.2德谷沟电站水利资源丰富,开发量大由于德谷沟狭长,落差较大,坐落在德谷沟上的水电站就有德谷沟电站、芦稿一级电站和仓房水电站-呈阶梯式分布。
阶梯式分布有效的利用了水资源,形成资源节约型发展战略。
德谷沟水资源源头是地下水、源头水量较小但沿途得到了其他水系的汇流和雨水的补充,到达德谷沟取水口水量也然较大了,水量常年富足,即使春冬枯水季节也能满足发电要求。
2.德谷沟电站的优点2.1占地面积及移民少相对于三峡、溪洛渡等大型水电站占地面积少,对占地的补偿也就相应较少了,不及三峡电站的百分之一,三峡基地的占地面积广,总的建筑面积占有很大的比例。
引水式发电站移民也较少基本上不影响居民的生活,移民资金比例也小。
水电站运行不消耗燃料,不污染空气,不排废渣。
由于水体吸收和释放太阳辐射的热量,所以水体会影响当地的气候,增加水体的热容量。
对农业、林业有益影响。
在库区打造美景发展旅游业,吸引游客,发展渔业和服务业(农家乐)使居民增收,促进当地经济发展,增加就业机会。
2.2对地质及施工技术要求低引水式发电站一般采用无坝取水,可以用低格栏珊坝和溢流式小水坝,不需要过多的开挖,对地质的要求不是很高。
取水口的位置可以相应的改变(遇到地质特别差和不满足其他要求时)。
相对大型水坝来说引水式发电站对地质的要求远远不及。
工程建设当中引水式发电站对技术的要求也是较低的,修建的水工建筑物结构较为简单,乙级和丙级资质的水电工程局就可以修建。
所需的技术型人才技能也没那么高的要求。
施工组织设计、施工工艺、施工图简单,施工机械较轻便。
施工导流不必要打导流洞,围堰也不需要太坚固,爆破量较小有时可以用机械代替,爆破的技术要求也不高,地基处理施工简便,需要灌浆的地方较少,混凝土的用量相对较少,坑槽土方量相对较少,地下洞室较少,施工程序简单。
引水式水电站引水式水电站是自河流坡降较陡、落差比较集中的河段,以及河湾或相邻两河河床高程相差较大的地方,利用坡降平缓的引水道引水而与天然水面形成符合要求的落差(水头)发电的水电站。
简介引水式水电站diversion type hydropower station自河流坡降较陡、落差比较集中的河段,以及河湾或相邻两河河床高程相差引水式水电站较大的地方,利用坡降平缓的引水道引水而与天然水面形成符合要求的落差(水头)发电的水电站。
水电站的装机容量主要取决于水头和流量的大小。
山区河流的特点是流量不大,但天然河道的落差一般较大,这样,发电水头可通过修造引水明渠或引水隧洞来取得,适合于修建引水式水电站。
世界上已建成的引水式水电站,最大水头达 1767m(奥地利赖瑟克山水电站);引水道最长的达39km(挪威考伯尔夫水电站)。
中国已建成的引水式水电站,最大水头为1175m(四川省凉山州昭觉县苏巴姑水电站);引水隧洞最长的为8601m(四川渔子溪一级水电站)。
分类引水式水电站可分为无压引水式水电站(图1) 和有压引水式水电站(图2)。
无压引水式水电站的引水道为明渠、无压隧洞、渡槽等。
有压引水式水电站的引水道,一般多为压力隧洞、压力管道等。
主要建筑物引水式水电站的主要建筑物,根据其位置和用途,可分为以下三引水式水电站个部分。
首部枢纽建筑物有壅高河流水位及将水流引向引水道的挡水建筑物和导流建筑物,有清除污物、杂物和沉淀泥沙的建筑物,有时还有防冰设施和排冰的建筑物,如坝、拦河闸、引水道的进水口、拦污栅、沉沙池、冲淤和排冰设施。
其中,有些建筑物可根据当地的地形、地质等条件,布置在首部枢纽或引水道的沿线。
引水道及其辅助建筑物在无压引水道上,常需布设雨水侧向溢流堰、拦沙槛,以及防止崩石、拦截泥石流等保护性工程措施;通常在引水明渠末端建前池或日调节池。
在有压引水道的末端与压力水管之间,常设置调压室,以减少水击影响和改善机组的调节保证条件。
