钢的过热与过烧
- 格式:pdf
- 大小:476.80 KB
- 文档页数:2
过热:是加热温度过高或在高温下保温时间过长,易导致奥氏体晶粒的粗大,粗大的奥氏体晶粒会导致钢的强韧性降低。
一般认为,金属由于加热温度过高或高温保温时间过长而引起晶粒粗大的现象就是过热。
至于晶粒粗大到什么程度算过热,应视具体材料而有所不同。
碳钢(包括亚共折钢和过共折钢)、轴承钢和一些钢合金,过热之后往往出现魏氏组织;马氏体和贝氏体钢过热之后往往出现晶内织构组织;1Cr18Ni9Ti、1Cr13和Cr17Ni2等不锈钢过热之后α相(或δ铁素体)显著增多;工模具钢(或高合金钢)往往以一次碳化物角状化为特征判定过热组织。
钛合金过热后出现明显的β晶界和平直细长的魏氏组织,这些通过金相检查便可以判定。
对铝合金的过热现在没有明确的判定标准。
一般过热的结构钢经正常热处理(正火、淬火)之后,组织可以得到改善,性能也随之恢复。
但是Cr—Ni、C—Ni—Mo、Cr—Ni—W、Cr—Ni—Mo—V系多数合金结构钢严重过热之后,冲击韧度大幅度下降,而且用正常热处理工艺,组织也极难改善,因此对过热组织,按照用正常热处理工艺消除的难易程度,可以分为不稳定过热和稳定过热两种情况。
不稳定过热是用热处理方法能消除所产生的过热组织,亦称一般过热;稳定过热是指经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除。
合金结构钢的严重过热常常表现为稳定过热。
碳钢、9Cr18不锈钢、轴承钢、弹簧钢中也发生类似情况。
过烧:加热温度过高,不仅引起奥氏体晶粒粗大,而且晶界局部出现氧化或熔化,导致晶界弱化等。
过烧加热温度比过热的更高,但与过热没有严格的温度界限。
一般以晶粒边界出现氧化及熔化为特征来判定过烧。
如对碳素钢来说,过烧时晶界熔化、严重氧化,工模具钢(高速钢、Cr12Mo等钢)过烧时,晶界因熔化而出现鱼骨状莱氏体。
铝合金过烧时,出现晶界熔化三角区和复熔球等现象。
锻件过烧后往往无法挽救,只好报废。
员工培训之钢的过热和过烧钢的过热定义:钢在加热到某一温度(称为过热温度)以上时,由于粗大的奥氏体晶粒晶界上的化学成份发生了明显变化(偏析),或在冷却后产生第二相沉淀,导致晶界脆化,从而降低钢的塑性和冲击韧性。
如果采用正常的热处理可使钢不发生晶间断裂,并使其机械性能得以恢复,则称为钢的不稳定过热。
否则就称为钢的稳定过热,所以对于仅仅是在钢的临界点上加热而产生的晶粒粗化现象还不属于过热的范畴。
钢的过烧定义:钢在固――液相线温度范围内的某一温度(称为过烧温度)以上加热时,奥氏体晶界上发生了化学成份变化(偏析),而且局部或整个晶界出现烧熔现象。
此时在晶界上形成了富硫、磷的液相,在随后的冷却过程中,或由于这种晶界上存在单纯的富硫、磷熔化层,或由于伴随着形成硫化物、磷化物的低熔点共晶组织,导致奥氏体晶界结合力的降低,机械性能严重恶化。
钢过烧后性能的恶化是不能用热处理或热加工的方法来补救的。
解释: 不同钢种在高温加热过程中的变化有不同的规律。
下面以最常用的中碳钢或中碳低合金钢在AC3至固――液相区范围内的加热以及组织和性能的变化分为三个阶段说明。
第一阶段:自AC3至过热温度的范围内,随着加热温度升高,奥氏体晶粒长大,出现针状铁素体(魏氏体)析出(温度越高,魏氏析出量越多)。
