旋转流变仪的测量原理
- 格式:ppt
- 大小:3.55 MB
- 文档页数:28
转矩流变仪的工作原理转矩流变仪是一种测试材料流变性能的仪器,主要用于测试各种材料的力学性能和变形特性,例如塑料、橡胶、涂料、纺织品等。
本文将对转矩流变仪的工作原理进行详细解析。
一、概述转矩流变仪测量的是所测试物质的流变性能。
所谓流变性能,指的是物质在受到外力(如剪切力、扭转力等)作用下的变形特性。
不同材料在受到不同外力时,其变形特性表现不同,因此需要使用不同的流变测试方法和仪器。
转矩流变仪主要通过旋转扭转试样来测量流变性能,同时可以测量材料的动态弹性模量、流体阻力力、压缩弹性模量等力学性能。
该仪器广泛应用于塑料、橡胶、涂料、纺织品等材料的研究和生产中,对提高产品的质量和性能至关重要。
二、结构和工作原理转矩流变仪的主要结构包括电机、传动装置、拉伸装置、刻度盘、显示和控制系统等。
下面将详细介绍其工作原理和各部分组成。
1、电机及传动装置转矩流变仪使用电机驱动扭矩盘旋转,使得试样受到扭矩作用,从而改变材料的形状。
电机的转速也是测试中的一个重要参数,可根据需要调节。
传动装置包括电机与扭矩盘之间的传动系统,主要由带动皮带、齿轮和轴承等组成。
这些部件既要保证工作顺畅,又要保证传动精度和稳定性,以减小误差。
2、拉伸装置拉伸装置是用来夹住样品并施加相应的载荷的。
其主要部分是夹具,可以根据需要更换不同类型的夹具。
夹具的设计要能够适应不同形状和尺寸的测试物质,并且能够确保试样与扭矩盘之间的离心力被最小化。
3、刻度盘刻度盘用于显示材料在受到外力作用时的变形情况。
它是用来记录扭矩盘的扭转角度,并输出其相关数据。
通常情况下,一次测试需要记录多个数据点,以便后续的数据处理和分析。
4、显示和控制系统转矩流变仪的显示和控制系统主要分为两个部分:数据采集系统和控制系统。
数据采集系统用来记录测试中产生的数据,并将其转换成所需要的形式,包括数字化和图形化输出。
控制系统则控制测试的过程,包括测试条件、采集方式、数据处理等。
三、应用范围1、塑料制品生产。
转子流量计的原理
转子流量计是一种常用的流量测量仪表,它通过测量流体通过
管道时旋转的转子来实现流量的测量。
转子流量计的原理主要包括
结构原理、工作原理和测量原理三个方面。
首先,我们来看一下转子流量计的结构原理。
转子流量计由转子、传感器和显示仪表组成。
转子通常由多个叶片组成,当流体通
过管道时,叶片会受到流体的作用而旋转。
传感器安装在管道上,
可以感知转子的旋转情况并将信号传输给显示仪表,显示仪表则可
以将信号转换成流量值进行显示。
其次,转子流量计的工作原理是基于流体对转子的作用力来实
现的。
当流体通过管道时,流体会对转子产生一个作用力,这个作
用力会使得转子旋转。
转子的旋转速度与流体的流速成正比,因此
可以通过测量转子的旋转速度来确定流体的流量。
最后,我们来介绍一下转子流量计的测量原理。
转子流量计通
常采用电磁感应原理来进行测量。
当转子旋转时,叶片会切割磁场,从而在传感器中产生感应电动势,传感器可以测量这个电动势的大
小并将其转换成标准的电信号,然后通过显示仪表进行显示和输出。
总的来说,转子流量计的原理是基于流体对转子的作用力来实
现流量的测量。
通过测量转子的旋转速度,再通过电磁感应原理将
其转换成标准的电信号进行显示和输出。
转子流量计具有结构简单、测量精度高、稳定性好等特点,因此在工业生产中得到了广泛的应用。
流变仪原理流变仪是一种用来测试材料流变性质的仪器,它可以帮助我们了解材料在受力作用下的变形特性和流动行为。
流变仪的原理是基于流变学的理论,通过施加不同的力或应变,来观察材料的变形情况,从而得出材料的流变特性。
下面我们将详细介绍流变仪的原理。
首先,流变仪的原理基于流变学的基本原理,流变学是研究物质在外力作用下发生形变和流动的学科。
流变仪通过施加不同的外力,如剪切力、扭转力等,来测试材料的变形情况。
在流变仪中,我们可以通过测量材料的应力-应变关系曲线,来了解材料的流变特性。
这些曲线可以帮助我们分析材料的黏弹性、塑性流变等特性。
其次,流变仪的原理还涉及到流变仪的工作原理。
流变仪通常由外部驱动装置、变形装置、检测装置和控制系统等部分组成。
外部驱动装置可以提供不同的力,如剪切力、扭转力等,来施加在材料上。
变形装置可以将外部力传递给材料,引起材料的变形。
检测装置可以实时监测材料的变形情况,并将数据传输给控制系统进行处理和分析。
