过烧、过热
- 格式:doc
- 大小:21.00 KB
- 文档页数:2
钢金属材料热处理的过热与过烧1过热显微组织特征过热组织包括:①结构钢的晶粒粗大、马氏体粗大、残留奥氏体过多、出现魏氏组织;②高速钢的网状碳化物、共晶组织(莱氏体组织)、萘状断口;③马氏体型不锈钢的铁素体过多;④黄铜合金脱锌,使表面出现白灰,酸洗后呈麻面等。
按照正常热处理工艺消除的难易程度,可将过热组织分为稳定过热和不稳定过热两种类型。
一般过热组织可通过正常热处理消除,称为不稳定过热组织。
稳定过热组织是指经一般正火、退火和淬火不能完全消除的过热组织。
过热的重要特征是晶粒粗大,它将降低钢的屈服强度、塑性、冲击韧性和疲劳强度,提高钢的脆性转变温度;过热的另一个重要特征是淬火马氏体粗大,它将降低冲击韧性和耐磨性能,增加淬火变形和开裂倾向。
过热缺陷还有魏氏组织、网状碳化物、石墨化、共晶组织、萘状断口、石状断口等,这些缺陷不仅大大降低钢的力学性能和使用性能,而且很容易同时产生淬火开裂。
图1 45钢过热组织400X图1所示为45钢在930℃加热保温15min水淬的显微组织,由灰色粗大淬火中碳马氏体、灰白色残留奥氏体和马氏体基体组成,右上角的黑色条状是沿晶界的淬火裂纹。
由于淬火加热温度远远超过正常淬火加热温度,导致奥氏体晶粒粗化,淬火后得到粗大马氏体,组织应力增加,钢的脆性也增加,淬火后在试样中产生了和轴线平行的单条纵向裂纹。
图2 T10A钢过热组织400X图2所示为T10A钢工件淬火开裂后近裂纹处的显微组织,由沿晶界的黑色托氏体、粗大的高碳片状马氏体、白色残留奥氏体以及极少量的颗粒碳化物组成。
高碳钢过热组织除了粗大马氏体及较多的残留奥氏体外,还会使碳化物的数量减少,硬度降低。
图3 高速钢轻度过热组织400X图3所示为W18Cr4V钢的轻度淬火过热组织,在灰白色隐针马氏体和残留奥氏体基体上分布着白色粒状二次碳化物及沿晶界的块状共晶碳化物,过热程度为2级。
晶粒粗大,棱角状碳化物以及针状马氏体的出现,都是钢材过热的特征。
钢材的火花鉴别钢材的品种繁多,应用广泛,性能差异也很大,因此对钢材的鉴别就显得异常重要。
钢材的鉴别方法很多,现场主要用火花鉴别及根据钢材色标识别两种方法。
火花鉴别法是依靠观察材料被砂轮磨削时所产生的流线、爆花及其色泽判断出钢材化学成分的一种简便方法.火花鉴别常用设备及操作方法火花鉴别常用的设备为手提式砂轮机或台式砂轮机,砂轮宜采用46~60号普通氧化铝砂轮。
手提式砂轮直径为100~150mm,台式砂轮直径为200~250mm,砂轮转速一般为2800~4000r/min。
在火花鉴别时,最好应备有各种牌号的标准钢样以帮助对比、判断。
操作时应选在光线不太亮的场合进行,最好放在暗处,以免强光使火花色泽及清晰度的判别受到影响.操作时使火花向略高于水平方向射出,以便观察火花流线的长度和各部位的火花形状特征.施加的压力要适中,施加较大压力时应着重观察钢材的含碳量;施加较小压力时应着重观察材料的合金元素。
火花的组成和名称1.火束钢件与高速旋转的砂轮接触时产生的全部火花叫做火花束,也叫火束。
火束由根部火花、中部火花和尾部火花三部分组成,如图1-13所示。
图1-13火束的组成2.流线钢件在磨削时产生的灼热粉末在空间高速飞行时所产生的光亮轨迹,称为流线。
流线分直线流线、断续流线和波纹状流线等几种,如图1-14所示。
碳钢火束的流线均为直线流线;铬钢、钨钢、高合金钢和灰铸件的火束流线均呈断续流线;而呈波纹状的流线不常见。
图1-14流线的形状3.节点和芒线流线上中途爆裂而发出的明亮而稍粗的点,叫节点。
火花爆裂时所产生的短流线称为芒线。
因钢中含碳量的不同,芒线有二根分叉、三根分叉、四根分叉和多根分叉等几种,如图1—15所示。
图1-15芒线的形式4。
爆花与花粉在流线或芒线中途发生爆裂所形成的火花形状称为爆花,由节点和芒线组成。
只有一次爆裂芒线的爆花称为一次花,在一次花的芒线上再次发生爆裂而产生的爆花称为二次花,以此类推,有三次花、多次花等,如图1-16所示。
锻造用的原材料为铸锭、轧材、挤材及锻坯。
而轧材、挤材及锻坯分别是铸锭经轧制、挤压及锻造加工成的半成品。
一般情况下,铸锭的内部缺陷或表面缺陷的出现有时是不可避免的。
再加上在锻造过程中锻造工艺的不当,最终导致锻件中含有缺陷。
以下简单介绍一些锻件中常见的缺陷。
由于原材料的缺陷造成的锻件缺陷通常有:表面裂纹表面裂纹多发生在轧制棒材和锻制棒材上,一般呈直线形状,和轧制或锻造的主变形方向一致。
造成这种缺陷的原因很多,例如钢锭内的皮下气泡在轧制时一面沿变形方向伸长,一面暴露到表面上和向内部深处发展。
又如在轧制时,坯料的表面如被划伤,冷却时将造成应力集中,从而可能沿划痕开裂等等。