在魏氏组织状态 下机械性能有所下降,但经过热处理以后,机械性能可以得到恢复。
第二阶段:自过热温度以上至过烧温度以下的区间内。
随着加热温度升高到过热温度以上,钢中MnS不断溶解于基体,使奥氏体中硫的过饱和度不断增加。
同时由于平衡偏析和非平衡偏析使硫在高温奥氏体晶界显著偏析,造成晶界弱化。
在随后的冷却过程中,过饱和的硫将以MnS的形式析出在高温奥氏体晶界上。
这就是过热现象的本质。
但是如果是加热至过热温度附近或稍高一些的温度,尽管已经出现了S在晶界上偏析,但在晶界上析出折MnS粒子不多,在经过调质处理后其机械性能可以得到恢复,所得到的断口为纤维断口,或有少量晶间棱面。
四、名词解释1.冲击面积:氧气流股与平静金属液面接触时的面积。
2.炉容比:转炉有效容积与公称容量的比值。
3.均衡炉衬:根据炉衬各部位的损失机理及侵蚀情况,在不同部位使用不同材质的耐火砖,砌筑不同厚度的炉衬。
4.喷孔夹角:喷孔几何中心线与喷头轴线之间的夹角。
5.静态模型:就是根据物料平衡和热平衡计算,再参照经验数据统计分析得出的修正系数,确定吹炼加料量和氧气消耗量,预测终点钢水温度及成分目标。
6.溅渣护炉:答案:利用MgO含量达到饱和或过饱和的炼钢终点渣,通过高压氮气的吹溅,使其在炉衬表面形成高熔点的熔渣层,并与炉衬很好的粘结附着,称为溅渣护炉。
7.转炉的经济炉龄:根据转炉炉龄与成本、钢产量之间的关系,其材料综消耗量最少、成本最低、产量最高,确保钢质量条件下所确定的最佳炉龄就是经济炉龄。
8.综合砌炉:在吹炼过程中,由于转炉炉衬各部位的工作条件不同,内衬的蚀损状况和蚀损量也不一样。
针对这一情况,视衬砖的损坏程度的差异,砌筑不同材质或同一材质不同级别的耐火砖,这就是所谓综合砌炉。
9.转炉炼钢的动态控制:转炉炼钢动态控制是在静态控制基础上,应用副枪等测试手段,将吹炼过程中金属成份、温度及熔渣状况等有关信息对吹炼参数及时修正,达到预定的吹炼目标。
由于它比较真实的掌握了熔池情况,命中率比静态控制显著提高,具有更大的适应性和准确性。
其中有吹炼条件控制法、轨道跟踪法、动态停吹法、称量控制法。
10.供氧强度:是指单位时间内每吨金属料由喷枪供给的氧气量,单位是米3/吨·分。
11.转炉静态控制:是以物料平衡和热平衡为基础建立设定的数学模型,即按照已知的原料条件和吹炼终点钢水温度及碳含量计算铁水、废钢、各种造渣材料及冷却剂的加入量、吹氧量和吹氧时间,并按照计算结果由计算机控制整个吹炼过程至终点,在吹炼过程中不按任何新信息量进行修正的一种控制方法。
1、炉熔比:新转炉砌砖后的容积与装入量之比。
2、马赫数:气体的流速与当地音速之比。
钢金属材料热处理的过热与过烧1过热显微组织特征过热组织包括:①结构钢的晶粒粗大、马氏体粗大、残留奥氏体过多、出现魏氏组织;②高速钢的网状碳化物、共晶组织(莱氏体组织)、萘状断口;③马氏体型不锈钢的铁素体过多;④黄铜合金脱锌,使表面出现白灰,酸洗后呈麻面等。
按照正常热处理工艺消除的难易程度,可将过热组织分为稳定过热和不稳定过热两种类型。
一般过热组织可通过正常热处理消除,称为不稳定过热组织。
稳定过热组织是指经一般正火、退火和淬火不能完全消除的过热组织。