最后,流变仪的原理还包括了流变仪的测试原理。
在使用流变仪进行测试时,我们通常会对材料施加不同的外力,如剪切力、扭转力等,同时监测材料的应力和应变情况。
通过对应力-应变关系曲线的分析,我们可以得出材料的流变特性,如剪切黏度、塑性流变指数等参数。
这些参数可以帮助我们了解材料的变形特性和流动行为,对材料的研究和应用具有重要意义。
综上所述,流变仪的原理是基于流变学的理论,通过施加不同的外力,来测试材料的变形情况,从而得出材料的流变特性。
流变仪的工作原理包括外部驱动装置、变形装置、检测装置和控制系统等部分,通过这些装置可以实现对材料的测试和分析。
通过对应力-应变关系曲线的分析,我们可以了解材料的流变特性,这对材料的研究和应用具有重要意义。
流变仪的原理是流变学理论的具体应用,对于材料科学和工程领域具有重要的意义。
哈克旋转流变仪是一种广泛应用于化学工程领域的分析仪器,主要用于测定和分析材料的流变性质。
其应用范围广泛,可以用于研究各种材料的粘性行为、蠕变特性以及松弛机制等。
通过对这些特性的测定和分析,可以深入了解材料的物理性质和化学结构,为材料科学研究和工业生产提供重要的技术支持。
一、哈克旋转流变仪的原理哈克旋转流变仪通过施加旋转力矩来测量材料在旋转运动下的应力应变关系,从而得到材料的流变性质。
在测试过程中,哈克旋转流变仪可以模拟不同的温度、转速和应力等条件,以模拟实际生产中的各种工况。
通过这种方式,可以全面了解材料的流变行为,为材料的选择和应用提供重要的参考依据。
二、哈克旋转流变仪的技术指标最小扭矩:这是哈克旋转流变仪能够测量的最小扭矩值,通常以微牛米为单位。
这个指标决定了仪器能够测量低粘度材料的范围。
最大扭矩:这是哈克旋转流变仪能够测量的最大扭矩值,通常以毫牛米为单位。
这个指标决定了仪器能够测量高粘度材料的范围。
扭矩分辨率:这是哈克旋转流变仪能够分辨的最小扭矩变化量,通常以纳牛米为单位。
这个指标决定了仪器在测试过程中对细微变化的敏感程度。
角频率:这是哈克旋转流变仪在测试过程中能够达到的旋转角速度,通常以弧度/秒为单位。
这个指标决定了仪器在测试过程中对材料动态响应的测量能力。
温度范围:这是哈克旋转流变仪在测试过程中能够模拟的最高和最低温度,通常以摄氏度为单位。
这个指标决定了仪器在测试过程中对材料在不同温度下的流变行为的测量能力。
三、哈克旋转流变仪的应用领域化学工程:在化学工程领域,哈克旋转流变仪被广泛应用于各种化学反应过程中的流变性质测定和分析,如聚合物的熔融、固化、溶解以及分解等过程。
通过对这些过程的流变性质进行测定和分析,可以深入了解化学反应的机理和反应条件对产物性质的影响。
高分子材料:在合成高分子材料方面,哈克旋转流变仪被用于研究聚合物的粘度、弹性模量、屈服点和松弛时间等参数。
这些参数对于聚合物的加工和性能具有重要影响,通过测定和分析这些参数,可以帮助优化聚合物的配方和加工工艺。
流变仪的工作原理流变仪的工作原理1.旋转流变仪:有两种,控制应力型和控制应变型A:控制应力型:使用最多,如Physica MCR系列、TA的AR系列、Haake、Malven,都是这一类型的流变仪;其中Physica的马达属于同步直流马达,这种马达相对响应速度快,控制应变能力强;其他厂家使用的属于托杯马达,托杯马达属于异步交流马达,这种马达响应速度相对较慢。
这一类型的流变仪,采用马达带动夹具给样品施加应力,同时用光学解码器测量产生的应变或转速。
B:控制应变型:目前只有ARES属于单纯的控制应变型流变仪,这种流变仪直流马达安装在底部,通过夹具给样品施加应变,样品上部通过夹具连接倒扭矩传感器上,测量产生的应力;这种流变仪只能做单纯的控制应变实验,原因是扭矩传感器在测量扭矩时产生形变,需要一个再平衡的时间,因此反应时间就比较慢,这样就无法通过回馈循环来控制应力。
2.毛细管流变仪毛细管流变仪主要用于高聚物材料熔体流变性能的测试;工作原理是,物料在电加热的料桶里北加热熔融,料桶的下部安装有一定规格的毛细管口模(有不同直径0.25~2mm和不同长度的0.25~40mm),温度稳定后,料桶上部的料杆在驱动马达的带动下以一定的速度或以一定规律变化的速度把物料从毛细管口模种挤出来。
在挤出的过程中,可以测量出毛细管口模入口出的压力,在结合已知的速度参数、口模和料桶参数、以及流变学模型,从而计算出在不同剪切速率下熔体的剪切粘度。