这种裂纹若在锻造前不去掉,锻造时便可能扩展引起锻件裂纹。
折叠折叠形成的原因是当金属坯料在轧制过程中,由于轧辊上的型槽定径不正确,或因型槽磨损面产生的毛刺在轧制时被卷入,形成和材料表面成一定倾角的折缝。
对钢材,折缝内有氧化铁夹杂,四周有脱碳。
折叠若在锻造前不去掉,可能引起锻件折叠或开裂。
结疤结疤是在轧材表面局部区域的一层可剥落的薄膜。
结疤的形成是由于浇铸时钢液飞溅而凝结在钢锭表面,轧制时被压成薄膜,贴附在轧材的表面,即为结疤。
锻后锻件经酸洗清理,薄膜将会剥落而成为锻件表面缺陷。
层状断口层状断口的特征是其断口或断面与折断了的石板、树皮很相似。
层状断口多发生在合金钢(铬镍钢、铬镍钨钢等),碳钢中也有发现。
这种缺陷的产生是由于钢中存在的非金属夹杂物、枝晶偏析以及气孔疏松等缺陷,在锻、轧过程中沿轧制方向被拉长,使钢材呈片层状。
如果杂质过多,锻造就有分层破裂的危险。
层状断口越严重,钢的塑性、韧性越差,尤其是横向力学性能很低,所以钢材如具有明显的层片状缺陷是不合格的。
亮线(亮区)亮线是在纵向断口上呈现结晶发亮的有反射能力的细条线,多数贯穿整个断口,大多数产生在轴心部分。
亮线主要是由于合金偏析造成的。
轻微的亮线对力学性能影响不大,严重的亮线将明显降低材料的塑性和韧性。
过热与过烧的区别过热是由于锻造加热温度高,存在一定的保温,导致晶粒快速张大,而产生的过热组织.但是过热组织还有一种可能,是加热温度很快(比如感应加热),晶粒没有出现快速张大现象,但是锻造过程很快,产品是终锻后温度高,在锻后堆冷的时候晶粒继续张大,而产生过热组织.过热:加热转变终了时所得奥氏体晶粒一般均较细小。
但如果在转变终了继续升高温度,则如前所述,奥氏体晶粒将继续长大。
如果仅仅是晶粒长大而在晶界上并未发生能使晶界弱化的某些变化,则被称为过热。
过热将使随后的缓冷所得的铁素体晶粒、珠光体团以及随后的快冷所得的马氏体组织变粗,这将便钢的强度和韧性变坏。
因此必须用再次热处理来校正由于加热不当而出现的过热现象。
过热:钢被加热到Ac3(见铁碳相图)以上某一温度,随着奥氏体晶粒的长大,在粗大的奥氏体晶界上,发生了化学成分的明显变化(主要是硫的偏析),在冷却时,或者在原始奥氏体晶界上保持了硫的偏析,或者产生了第二相(主要是硫化物)质点的网状沉积,导致晶界脆化,使钢的拉伸塑性和冲击韧性明显降低的现象。
如果没有硫的析出,不算是过热。
钢的过热温度1200~1350℃之间。
过热钢的特征:1、宏观断口:产生结晶状断面或无金属光泽的灰白色粒状断面2、显微特征:粗大的A(奥氏体)晶粒,魏氏体组织,原始A晶界处S偏析或硫化锰沉淀3、过热钢的机械性能:塑性和冲击韧性明显降低,对强度和硬度基本无影响4、钢发生过热后的补救措施:正火,淬火和回火(注:钢淬火后都需要回火以提高其塑、韧性)过烧:如果加热温度过高,不仅奥氏体晶粒已经长大,而且在奥氏体晶界上也已发生了某些能使晶界弱化的变化,称之为过烧。
过烧的零件已经产生晶间裂纹。
过烧:钢被加热到接近固相线或固-液两相温度范围内的某一温度后,在十分粗大奥氏体晶界上不仅发生了化学成分的明显变化(主要是硫和磷的偏析),而且局部或整个晶界出现烧熔现象,从而在晶界上形成了富硫,磷的液相。
在随后的冷却过程中,晶界上产生富硫,磷的烧熔层,并伴随着形成硫化物,磷化铁等脆性相的沉积,导致晶界严重弱化,从而剧烈降低钢的拉伸塑性和冲击韧性的现象。
过热和过烧(或熔化)
火焰加热淬火的零件在加热过程中,由于火焰焰心的温度高达3000℃左右,如果火焰在零件的某个部位加热时间长,则容易造成处出现过热甚至过烧缺陷,因此要求操作者具有熟练的操作技能,同时对常见材料的淬火温度有感性的认识和颜色辨别能力,从而避免过热现象的发生。
另外如果火焰的移动速度慢或在某处停留,火焰调节不合适等将造成该处组织熔化,尤其是在零件的尖角、孔的边缘等位置,因要特别注意,该缺陷将造成零件的整体报废。
钢的热处理工艺知识大全热处理是将固态金属或合金采用适当的方式加热、保温和冷却以获得所需要的组织结构与性能的工艺。
热处理工艺它能提高零件的使用性能,充分发挥钢材的潜力,延长零件的使用寿命,此外,热处理还可改善工件的工艺性能﹑提高加工质量﹑减小刀具磨损。
钢的热处理方法可分为:退火、正火、淬火、回火及表面热处理等五种。
热处理方法虽然很多,但任何一种热处理工艺都是由加热、保温和冷却三个阶段所组成的,因此,热处理工艺过程可用在温度一时间坐标系中的曲线图表示,如下图所示,这种曲线称为热处理工艺曲线。
退火与正火一、退火将钢加热到适当温度,保持一定时间,然后缓慢冷却(一般随炉冷却)的热处理工艺称为退火。
退火的主要目的是:(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