过热的重要特征是晶粒粗大,它将降低钢的屈服强度、塑性、冲击韧性和疲劳强度,提高钢的脆性转变温度;过热的另一个重要特征是淬火马氏体粗大,它将降低冲击韧性和耐磨性能,增加淬火变形和开裂倾向。
过热缺陷还有魏氏组织、网状碳化物、石墨化、共晶组织、萘状断口、石状断口等,这些缺陷不仅大大降低钢的力学性能和使用性能,而且很容易同时产生淬火开裂。
图1 45钢过热组织400X图1所示为45钢在930℃加热保温15min水淬的显微组织,由灰色粗大淬火中碳马氏体、灰白色残留奥氏体和马氏体基体组成,右上角的黑色条状是沿晶界的淬火裂纹。
由于淬火加热温度远远超过正常淬火加热温度,导致奥氏体晶粒粗化,淬火后得到粗大马氏体,组织应力增加,钢的脆性也增加,淬火后在试样中产生了和轴线平行的单条纵向裂纹。
图2 T10A钢过热组织400X图2所示为T10A钢工件淬火开裂后近裂纹处的显微组织,由沿晶界的黑色托氏体、粗大的高碳片状马氏体、白色残留奥氏体以及极少量的颗粒碳化物组成。
高碳钢过热组织除了粗大马氏体及较多的残留奥氏体外,还会使碳化物的数量减少,硬度降低。
图3 高速钢轻度过热组织400X图3所示为W18Cr4V钢的轻度淬火过热组织,在灰白色隐针马氏体和残留奥氏体基体上分布着白色粒状二次碳化物及沿晶界的块状共晶碳化物,过热程度为2级。
晶粒粗大,棱角状碳化物以及针状马氏体的出现,都是钢材过热的特征。
钢的过热与过烧1 概述在锅炉和压力容器制造中,对所用钢材进行热加工和热处理。
此时,如果加热温度控制不当,加热不均会使材料超温,导致材料机械性能恶化。
根据超温的程度和时间长短,钢材会发生脱碳,过热和过烧现象。
过热:钢被加热到Ac3以上某一温度,随着奥氏体晶粒的长大,在粗大的奥氏体晶界上,发生了化学成分的明显变化(主要是硫的偏析),在冷却时,或者在原始奥氏体晶界上保持了硫的偏析,或者产生了第二相(主要是硫化物)质点的网状沉积,导致晶界脆化,使钢的拉伸塑性和冲击韧性明显降低的现象。
开始发生过热现象的温度为过热温度。
不稳定过热(可恢复),稳定过热,如果没有硫的析出,不算是过热。
过烧:钢被加热到接近固相线或固-液两相温度范围内的某一温度后,在十分粗大奥氏体晶界上不仅发生了化学成分的明显变化(主要是硫和磷的偏析),而且局部或整个晶界出现烧熔现象,从而在晶界上形成了富硫,磷的液相。
在随后的冷却过程中,晶界上产生富硫,磷的烧熔层,并伴随着形成硫化物,磷化铁等脆性相的沉积,导致晶界严重弱化,从而剧烈降低钢的拉伸塑性和冲击韧性的现象。
开始发生过烧现象的温度为过烧温度。
2 钢在高温加热中的变化2.1 奥氏体晶粒长大2.1.1 奥氏体晶粒长大速率D-晶粒长大后的平均晶粒直径,K-物性参数,t时间。
2.1.2 奥氏体晶粒长大影响因素2.1.2.1 化学成分和冶炼方法本质晶粒度指钢被加热到Ac3以上某一温度时奥氏体晶粒的大小。
本质粗晶粒钢在冶炼时只用锰铁脱氧(沸腾钢)或用锰铁、硅铁脱氧的钢本质细晶粒钢指在除锰铁和硅铁脱氧外,还用铝作脱氧剂的钢。
2.1.2.2 碳及合金元素含碳量增加,晶粒长大倾向增大。
强烈抑制晶粒长大:Al,Ti,Nb,V,Zr中等抑制晶粒长大:Mo,W,Cr微弱抑制晶粒长大:Cu,Co增加晶粒长大倾向:Mn,P2.1.2.3 加热温度2.1.2.4 保温时间2.2 钢在高温加热时的成分和组织变化2.2.1 第一阶段:钢从Ac3温度到其过热温度以下的温度区间内加热。