引水式水电站名词解释
引水式水电站,简称引水站,是一种使用新鲜水和水力发电的设备。
它的工作原理是围绕水的吸力,将水从一个流域引入另一个流域,从而获得水力发电。
引水站工作原理:装有一台水轮机的进水壶口,通过渠道将水从流域输入,升压泵将水压强度提高,水源坝维护水位,水流流入水轮机,动力机械将水流动能转化为机械能,水轮机通过轴承与发电机的联轴器的联接,发电机将机械能转化为电能,供给需要用电的用户。
引水站引水量能有效改变在某一区域内水位变化,调节水力发电厂可用水量,从而达到节水节电的效果,具有节能减排、环境保护、资源利用价值。
引水站有以下几个优点:1. 可使不同流域之间水资源得到均衡分配;2. 能有效改善降低流域水环境污染;3. 可有效调节水质,抑制水污染点的发展;4. 可使社会高效利用水资源,提高水力发电的利用效率;5. 可为“三峡工程”的后续开发创造条件。
引水式水电站是目前节能减排技术中应用较为广泛的一种技术,它既能有效调节水质,改善水环境,又能够使水资源得到均衡分配,发挥出其最大效用,可谓一举两得。
利⽤天然河道落差,由引⽔系统集中发电⽔头的⽔电站。
引⽔式⽔电站⼀般由挡⽔建筑物、泄⽔建筑物、进⽔⼝、引⽔系统、⽔电站⼚房、尾⽔隧洞(或尾⽔明渠)及机电设备等组成。
引⽔式⽔电站适宜建在河道多弯曲或河道坡降较陡的河段,⽤较短的引⽔系统可集中较⼤⽔头;也适宜于⾼⽔头⽔电站,避免建设过⾼的挡⽔建筑物。
跨流域引⽔发电的⽔电站必然是引⽔式⽔电站。
引⽔式⽔电站的主要特点有: ①库容⼩,调节性能差; ②淹没损失少; ③产⽣脱⽔河段,⾄少使局部河段减少流量; ④枢纽布置分散,不利于运⾏管理。
引⽔式⽔电站分为有压与⽆压两类。
⽆压引⽔式⽔电站⽤⽆压引⽔道(引⽔明渠或⽆压隧洞)输送⽔流到压⼒前池,压⼒前池把⽔流由⽆压变成有压,通过压⼒管道把⽔引到⽔轮发电机组发电。
有些⽆压引⽔式⽔电站还要设尾⽔明渠。
这类电站靠压⼒前池或靠明渠⼩范围⽔位变化调节引⽔流量,但可调蓄的容积很⼩,调节性能很差,多为径流式⽔电站,如中国新疆的玛纳斯梯级⽔电站。
有压引⽔式⽔电站⽤有压隧洞或钢管从进⽔⼝输送压⼒⽔流到⼚房,有些电站还要设置调压室。
有压引⽔式⽔电站的⼚房位置可放在岸边、地下或地上。
若采⽤地下式⼚房还可分为⾸部式、中部式或尾部式。
⾸部式的引⽔隧洞短于尾⽔隧洞,尾部式的引⽔隧洞长于尾⽔隧洞,中部式的⼚房位于中间。
中国以礼河三级和四级⽔电站为有压引⽔式⽔电站,利⽤⽔头均为629m。
因坝式⽔电站和引⽔式⽔电站各有优缺点,在适宜的条件下有些⽔电站既⽤挡⽔建筑物、⼜⽤引⽔系统共同集中发电⽔头,既有⽔库可调节径流,⼜可⽤较少的引⽔系统⼯程量取得较⼤⽔头。
这类⽔电站称为混合式⽔电站,如中国的鲁布⾰⽔电站。
学号 1423116125年级水文1431 四川水利职业技术学院引水式水电站设计专业水文自动化测报技术姓名陈波指导教师杨易评阅人2017年5月第一章流域基本概况及电站资料1.1流域概况某水电站位于某市某乡,是渭河干流陕西境内最上游的水资源开发工程,坝址控制流域面积29584 km2。
电站站址控制流域面积29890 km2。
渭河发源于甘肃渭源县乌鼠山,流经甘肃、宁夏、陕西三省26个县(市),全长818km,总流域面积6.24万km2。
渭河由某风阁岭流入陕西境内,于陕西潼关港口东汇入黄河,陕西境内河长502km,流域面积3.32万km2,分别占渭河全长和总流域面积的61.4%和53.2%,是关中地区的主要地表水资源。
某水电站以上渭河横跨甘肃、宁夏、陕西三省(区)的天水、定西、平凉、武都、固原、某六个地区共二十个县(市)。