(2)细化晶粒,均匀钢的组织及成分,改善钢的性能或为以后的热处理作准备。
(3)消除钢中的残余内应力,以防止变形和开裂。
常用的退火方法有完全退火、球化退火、去应力退火等几种。
(1)完全退火完全退火是将钢加热到完全奥氏体化(AC3以上30~50℃),随之缓慢冷却,以获得接近平衡状态组织的工艺方法。
在完全退火加热过程中,钢的组织全部转变为奥氏体,在冷却过程中,奥氏体变为细小而均匀的平衡组织(铁素体+珠光体),从而达到降低钢的硬度、细化晶粒、充分消除内应力的目的。
完全退火主要用于中碳钢及低、中碳合金结构钢的铸件、锻件、热轧型材等,有时也用于焊接结构件,过共析钢不宜采用完全退火,因过共析钢完全退火需加热到AC CM以上,在缓慢冷却时,钢中将析出网状渗碳体,使钢的力学性能变坏。
(2)球化退火是将钢加热到AC1以上20~30℃,保温一定时间,以不大于50℃/H的冷却速度随炉冷却下来,使钢中碳化物呈球状的工艺方法。
球化退火适用于共析钢及过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢在锻造加工后进行球化退火,一方面有利于切削加工,同时为最后的淬火处理作好组织准备。
一:锻造裂纹与热处理裂纹形态一:锻造裂纹一般在高温时形成,锻造变形时由于裂纹扩大并接触空气,故在100X或500X 的显微镜下观察,可见到裂纹内充有氧化皮,且两侧是脱碳的,组织为铁素体,其特征是裂纹比较粗壮且一般经多条形式存在,无明细尖端,比较圆纯,无明细的方向性,除以上典型外,有时会出现有些锻造裂纹比较细。
裂纹周围不是全脱碳而是半脱碳。
淬火加热过程中产生的裂纹与锻造加热过程形成的裂纹在性质和上有明显的差别。
对结构钢而言,热处理温度一般较锻造温度要低得多,即使是高速钢、高合金钢其加热保温时间则远远小于锻造温度。
由于热处理加热温度偏高,保温时间过长或快速加热,均会在加热过程中产生早期开裂。
产生沿着较粗大晶粒边界分布的裂纹;裂纹两侧略有脱碳组织,零件加热速度过快,也会产生早期开裂,这种裂纹两侧无明显脱碳,但裂纹内及其尾部充有氧化皮。
有时因高温仪器失灵,温度非常高,致使零件的组织极粗大,其裂纹沿粗大晶粒边界分布。
结构钢常见的缺陷:1 锻造缺陷(1)过热、过烧:主要特征是晶粒粗大,有明显的魏氏组织。
出现过烧说明加热温度高、断口晶粒粗大,凹凸不平,无金属光泽,晶界周围有氧化脱碳现象。
(2)锻造裂纹:常产生于组织粗大,应力集中处或合金元素偏析处,裂纹内部常充满氧化皮。
锻造温度高,或者终端温度低,都容易产生裂纹。
还有一种裂纹是锻造后喷水冷却后形成的。
(3)折叠:冲孔、切料、刀板磨损、锻造粗糙等原因造成了表面缺陷,在后续锻造时,将表面氧化皮等缺陷卷入锻件本体内而形成折缝。
在显微镜上观察时,可发现折叠周围有明显脱碳。
2 热处理缺陷(1)淬裂:其特点是刚健挺直,呈穿晶分布,起始点较宽,尾部细长曲折。
此种裂纹多产生于马氏体转变之后,故裂纹周围的显微组织与其它区域无明显区别,也无脱碳现象。
(2)过热:显微组织粗大,如果是轻度过热,可采用二次淬火来挽救。
(3)过烧:除晶粒粗大外,部分晶粒已趋于熔化,晶界极粗。
(4)软点:显微组织有块状或网状屈氏体和未溶铁素体等。
工程材料实习报告一、填空1 .热处理工艺过程通常由加热、保温、冷却三个阶段组成。
热处理的目的是改变金属内部的组织结构,改善力学性能。
2. 退火处理有如下作用:消除中碳钢铸件缺陷;改善高碳钢切削加工性能;去除大型铸件、锻件应力。
3. 常用的表面热处理方法有表面淬火与化学热处理等几种,表面热处理的目的是改善零件的表面性能,表面处理后零件的心部性能一般影响不大。
4. 工具(刀具、量具和模具)需要高硬度和高耐磨性,淬火之后,应在150-250℃温度范围内进行低温回火;弹簧和弹性零件需要高强度、高弹性和一定的韧性,淬火之后应在300-500℃温度范围进行中温回火;齿轮和轴类等零件需要获得良好的综合力学性能,淬火之后,应在500-650℃温度范围内进行高温回火。
5 .钢与铸铁的基本区别之一是含碳量不同,钢的含碳量在2.11%以下,铸铁的含碳量在2.11% 以上。
而钢的含碳量在0.25%以下时称为低碳钢,含碳量为0.25-0.60%为中碳钢,含碳量在大于0.6%时为高碳钢。
6 .调质是淬火与高温回火相结合的热处理工艺。
二、名词解释退火:金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却的过程;正火:将工件加热至Ac3或Acm 以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺;淬火:钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms 以下(或Ms 附近等温)进行马氏体(或贝氏体)转变的热处理工艺;强度:表征金属材料抵抗断裂和变形的能力;塑性:金属材料在外力作用下产生永久变形而不被破坏的能力;冲击韧度:反应材料在冲击载荷的作用下抵抗断裂破坏的能力。