6、钢坯的过热和过烧
钢在加热过程中的过热和过烧都意味着钢的结晶组织发生了变化。
钢坯在高温下长时间加热时,钢的晶粒不断长大,当晶粒长大到一定程度时,晶粒间结合力减弱,钢的塑任变坏。
这种现象就是钢的过热。
过热的钢坯在轧制过程中产生裂纹,使产品报废。
如果钢坯温度继续上升,达到铁碳平衡图的液相线时,钢的晶粒边界便开始熔化。
因为,钢在凝固过程中,非金属夹杂的凝固点较低,被留在金属晶粒之间最后凝固,当温度升高时,熔点低的夹杂先熔化。
一旦晶粒边界开始熔化,则钢的结晶组织便遭到破坏,失去金属应具有的塑性和强度。
这种现象称为钢的过烧。
钢坯过烧后易折断和碎裂,喂入轧机轧制时便造成推钢事故。
钢坯过热和过烧都是严重的加热质量事故,过烧是在过热的基础上发生的,情况更为严重。
过热的钢坯若未经轧制,可将其冷却至700℃以下,然后重新加热使用,而过烧的钢坯无法恢复原来的组织状态,只能报废。
高碳钢较低碳钢熔点低,若最高加热温度控制不当,往往发生钢坯过热和过烧现象,当轧制作业线突然出现故障停轧时,对炉温控制不及时,很容易造成过热或过烧。
在钢坯的加热过程中,只要严格控制炉子温度和钢坯的加热温度,并在轧制作业线出现故障时及时调整炉况,则各种加热缺陷是完全可以避免的。
钢的热处理工艺知识大全热处理是将固态金属或合金采用适当的方式加热、保温和冷却以获得所需要的组织结构与性能的工艺。
热处理工艺它能提高零件的使用性能,充分发挥钢材的潜力,延长零件的使用寿命,此外,热处理还可改善工件的工艺性能﹑提高加工质量﹑减小刀具磨损。
钢的热处理方法可分为:退火、正火、淬火、回火及表面热处理等五种。
热处理方法虽然很多,但任何一种热处理工艺都是由加热、保温和冷却三个阶段所组成的,因此,热处理工艺过程可用在温度一时间坐标系中的曲线图表示,如下图所示,这种曲线称为热处理工艺曲线。
退火与正火一、退火将钢加热到适当温度,保持一定时间,然后缓慢冷却(一般随炉冷却)的热处理工艺称为退火。
退火的主要目的是:(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
(2)细化晶粒,均匀钢的组织及成分,改善钢的性能或为以后的热处理作准备。
(3)消除钢中的残余内应力,以防止变形和开裂。
常用的退火方法有完全退火、球化退火、去应力退火等几种。
(1)完全退火完全退火是将钢加热到完全奥氏体化(AC3以上30~50℃),随之缓慢冷却,以获得接近平衡状态组织的工艺方法。
在完全退火加热过程中,钢的组织全部转变为奥氏体,在冷却过程中,奥氏体变为细小而均匀的平衡组织(铁素体+珠光体),从而达到降低钢的硬度、细化晶粒、充分消除内应力的目的。
完全退火主要用于中碳钢及低、中碳合金结构钢的铸件、锻件、热轧型材等,有时也用于焊接结构件,过共析钢不宜采用完全退火,因过共析钢完全退火需加热到AC CM以上,在缓慢冷却时,钢中将析出网状渗碳体,使钢的力学性能变坏。
(2)球化退火是将钢加热到AC1以上20~30℃,保温一定时间,以不大于50℃/H的冷却速度随炉冷却下来,使钢中碳化物呈球状的工艺方法。
球化退火适用于共析钢及过共析钢,如碳素工具钢、合金工具钢、轴承钢等。
这些钢在锻造加工后进行球化退火,一方面有利于切削加工,同时为最后的淬火处理作好组织准备。