其中甘肃省有渭源、陇西、武山、甘谷、通渭、静宁、漳县、秦安、张川、清水、庄浪、岷县、会宁、临洮、天水市、天水县共十六个县(市),总流域面积25708km2,占林家村以上总流域面积87.59%;宁夏省有西吉、固原、隆德三县,流域面积3250km2,占总面积11.07%;陕西省有某县几个乡镇,流域面积390km2,占总面积1.3%。
该电站以上渭河全长389km,平均比降3.1‰。
1.2水文资料渭河林家村站于1934年1月设立,原名称太寅站,1959年7月改名为林家村站。
测站变动情况为1945年1月太寅站基本断面上迁100m,同年11月又上迁l00m,到1948年又上迁100m,直到1965年元月下迁300m至今。
因控制流域面积受基本断面变迁影响不大,故水文资料均可合并统计。
至今共有不连续68年径流、洪水、泥沙资料(1934~2001年)。
(水文站的控制流域面积为30661 km2)该站上游干流有南河川水文站,位于甘肃省天水县南河川乡刘家庄,于1944年设立,控制渭河流域面积23385km2,至今不连续的59年径流、泥沙系列。
引水式水电站
全部或主要由引水系统集中水头和引用流量以开发水能的水电站。
世界上已建成的引水式水电站,最大水头达1767m(奥地利赖瑟克山水电站);引水道最长的达39km(挪威考伯尔夫水电站)。
中国已建成的引水式水电站,最大水头为629m(云南以礼河第三级盐水沟水电站);引水隧洞最长的为8601m(四川渔子溪一级水电站)。
分类引水式水电站可分为无压引水式水电站(图1) 和有压引水式水电站(图2)。
无压引水式水电站的引水道为明渠、无压隧洞、渡槽等。
有压引水式水电站的引水道,一般多为压力隧洞、压力管道等。
主要建筑物引水式水电站的主要建筑物,根据其位置和用途,可分为以下三个部分。
首部枢纽建筑物有壅高河流水位及将水流引向引水道的挡水建筑物和导流建筑物,有清除污物、杂物和沉淀泥沙的建筑物,有时还有防冰设施和排冰的建筑物,如坝、拦河闸、引水道的进水口、拦污栅、沉沙池、冲淤和排冰设施。
其中,有些建筑物可根据当地的地形、地质等条件,布置在首部枢纽或引水道的沿线。
引水道及其辅助建筑物在无压引水道上,常需布设雨水侧向溢流堰、拦沙槛,以及防止崩石、拦截泥石流等保护性工程措施;通常在引水明渠末端建前池或日调节池。
在
有压引水道的末端与压力水管之间,常设置调压室,以减少水击影响和改善机组的调节保证条件。
厂房枢纽包括压力水道末端及其以后的一整套建筑物。
不论是有压引水式水电站或无压引水式水电站,厂房枢纽主要有水电站主厂房、水电站副厂房、水电站升压开关站、尾水道(明渠或隧洞)。
其具体布置有三种方式:①首部布置是将厂房布置在引水道临近进水口的上段,具有较长的尾水隧洞;②中部布置是将厂房布置在引水道中段,引水与尾水道都较长;③尾部布置是将厂房布置在引水道末端附近,引水道很长,但尾水道很短,首部及中部布置均采用地下式厂房。
尾部布置则可采用地面式厂房、地下式厂房或半地下式厂房(见水电站厂房)。
具体布置方法根据地形、地质条件择优选定,并根据水电站运行条件决定是否在引水洞、尾水洞上设调压室。
适用条件在河流比降较大、流量相对较小的山区或丘陵地区的河流上,当可在较短的河段中,以较小尺寸的引水道取得较大的水头和相应的较大发电功率时,建设引水式水电站常是经济合理的。
有时采用裁弯取直引水或跨流域引水,也可建造经济合理的引水式水电站。
在丘陵地区,引水道上下游的水位相差较小,常采用无压引水式水电站;在高山峡谷地区,引水道上下游的水位相差很大,常建造有压引水式水电站。
与坝式水电站相比,引水式水电站引用的流量常较小,又无蓄水库调节径流,水量利用率较差,综合利用效益较小。
但引水式水电站因无水库淹没损失,工程量又较小,单位造价往往较低,常成为其主要优点。