三、将下列各种牌号的材料,填入合适的类别,并举例说明可以制造何种零件Q235 45 QT600-2 HT200 KTB350-06 60Si2MnW18Cr4V 35CrMo T10 T12A 1Cr18Ni9 9SiCrQ235碳素结构钢,可以制造螺栓键轴W18Cr4V 高速钢,可以制造切削刀具模具45碳素结构钢,可以制造轴齿轮1Cr18Ni9不锈钢,可以制造医疗工具量具T10碳素工具钢,可以制造锯条冲头HT200灰口铸铁,可以制造底座泵体阀体T12A 高级优质碳素工具钢,可以制造量规KTB350-06可锻铸铁, 可以制造扳手犁刀35CrMo 合金调质钢,可以制造齿轮主轴QT600-2 球墨铸铁,可以制造连杆曲轴60Si2Mn 合金弹簧钢,可以制造减震弹簧9SiCr 合金工具钢,可以制造丝锥四、问答:1 .碳钢的力学性能与含碳量有何关系?低碳钢、中碳钢、高碳钢的力学性能有何特点?答:碳含量对碳钢力学性能的影响:随着碳含量的增加,钢的硬度始终上升,塑性、韧性始终下降;当碳含量小于0.9%时,随着碳含量的增加强度增加,反之,强度下降。
材料成型基本原理习题整理完成版一、概念1、温度场:是加热和冷却过程中某一瞬间的温度分布。
2、凝固:将固体材料加热到液态,然后使其按人们预定的尺寸、形状及组织形态再次冷却到固态的过程称为凝固。
3、粘度:原子承接相互阻碍运动的内摩擦力。
影响粘度因素:温度、表面活性元素、非表面活性元素。
4、体积成形:是在塑性成形过程中靠体积的转移和重新分配来实现的。
体积成形有自由锻造、模锻、轧制、挤压、拉拔等。
5、轧制:将金属坯料通过两个旋转轧辊间的特定孔形,使其形成一定截面形状的方法。
6、挤压:挤压是使大截面的毛坯在凸模的强大压力作用下产生塑性流动,迫使金属从模具型腔中挤出,从而获得一定形状和较小截面尺寸的工作。
7、拉拔:拉拔是将金属坯料的前端施以一定的拉力,使它通过锥形的凹模型腔,改变其截面的形状和尺寸的一种加工方法。
8、板料成形一般称为冲压,可分为落料、冲孔(分离工序,简称冲裁)、弯曲、拉深等工序。
9、加工硬化:冷态变形时,随着变形程度的增加,材料强度、硬度提高,塑性、韧性下降现象。
二、简答题1、材料加工的三要素:材料、能量、信息2、选择零件加工方法的原则:要考虑零件的形状、特征、工作条件及使用要求、生产批量和制造成本、现有环境条件等多因素,以达到技术上可行、质量可靠和经济上合理。
3、冷塑性变形的实质:多晶体变形主要是晶内变形,晶间变形起次要作用,而且需要有其他变形和机制相协调这是由于晶界强度高于晶内,其变形比晶内难,如发生晶界变形易引起晶界破坏和产生裂纹。
4、冷塑性变形特点:1.不是同时性;2.晶粒变形的相互协调性;3.晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
5、塑性板料成形方面发展方向:a.大批量向高速化、自动化发展。
b.发展多工位压力机。
c.发展冲压生产线。
d.小批量生产时期朝简易化、通用化发展,提高加工的“柔性”。
e.工艺过程模拟化和模具CAD/CAM。
6、柔性加工单元包括:开式双柱宽台面压力机、机器人、模具自动仓库、供料装置、堆垛起重机、成品传送带、废品传送带、操纵台等。
第四节淬火教学重点与难点1.重点淬火、回火2.难点淬透性和淬硬性教学方法与手段1.利用挂图等教具。
2.举生活中应用淬火与回火的现象,分析原理与应用,触类旁通。
教学组织1.复习提问10分钟2.讲解75分钟3.小结5分钟教学内容♦钢的淬火是指工件加热奥氏体化后以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺。
♦临界冷却速度是指获得马氏体的最低冷却速度。
♦马氏体是碳或合金元素在α-Fe中的过饱和固溶体,是单相亚稳组织,硬度较高,用符号M表示。
马氏体的硬度主要取决于马氏体中碳的质量分数。
马氏体中由于溶入过多的碳原子,从而使α-Fe晶格发生畸变,增加其塑性变形抗力,故马氏体中碳的质量分数越高,其硬度也越高。
一、淬火(一)淬火的目的淬火的目的主要是使钢件得到马氏体(和贝氏体)组织,提高钢的硬度和强度,与适当的回火工艺相配合,更好地发挥钢材的性能潜力。
(二)淬火工艺1.淬火加热温度的确定亚共析钢淬火加热温度为Ac以上30℃~50℃。
3以上30℃~50℃。
共析钢和过共析钢淬火加热温度为Ac12.淬火介质常用的淬火冷却介质有油、水、盐水、硝盐浴和空气等。