张菊水编著上海科学技术出版社19841.1定义钢一般都要进行热加工和热处理,以获得较高的强韧性或其他特殊性能。
但是,加热温度过高,反而会导致钢的机械性能的恶化,甚至造成材料的报废。
钢的这种现象不仅在经过高温加热的钢材中经常出现,而且也在钢锭、铸钢或焊接件中常常遇到。
钢的过热定义为钢在加热到某一温度(称作过热温度)以上是,由于粗大奥氏体晶粒晶界的化学成分发生了明显变化(偏析),或在冷却后发生了第二相的沉淀,导致了这种晶界脆化现象的发生,从而会显著地降低钢的拉伸塑性和冲击韧性。
如果采用正常热处理方法可使钢免受晶间断裂,并使其机械性能得以恢复,钢这种过热称作钢的不稳定过热。
否则,称作钢的稳定过热。
按照这个定义,钢在临界点以上加热时,当仅仅产生晶粒粗化现象,尽管此时钢的屈服强度也有所降低,但还不属于过热的范畴。
钢的过烧定义为钢在固——液相线温度范围内的某一温度(称作过烧温度)以上加热时,奥氏体晶界上不仅产生了化学成分的变化(偏析),而且局部或整个晶界出现烧熔现象。
此时在晶界上形成了富硫、磷的淳朴,在随后的冷却过程中,或者由于这种晶界上存在着单纯的富硫、磷的熔化层;或者伴随着形成硫化物、磷化铁或低熔点共晶组织,导致高温奥氏体晶界结合力降低,造成灾难性破坏,从而严重降低了钢的拉伸塑性和冲击韧性。
这种机械性能的恶化,是不能用热处理或热加工方法来补救的。
钢的过热与过烧现象通常都可以采用特殊的化学试剂侵蚀技术、冲击断口试验、断裂表面的化学成分分析和微观断口观察等多种研究方法予以鉴别。
应当指出,过去一般都以经过热处理的钢是不出现石状断口作为钢的过热与过烧的重要判据。
然而,这个观点至少在解释高碳钢、高合金钢以及钢锭和铸钢等的过热与过烧现象时遇到了困难。
例如,高速钢、轴承钢以及某些合金结构钢在经受过热与过烧后,即使在状态下,有时也往往不出现石状断口,而是形成结晶状断口、瓷状断口或萘状断口;在经过热处理的铸钢中形成的典型晶间断口也不一定全都属于钢的过热与机理引起的。
第四节淬火教学重点与难点1.重点淬火、回火2.难点淬透性和淬硬性教学方法与手段1.利用挂图等教具。
2.举生活中应用淬火与回火的现象,分析原理与应用,触类旁通。
教学组织1.复习提问10分钟2.讲解75分钟3.小结5分钟教学内容♦钢的淬火是指工件加热奥氏体化后以适当方式冷却获得马氏体或(和)贝氏体组织的热处理工艺。
♦临界冷却速度是指获得马氏体的最低冷却速度。
♦马氏体是碳或合金元素在α-Fe中的过饱和固溶体,是单相亚稳组织,硬度较高,用符号M表示。
马氏体的硬度主要取决于马氏体中碳的质量分数。
马氏体中由于溶入过多的碳原子,从而使α-Fe晶格发生畸变,增加其塑性变形抗力,故马氏体中碳的质量分数越高,其硬度也越高。
一、淬火(一)淬火的目的淬火的目的主要是使钢件得到马氏体(和贝氏体)组织,提高钢的硬度和强度,与适当的回火工艺相配合,更好地发挥钢材的性能潜力。
(二)淬火工艺1.淬火加热温度的确定亚共析钢淬火加热温度为Ac以上30℃~50℃。
3以上30℃~50℃。
共析钢和过共析钢淬火加热温度为Ac12.淬火介质常用的淬火冷却介质有油、水、盐水、硝盐浴和空气等。
3.淬火方法(1)单液淬火。
♦将已奥氏体化的钢件在一种淬火介质中冷却的方法。
例如,低碳钢和中碳钢在水中淬火,合金钢在油中淬火等。