3.转矩流变仪实际上是在实验型挤出机的基础上,配合毛细管、密炼室、单双螺杆、吹膜等不同模块,模拟高聚物材料在加工过程中的一些参数,这种设备相当于聚合物加工的小型实验设备,与材料的实际加工过程更为接近,主要用于与实际生产接近的研究领域。
4.界面流变仪:目前这种流变仪有振荡液滴、振荡剪切等几种原理;是流变测试中最难以准确实现的一个领域;还没有一种特别好而又通用的方法。
美国Brookfield公司正式向中国推出R/S Plus系列流变仪美国Brookfield工程实验室(有限公司)是全球首屈一指的粘度测定/流变学研究仪器的专业厂家,70多年来,始终致力于在流体流变学领域研制简单易用的,功能多样的,产品系列齐全的粘度计/流变仪产品,Brookfield的表盘式粘度计(VT),数字式粘度计(DV-E、DV-I+、DV-II+Pro、DV-III_ULTRA)包含4种不同型号(LV,RV,HA,HB)近二十个产品系列,成为全球最畅销的粘度测定仪器,产品覆盖面达到70%以上,并成为一些粘度计生产厂家争相模仿的对象。
流变仪的使用及原理
流变仪是一种用于测量物质流变性质的仪器,它可以测量物质在不同应力下的变形情况,从而得出物质的流变特性。
流变仪广泛应用于化工、食品、医药、材料等领域,是研究物质流变性质的重要工具。
流变仪的使用
流变仪的使用需要注意以下几点:
1. 样品的准备:样品应该充分混合均匀,避免出现气泡和颗粒,以免影响测量结果。
2. 测量条件的设置:根据样品的特性和测量要求,设置合适的温度、转速、应力等参数。
3. 测量过程的控制:在测量过程中,应注意控制样品的温度、转速和应力,避免出现异常情况。
4. 数据的处理:测量结束后,应对数据进行处理和分析,得出样品的流变特性参数。
流变仪的原理
流变仪的原理基于牛顿流体力学和非牛顿流体力学的基础上,通过施加不同的应力,测量物质的变形情况,从而得出物质的流变特性。
在牛顿流体力学中,物质的粘度是一个常数,不受应力的影响。
而在非牛顿流体力学中,物质的粘度随着应力的变化而变化,可以分为剪切稀释和剪切增稠两种类型。
流变仪通过施加不同的应力,测量物质的变形情况,从而得出物质的流变特性。
流变仪可以测量物质的剪切应力、剪切应变、粘度、弹性模量、黏弹性等参数,可以用于研究物质的流变特性、流变行为和流变机制。
流变仪是一种重要的实验仪器,可以用于研究物质的流变特性和流变行为,对于化工、食品、医药、材料等领域的研究和生产具有重要的意义。
一、实验目的[1]学会使用LVDV-III流变仪。
[2]记录恒温条件下,不同转子转速下,流体的黏度值、扭矩百分值、剪切应力及剪切率等,并绘制流体的流动曲线。
[3]求出流动幂律指数n和稠度系数K,并根据流动幂律指数n判定所测流体性质。
二、实验原理按照流体力学的观点,流体可分为理想流体和实际流体两大类。
理想流体在流动时无阻力,故称为非粘性流体。
实际流体流动时有阻力,即内摩擦力(或剪切应力),故又称为粘性流体。
根据作用于流体上的剪切应力与产生的剪切速率之间的关系,粘性流体又分为牛顿流体和非牛顿流体。
研究流体的流动特性,对聚合物的加工工艺方面具有很强的指导意义。
取相距为dy的两薄层流体,下层静止,上层有一剪切力F,使其产生一速度du。
由于流体间有内摩擦力影响,使下层流体的流速比紧贴的上一层流体的流速稍慢一些,至静止面处流体的速度为零,其流速变化呈线性。
这样,在运动和静止面之间形成一速度梯度du/dy,也称之为剪切速率。
在稳态下,施于运动面上的力F,必然与流体内因粘性而产生的内摩擦力相平衡,据牛顿粘性定律,施于运动面上的剪切应力σ与速度梯度du/dy成正比,即:σ=F/A=ηdu/dy=ηγ式中:η-粘度系数,又称为粘度;du/dy-剪切速率,用γ表示,以剪切应力对剪切速率做图,所得的图形称为剪切流动曲线,简称流动曲线。
(1) 牛顿流体的流动曲线是通过坐标原点的一直线。
其斜率即为粘度,即牛顿流体的剪切应力与剪切速率之间的关系完全服从于牛顿粘性定律:η=σ/γ,水、酒精、醇类、酯类、油类等均属于牛顿流体。
(2) 凡是流动曲线不是直线或虽为直线但不通过坐标轴原点的流体,都称之为非牛顿流体。
此时粘度随剪切速率的改变而改变,这时将粘度称为表观粘度,表示。
聚合物浓溶液、熔融体、悬浮体、浆状液等大多属于此类。
聚合物用ηa流体多数属于非牛顿流体,它们与牛顿流体的确有不同的流动特性,两者的动量传递特性也有所差别。
进而影响到热量传递、质量传递及反应结果。