3.淬火方法(1)单液淬火。
♦将已奥氏体化的钢件在一种淬火介质中冷却的方法。
例如,低碳钢和中碳钢在水中淬火,合金钢在油中淬火等。
单液淬火方法主要应用于形状简单的钢件。
(2)双液淬火。
♦将工件加热奥氏体化后先浸入冷却能力强的介质中,在组织即将发生马氏体转变时立即转入冷却能力弱的介质中冷却的方法,称为双液淬火。
例如,先在水中冷却后在油中冷却的双液淬火。
双液淬火主要适用于中等复杂形状的高碳钢工件和较大尺寸的合金钢工件。
(3)马氏体分级淬火♦工件加热奥氏体化浸入温度稍高于或稍低于Ms点的盐浴或碱浴中,保持适当时间,在工件整体达到冷却介质温度后取出空冷以获得马氏体组织的淬火方法,称为马氏体分级淬火。
马氏体分级淬火能够减小工件中的热应力,并缓和相变过程中产生的组织应力,减少淬火变形。
热处理质量检验的内容和方法热处理是机械制造中的一个重要环节,热处理的质量好坏,直接关系着产品或零件的内在质量及性能。
在生产中影响热处理质量的因素很多,为了确保产品质量达到国家标准或行业标准规定的要求,所有的热处理零件从原材料进厂开始,每一道热处理工序后都必须进行严格的检验。
产品出现质量问题不能直接转入下道工序,这样才能确保产品质量。
另外在热处理生产中一个称职的检验员,只是按照技术要求对热处理后的工件进行质量检验和把关是不够的。
更重要的任务是当好参谋。
在热处理的生产过程中首先要看操作者是不是严格执行工艺规程,工艺参数是否正确。
在质量检验过程中如果发现质量问题要帮助操作者分析产生质量问题的原因,找出解决问题的方法。
把可能影响热处理质量的各种因素都控制起来以保证生产出质量优良、性能可靠、用户满意的合格品。
一、热处理质量检验的内容(一)预先热处理预先热处理的目的是改善原材料的组织、软化,以便于机械加工,消除应力,获得理想的热处理原始组织等。
对有些大件预先热处理也是最终热处理,预先热处理一般采用正火及退火。
1)铸钢件的扩散退火由于在高温长时间加热晶粒易粗大,在退火后还应再进行一次完全退火或正火来细化晶粒。
2)结构钢的完全退火一般用于中低碳钢铸件、焊接件、热轧及热锻件的改善组织、细化晶粒、降低硬度、消除应力等。
3)合金结构钢的等温退火主要用于42CrMo等钢的退火。
4)工具钢的球化退火球化退火的目的是改善切削加工性能及冷变形性能。
5)去应力退火去应力退火的目的是消除铸钢件、焊接件、机加工件的内应力,减少后工序的变形与开裂。
6)再结晶退火再结晶退火的目的是消除工件的冷作硬化。
7)正火正火的目的是改善组织、细化晶粒,可作为预先热处理,也可作为最终热处理。
上述退火与正火获得的组织都是珠光体。
在质量检验中,重点是做工艺参数的检查,即在退火及正火进行过程中,做流动检查工艺参数的执行情况,这是首要的,在过程结束后主要检验硬度,金相组织,脱碳深度,及退火正火目的项,带状,网状碳化物等。
过热、过烧(一)概述锻造工艺过程中,如果加热温度控制不当常常容易引起锻件过热的现象。
过热将引起材料的塑性、冲击韧度、疲劳性能、断裂韧度及抗应力腐蚀能力下降。
例如 18CrZNi4WA钢严重过热后,冲击韧度由0.8~1.OMJ/m2下降为0.5MJ/m2。
一般认为,金属由于加热温度过高或高温保温时间过长而引起晶粒粗大的现象就是过热。
至于晶粒粗大到什么程度算过热,应视具体材料而有所不同。
碳钢(包括亚共折钢和过共折钢)、轴承钢和一些钢合金,过热之后往往出现魏氏组织(图片8-56);马氏体和贝氏体钢过热之后往往出现晶内织构组织(见图片3-10); 1Cr18Ni9Ti、1Cr13和Cr17Ni2等不锈钢过热之后α相(或δ铁素体)显著增多;工模具钢(或高合金钢)往往以一次碳化物角状化为特征判定过热组织(见图片3-11)。
钛合金过热后出现明显的β晶界和平直细长的魏氏组织(图片8-423),这些通过金相检查便可以判定。
对铝合金的过热现在没有明确的判定标准。
图片8-56过热的魏氏组织100×图片3-10 20Cr2Ni4A钢模锻件晶内织构320×图片3-11 W18Cr4V钢的过热组织500×图片8-423 过热的魏氏组织500×一般过热的结构钢经正常热处理(正火、淬火)之后,组织可以得到改善,性能也随之恢复。
但是Cr—Ni、C—Ni—Mo、Cr—Ni—W、Cr—Ni—Mo—V系多数合金结构钢严重过热之后,冲击韧度大幅度下降,而且用正常热处理工艺,组织也极难改善,因此对过热组织,按照用正常热处理工艺消除的难易程度,可以分为不稳定过热和稳定过热两种情况。
不稳定过热是用热处理方法能消除所产生的过热组织,亦称一般过热;稳定过热是指经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除。