单液淬火方法主要应用于形状简单的钢件。
(2)双液淬火。
♦将工件加热奥氏体化后先浸入冷却能力强的介质中,在组织即将发生马氏体转变时立即转入冷却能力弱的介质中冷却的方法,称为双液淬火。
例如,先在水中冷却后在油中冷却的双液淬火。
双液淬火主要适用于中等复杂形状的高碳钢工件和较大尺寸的合金钢工件。
(3)马氏体分级淬火♦工件加热奥氏体化浸入温度稍高于或稍低于Ms点的盐浴或碱浴中,保持适当时间,在工件整体达到冷却介质温度后取出空冷以获得马氏体组织的淬火方法,称为马氏体分级淬火。
马氏体分级淬火能够减小工件中的热应力,并缓和相变过程中产生的组织应力,减少淬火变形。
过热、过烧(一)概述锻造工艺过程中,如果加热温度控制不当常常容易引起锻件过热的现象。
过热将引起材料的塑性、冲击韧度、疲劳性能、断裂韧度及抗应力腐蚀能力下降。
例如 18CrZNi4WA钢严重过热后,冲击韧度由0.8~1.OMJ/m2下降为0.5MJ/m2。
一般认为,金属由于加热温度过高或高温保温时间过长而引起晶粒粗大的现象就是过热。
至于晶粒粗大到什么程度算过热,应视具体材料而有所不同。
碳钢(包括亚共折钢和过共折钢)、轴承钢和一些钢合金,过热之后往往出现魏氏组织(图片8-56);马氏体和贝氏体钢过热之后往往出现晶内织构组织(见图片3-10); 1Cr18Ni9Ti、1Cr13和Cr17Ni2等不锈钢过热之后α相(或δ铁素体)显著增多;工模具钢(或高合金钢)往往以一次碳化物角状化为特征判定过热组织(见图片3-11)。
钛合金过热后出现明显的β晶界和平直细长的魏氏组织(图片8-423),这些通过金相检查便可以判定。
对铝合金的过热现在没有明确的判定标准。
图片8-56过热的魏氏组织100×图片3-10 20Cr2Ni4A钢模锻件晶内织构320×图片3-11 W18Cr4V钢的过热组织500×图片8-423 过热的魏氏组织500×一般过热的结构钢经正常热处理(正火、淬火)之后,组织可以得到改善,性能也随之恢复。
但是Cr—Ni、C—Ni—Mo、Cr—Ni—W、Cr—Ni—Mo—V系多数合金结构钢严重过热之后,冲击韧度大幅度下降,而且用正常热处理工艺,组织也极难改善,因此对过热组织,按照用正常热处理工艺消除的难易程度,可以分为不稳定过热和稳定过热两种情况。
不稳定过热是用热处理方法能消除所产生的过热组织,亦称一般过热;稳定过热是指经一般的正火(包括高温正火)、退火或淬火处理后,过热组织不能完全消除。
合金结构钢的严重过热常常表现为稳定过热。
碳钢、9Cr18不锈钢、轴承钢、弹簧钢中也发生类似情况。
一般情况下过烧是由于加热温度太高,产品产生氧化而形成.过热是由于锻造加热温度高,存在一定的保温,导致晶粒快速张大,而产生的过热组织.但是过热组织还有一种可能,是加热温度很快(比如感应加热),晶粒没有出现快速张大现象,但是锻造过程很快,产品是终锻后温度高,在锻后堆冷的时候晶粒继续张大,而产生过热组织.过烧的零件已经产生晶间裂纹过热主要表现是晶粒过分长大可通过今后的热处理改善。
过烧则是晶粒间发生氧化,属不可逆转的缺陷过热:加热转变终了时所得奥氏体晶粒一般均较细小。
但如果在转变终了继续升高温度,则如前所述,奥氏体晶粒将继续长大。
如果仅仅是晶粒长大而在晶界上并未发生能使晶界弱化的某些变化,则被称为过热。
过热将使随后的缓冷所得的铁素体晶粒、珠光体团以及随后的快冷所得的马氏体组织变粗,这将便钢的强度和韧性变坏。
因此必须用再次热处理来校正由于加热不当而出现的过热现象。
过烧:如果加热温度过高,不仅奥氏体晶粒已经长大,而且在奥氏体晶界上也已发生了某些能使晶界弱化的变化,称之为过烧。
过热与过烧的区别在于奥氏体晶界是否发生弱化。
过热是晶粒粗大,晶界加宽的现象,而过烧是晶界晶粒部分低熔点合金相出现复溶现象,确定发生与否还要看加热的速率及温度过热组织:晶粒粗大,粗大的马氏体,魏氏组织。
过烧:是晶粒间发生氧化且晶界存在裂纹,过烧是严重的过热过热或过烧在金相检查中主要与晶粒和晶界作判定;不同的材料有不同的判定方法,结构钢以晶界出现网状特素体判过热,有孔洞判过烧,高温合金晶粒粗大判过热,晶界有空的孔洞、杂质判过烧。
过热:钢被加热到Ac3(见铁碳相图)以上某一温度,随着奥氏体晶粒的长大,在粗大的奥氏体晶界上,发生了化学成分的明显变化(主要是硫的偏析),在冷却时,或者在原始奥氏体晶界上保持了硫的偏析,或者产生了第二相(主要是硫化物)质点的网状沉积,导致晶界脆化,使钢的拉伸塑性和冲击韧性明显降低的现象。
如果没有硫的析出,不算是过热。
钢加热超过一定温度时,奥氏体晶粒迅速长大,形成粗大的晶粒,这种现象称过热。
碳钢对过热的敏感性小一些,合金钢则容易过热,在对过热敏感的钢种中,以镍铬钼钢最为突出。
过热与加热温度、加热时间有关。
加热温度越高,时间越长,晶粒越变的粗大,而使钢的机械性能降低、变脆。
冶炼方法对钢的过热温度具有显著影响。
电渣重熔钢比具有相同化学成分的电弧炉钢(非真空)的过热起始温度低,这是由于超纯钢里通常聚集在晶界、阻止晶粒长大的Al2O3等夹杂物极少存在,使它容易出现晶粒长大。
由于钢的纯度而使过热起始温度降低的程度,已知为15℃以上。
真空熔炼钢的过热起始温度较在大气熔炼的同种钢低30~40℃。
例如40CrMnSiMoVA真空自耗重熔钢和电炉钢的过热温度分别为1160℃和1200℃。
一般过热对锻造影响不大,但过热严重(即俗称“稳定过热”)的锻造中过热区域会产生龟状裂纹。
过热的金属,如果变形许可的话,可再锻或在锻后进行正火,将晶粒细化。
但是Ni-Cr,Cr-Ni-Mo,Cr-Ni-W,Cr-Ni-Mo-V系多数合金结构钢严重过热之后,用正常热处理工艺极难改善,此种过热称为稳定过热。
稳定过热时,除奥氏体晶粒粗大或大小晶粒混淆外,还会沿原奥氏体晶界析出硫化物(MnS)等异相质点。
硫化物质点越多,原奥氏体晶界也就越稳定。
虽然在以后的正火、淬火时钢重新奥氏体化了,但原奥氏体晶界上硫化物等质点的分布、大小和形状不会受到多大程度的改变,结果形成了稳定过热。
过热组织,由于晶粒粗大,引起机械性能降低,尤其是(低温)冲击韧性大大降低。
钢长时间在高温炉内的强烈氧化介质中加热时,就会产生过烧。
过烧的实质是高温的钢被炉气中的氧渗透到晶界处,使晶界氧化,形成脆壳,严重地破坏了晶粒之间的联结。
过烧的钢料,在锻压时会崩裂成碎块,断面呈浅灰色。
晶粒粗大,炉气中含氧越多,加热时间越长,越易过烧。
过烧的金属是无法挽救的,在加热时必须特别注意。
在炼钢温度下,氧化物和硫化物在钢中都有一定的溶解度,在钢液凝固过程中,因氧化物和硫化物溶解度的变化,会按一定的规律析出非金属夹杂物。