合金结构钢的严重过热常常表现为稳定过热。
碳钢、9Cr18不锈钢、轴承钢、弹簧钢中也发生类似情况。
一般情况下过烧是由于加热温度太高,产品产生氧化而形成.过热是由于锻造加热温度高,存在一定的保温,导致晶粒快速张大,而产生的过热组织.但是过热组织还有一种可能,是加热温度很快(比如感应加热),晶粒没有出现快速张大现象,但是锻造过程很快,产品是终锻后温度高,在锻后堆冷的时候晶粒继续张大,而产生过热组织.过烧的零件已经产生晶间裂纹过热主要表现是晶粒过分长大可通过今后的热处理改善。
过烧则是晶粒间发生氧化,属不可逆转的缺陷过热:加热转变终了时所得奥氏体晶粒一般均较细小。
但如果在转变终了继续升高温度,则如前所述,奥氏体晶粒将继续长大。
如果仅仅是晶粒长大而在晶界上并未发生能使晶界弱化的某些变化,则被称为过热。
过热将使随后的缓冷所得的铁素体晶粒、珠光体团以及随后的快冷所得的马氏体组织变粗,这将便钢的强度和韧性变坏。
因此必须用再次热处理来校正由于加热不当而出现的过热现象。
过烧:如果加热温度过高,不仅奥氏体晶粒已经长大,而且在奥氏体晶界上也已发生了某些能使晶界弱化的变化,称之为过烧。
过热与过烧的区别在于奥氏体晶界是否发生弱化。
过热是晶粒粗大,晶界加宽的现象,而过烧是晶界晶粒部分低熔点合金相出现复溶现象,确定发生与否还要看加热的速率及温度过热组织:晶粒粗大,粗大的马氏体,魏氏组织。
过烧:是晶粒间发生氧化且晶界存在裂纹,过烧是严重的过热过热或过烧在金相检查中主要与晶粒和晶界作判定;不同的材料有不同的判定方法,结构钢以晶界出现网状特素体判过热,有孔洞判过烧,高温合金晶粒粗大判过热,晶界有空的孔洞、杂质判过烧。
过热:钢被加热到Ac3(见铁碳相图)以上某一温度,随着奥氏体晶粒的长大,在粗大的奥氏体晶界上,发生了化学成分的明显变化(主要是硫的偏析),在冷却时,或者在原始奥氏体晶界上保持了硫的偏析,或者产生了第二相(主要是硫化物)质点的网状沉积,导致晶界脆化,使钢的拉伸塑性和冲击韧性明显降低的现象。
如果没有硫的析出,不算是过热。
热处理工艺性及其影响因素热处理工艺性是指热处理过程获得预期结果的难易程度。
热处理工艺性通常是指淬透性、淬硬性、过热和过烧敏感性、耐回火性和回火脆性等。
1、淬透性淬透性指钢接受淬火的能力,即在淬火时所能达到的淬硬层深度。
沿垂直于硬化表面的方向进行测量,当硬度值下降到规定的数值时,这一点距离硬化表面的深度就是淬硬层深度。
它是衡量钢材淬透性好坏的重要依据,通常以含50%(体积分数)马氏体的组织来测量,但工具钢或轴承钢等某些钢种除外,是以含90%或95%马氏体的组织来测量。
淬透性主要取决于其临界冷却速度的大小,而临界冷却速度则主要取决于过冷奥氏体的稳定性,影响奥氏体的稳定性主要是:(1)化学成分的影响主要是碳元素的影响,当C%小于0.77%时,随着奥氏体中碳浓度的提高,显著降低临界冷却速度,C曲线右移,钢的淬透性增大;当C%大于0.77%时,钢的冷却速度反而升高,C曲线左移,淬透性下降。
其次是合金元素的影响,除钴外,绝大多数合金元素溶入奥氏体后,均使C曲线右移,降低临界冷却速度,从而提高钢的淬透性。
(2)奥氏体晶粒大小的影响奥氏体的实际晶粒度对钢的淬透性有较大的影响,粗大的奥氏体晶粒能使C曲线右移,降低了钢的临界冷却速度。
但晶粒粗大将增大钢的变形、开裂倾向和降低韧性。
(3)奥氏体均匀程度的影响在相同冷度条件下,奥氏体成分越均匀,珠光体的形核率就越低,转变的孕育期增长,C曲线右移,临界冷却速度减慢,钢的淬透性越高。
(4)钢的原始组织的影响钢的原始组织的粗细和分布对奥氏体的成分将有重大影响。
(5)部分元素,例如Mn,Si等元素对提高淬透性能起到一定作用,但同时也会对钢材带来其他不利的影响。
通常以钢的淬火临界直径表示淬透性。
2、淬硬性淬硬性指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
主要取决于马氏体中的含碳量,碳含量越高,则钢的淬硬性越高。
其他合金元素的影响比较小。
3、过热敏感性与过烧敏感性过热敏感性是指钢淬火加热时,奥氏体晶粒急剧长大的敏感性。
一、概念1、温度场:是加热和冷却过程中某一瞬间的温度分布。
2、凝固:将固体材料加热到液态,然后使其按人们预定的尺寸、形状及组织形态再次冷却到固态的过程称为凝固。
3、粘度:原子承接相互阻碍运动的内摩擦力。
影响粘度因素:温度、表面活性元素、非表面活性元素。
4、体积成形:是在塑性成形过程中靠体积的转移和重新分配来实现的。
体积成形有自由锻造、模锻、轧制、挤压、拉拔等。
5、轧制:将金属坯料通过两个旋转轧辊间的特定孔形,使其形成一定截面形状的方法。
6、挤压:挤压是使大截面的毛坯在凸模的强大压力作用下产生塑性流动,迫使金属从模具型腔中挤出,从而获得一定形状和较小截面尺寸的工作。
7、拉拔:拉拔是将金属坯料的前端施以一定的拉力,使它通过锥形的凹模型腔,改变其截面的形状和尺寸的一种加工方法。
8、板料成形一般称为冲压,可分为落料、冲孔(分离工序,简称冲裁)、弯曲、拉深等工序。
9、加工硬化:冷态变形时,随着变形程度的增加,材料强度、硬度提高,塑性、韧性下降现象。
二、简答题1、材料加工的三要素:材料、能量、信息2、选择零件加工方法的原则:要考虑零件的形状、特征、工作条件及使用要求、生产批量和制造成本、现有环境条件等多因素,以达到技术上可行、质量可靠和经济上合理。
3、冷塑性变形的实质:多晶体变形主要是晶内变形,晶间变形起次要作用,而且需要有其他变形和机制相协调这是由于晶界强度高于晶内,其变形比晶内难,如发生晶界变形易引起晶界破坏和产生裂纹。
4、冷塑性变形特点:1.不是同时性;2.晶粒变形的相互协调性;3.晶粒之间和晶粒内部与晶界附近区域之间变形的不均匀性。
5、塑性板料成形方面发展方向:a.大批量向高速化、自动化发展。
b.发展多工位压力机。
c.发展冲压生产线。
d.小批量生产时期朝简易化、通用化发展,提高加工的“柔性”。
e.工艺过程模拟化和模具CAD/CAM。
6、柔性加工单元包括:开式双柱宽台面压力机、机器人、模具自动仓库、供料装置、堆垛起重机、成品传送带、废品传送带、操纵台等。
金属热处理:所谓金属热处理,是借助于一定的热作用(有时兼之以机械作用、化学作用或其他作用)来人为地改变金属合金内部的组织和结构,从而获得所需要的性能的工艺操作。
均匀化退火:扩散退火,是用于消除或减少铸态合金非平衡状态的热处理。
基于回复、再结晶的退火:将冷变形后的金属加热到一定的温度,会发生回复、再结晶,变形织构也会发生变化,从而在一定程度上消除了由冷变形造成的亚稳定状态,使金属材料获得所需组织、结构和性能。
基于固态相变的退火:这是一种以固态金属合金经高温保温和冷却所发生的扩散型相变为基础的热处理。
淬火:将金属合金从固态下的高温状态以过冷或过饱和形式固定到室温,或使高温相在冷却时转变成另一种晶体结构的亚稳状态,称为淬火。
淬火过程中晶体结构不发生变化叫无多型性转变的淬火,若淬火时金属合金的晶体结构类型发生改变,则称为有多型性转变的淬火。
时效或回火:室温保持或加热使过饱和固溶体分解的热处理。
化学热处理:将热作用和化学作用有机地结合起来的一种热处理。
形变热处理:是一种将塑性变形的形变强化和热处理时的相变强化结合,使成型工艺与获得最终性能统一起来的一种综合工艺。
临界浓度:凡组元浓度大于k的合金,在该种铸造的冷却条件下均会出现非平衡过剩相。
k浓度称为临界浓度。
聚集与球化:所谓聚集就是过剩相质点粗化过程,其特征是小尺寸质点溶解而大尺寸质点长大。
球化是聚集的一种特殊形式,即非等轴的过剩相质点转变为接近于等轴的形状。
淬火效应:金属工件加热到一定温度后,浸入冷却剂(油、水等)中,经过冷却处理,工件的性能更好,更稳定。
冷变形储能:冷变形后金属的自由能增量,它是冷变形金属发生组织变化的驱动力。
回复:回复过程的本质是点缺陷运动和位错运动与重新组合。
原位再结晶:随着退火温度升高或退火时间延长,多边化和胞状亚组织形成的亚晶会通过亚晶界迁移和亚晶粒合并的方式逐渐粗化。
在一定条件下,亚晶可长到很大尺寸,这种情况称为原位再结晶。
低温退火的硬化效应:某些金属及合金在回复退火温度下,硬度、强度特别是屈服极限和弹性极限不仅不降低,反而升高,这种现象称为低温退火的硬化效应。
金属热加工工艺1,热处理规范包括哪些参数?温度,速度,保温时间。
2常见的加热缺陷:欠热,过热,过烧,变形开裂,氧化脱碳。
欠热原因:加热温度不足,加热时间过短。
对于亚共析钢,硬度不足,过共析钢卒透性下降。
过热:加热温度过高或保温时间过长,导致钢的冲击韧性下降及踤火开裂。
过烧:加热温度更高,导致奥式体晶粒晶界的氧化,甚至局部融化,工件报废。
变形开裂:a 工件位置放置不当而自重变形b表心产生温差引起内应力3等温退火与完全退火的区别:冷却方式的不同。
完全退火在加热到Ac3以上30-50度保温一段时间后缓慢冷却到平衡态,等温退火则是先以较快速度冷到A1以下某一温度然后保温到P转变完后,出炉空冷。
优点:比完全退火获得更为均匀的组织和性能且可以有效缩短退火工艺时间。
20#钢正火目的:获得细小的s,以提高硬度便于切削。
T12钢正火目的:消除网状渗碳体,为球化退火做准备。
5.为什么亚共析钢采用完全淬火,过共析钢采用不完全淬火?答:亚共析钢采用完全淬火是为了避免引起奥氏体晶粒粗化,过共析钢采用不完全淬火是为了避免加热温度过高Fe3C溶入奥氏体,且奥氏体晶粒粗大,含碳量增多,Ms. Mf点下降,得到粗大M及较多A',易开裂。
6.简述有物态变化的淬火介质冷却的三个阶段。
答:一:有蒸汽膜形成,蒸汽膜阶段二:蒸汽膜破裂,沸腾阶段三:对流阶段7.淬透性与淬硬层深度二者有和联系和区别?影响刚淬透性的因素有哪些?答:淬透性是指钢件淬火是所获得M的能力,是其本身固有属性。
而淬硬层深度是指从表面至半马氏体组织的距离。
淬透性是钢材本身固有属性而不取决于其他外部因素,只和临界冷却速度有关。
而淬硬层深度除取决于淬透性之外,还取决于工件形状、尺寸及冷却介质。
8.以渗碳为例,僬侥说明化学热处理的三个的基本过程?答:包括:分解、吸收、扩散。
CH4与CO等渗碳剂在高温下分解含活性碳原子【C】,【C】被工件表面吸收,形成固溶体0(或化合物过量的碳原子则会形成炭黑),吸附在工件表面或炉罐内。
钢丝热处理缺陷及其危害一、过热与过烧过热是指加热温度过高或保温时间过长,致使奥氏体晶粒显著粗化现象,这种现象在随后冷却的结果是线材内部晶粒粗大,钢丝的力学性能差,韧性很差。
过烧是指加热温度接近于某些低熔点相的熔化温度时,使处在晶界处的这些低熔点相发生熔化现象。
过烧使得晶界被破坏,影响到晶粒与晶粒的结合力,因而钢丝强度很低,脆性极大。
过热与过烧都是由于加热温度过高或保温时间过长引起的。
因此,其预防办法是严格按工艺要求控制钢丝加热温度和保温时间,并经常检查热工仪表的准确性。
二、氧化与脱碳氧化是指钢丝在加热时,炉内的一些氧化性气体与钢丝中的铁起化学反应,在钢丝表面生成一层松脆的氧化铁皮。
其化学反应如下:2Fe+O2→2FeOFe+H20→FeO+H2↑Fe+COz→FeO+CO↑脱碳是指钢丝在加热时,钢丝表层溶于奥氏体的碳或渗碳体里的碳与氧结合,脱离钢丝表层,即钢丝表层的碳被烧掉。
其化学反应如下:2C+02→2C0↑C+C02→2C0↑C+H2O→CO↑+H2↑C+2H2→CH4↑钢丝表面氧化不仅损耗金属,而且在酸洗时会增大酸耗。
脱碳会降低钢丝表层的强度和硬度,影响其耐磨性,尤其会影响钢丝的疲劳强度。
为了防止钢丝氧化与脱碳,可采用控制炉内气氛加热钢丝(明火加热时)、或在钢丝加热时采用气体保护。
三、钢丝脆断钢丝脆断的原因是钢丝在冷却时,冷却速度过快,在钢丝局部或通条产生了脆性极大的马氏体组织。
例如,钢丝在正火热处理刚出加热炉时,钢丝若与水或与控制冷却装置的小管(管外为冷水)接触,就会产生马氏体组织。
钢丝在铅淬火处理时,向铅槽入口端覆盖的木炭粉洒水,若水接触到钢丝,也要产生马氏体组织。
四、钢丝通条性能不均其特征是整根钢丝沿长度方向力学性能不均,承受冷变形能力差。
产生钢丝通条性能不均的原因主要有停车卸线、设备运转不正常;或者是钢丝穿线时未及时将钢丝插入铅液;钢丝若采用电接触加热,电压波动也会造成钢丝性能不均。
过热:是加热温度过高或在高温下保温时间过长,易导致奥氏体晶粒的粗大,粗大的奥氏体晶粒会导致钢的强韧性降低。
一般认为,金属由于加热温度过高或高温保温时间过长而引起晶粒粗大的现象就是过热。
至于晶粒粗大到什么程度算过热,应视具体材料而有所不同。
碳钢(包括亚共折钢和过共折钢)、轴承钢和一些钢合金,过热之后往往出现魏氏组织;马氏体和贝氏体钢过热之后往往出现晶内织构组织;1Cr18Ni9Ti、1Cr13和Cr17Ni2等不锈钢过热之后α相(或δ铁素体)显著增多;工模具钢(或高合金钢)往往以一次碳化物角状化为特征判定过热组织。
钛合金过热后出现明显的β晶界和平直细长的魏氏组织,这些通过金相检查便可以判定。
对铝合金的过热现在没有明确的判定标准。
一般过热的结构钢经正常热处理(正火、淬火)之后,组织可以得到改善,性能也随之恢复。
但是Cr—Ni、C—Ni—Mo、Cr—Ni—W、Cr—Ni—Mo—V系多数合金结构钢严重过热之后,冲击韧度大幅度下降,而且用正常热处理工艺,组织也极难改善,因此对过热组织,按照用正常热处理工艺消除的难易程度,可以分为不稳定过热和稳定过热两种情况。
不稳定过热是用热处理方法能消除所产生的过热组织,亦称一般过热;稳定过热是指经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除。
合金结构钢的严重过热常常表现为稳定过热。
碳钢、9Cr18不锈钢、轴承钢、弹簧钢中也发生类似情况。
过烧:加热温度过高,不仅引起奥氏体晶粒粗大,而且晶界局部出现氧化或熔化,导致晶界弱化等。
过烧加热温度比过热的更高,但与过热没有严格的温度界限。
一般以晶粒边界出现氧化及熔化为特征来判定过烧。
如对碳素钢来说,过烧时晶界熔化、严重氧化,工模具钢(高速钢、Cr12Mo等钢)过烧时,晶界因熔化而出现鱼骨状莱氏体。
铝合金过烧时,出现晶界熔化三角区和复熔球等现象。
锻件过烧后往往无法挽救,只好报废。