钢丝热处理缺陷及其危害一、过热与过烧过热是指加热温度过高或保温时间过长,致使奥氏体晶粒显著粗化现象,这种现象在随后冷却的结果是线材内部晶粒粗大,钢丝的力学性能差,韧性很差。
过烧是指加热温度接近于某些低熔点相的熔化温度时,使处在晶界处的这些低熔点相发生熔化现象。
过烧使得晶界被破坏,影响到晶粒与晶粒的结合力,因而钢丝强度很低,脆性极大。
过热与过烧都是由于加热温度过高或保温时间过长引起的。
因此,其预防办法是严格按工艺要求控制钢丝加热温度和保温时间,并经常检查热工仪表的准确性。
二、氧化与脱碳氧化是指钢丝在加热时,炉内的一些氧化性气体与钢丝中的铁起化学反应,在钢丝表面生成一层松脆的氧化铁皮。
其化学反应如下:2Fe+O2→2FeOFe+H20→FeO+H2↑Fe+COz→FeO+CO↑脱碳是指钢丝在加热时,钢丝表层溶于奥氏体的碳或渗碳体里的碳与氧结合,脱离钢丝表层,即钢丝表层的碳被烧掉。
其化学反应如下:2C+02→2C0↑C+C02→2C0↑C+H2O→CO↑+H2↑C+2H2→CH4↑钢丝表面氧化不仅损耗金属,而且在酸洗时会增大酸耗。
脱碳会降低钢丝表层的强度和硬度,影响其耐磨性,尤其会影响钢丝的疲劳强度。
为了防止钢丝氧化与脱碳,可采用控制炉内气氛加热钢丝(明火加热时)、或在钢丝加热时采用气体保护。
三、钢丝脆断钢丝脆断的原因是钢丝在冷却时,冷却速度过快,在钢丝局部或通条产生了脆性极大的马氏体组织。
例如,钢丝在正火热处理刚出加热炉时,钢丝若与水或与控制冷却装置的小管(管外为冷水)接触,就会产生马氏体组织。
钢丝在铅淬火处理时,向铅槽入口端覆盖的木炭粉洒水,若水接触到钢丝,也要产生马氏体组织。
四、钢丝通条性能不均其特征是整根钢丝沿长度方向力学性能不均,承受冷变形能力差。
产生钢丝通条性能不均的原因主要有停车卸线、设备运转不正常;或者是钢丝穿线时未及时将钢丝插入铅液;钢丝若采用电接触加热,电压波动也会造成钢丝性能不均。
1、钢管为什么要进行热处理?答:钢管作为一种产品必须具备一定的性能才能满足使用条件的需求。
改善钢的性能有两个途径,一是调整钢的化学成分,即合金化的方法;二是热处理及热处理和塑性变形相结合的办法。
在现代工业技术领域,热处理在改善钢的性能方面仍占据着主导地位。
钢管的种类繁多,并制定出了相应的标准,所使用的钢种千差万别,有时用户根据自身的需求还要增加附加条件。
在标准中,作为交货条件之一的性能指标必须达到规定要求。
钢管的性能只要指的是力学性能、物理性能、使用性能及工艺性能等。
而热处理则通过加热、保温及冷却使钢获得一定的金相组织和与之相对应的各种性能,以满足产品标准及用户的要求。
2、钢管在淬火后为什么要进行回火?答:钢管在淬火后一般很少直接使用,因为淬火后的组织是马氏体和残余奥氏体,并且有内应力产生,马氏体虽然强度、硬度高,但塑性差,脆性大,在内应力作用下容易产生变形和开裂;此外,淬火后组织是不稳定的,在室温下就能缓慢分解,产生体积变化而导致工件变形。
因此,淬火后的零件必须进行回火才能使用。
回火的目的是:(1)减少或消除淬火内应力;(2)稳定组织,稳定尺寸;(3)降低脆性、获得所需要的力学性能。
3、为什么钢管在步进炉(淬火炉)时间长了会弯曲?答:(1)闷炉时间过长没及时降温(2)踏步间隔长(3)管长方向温度不均,热应力导致弯曲(4)均热烧毁嘴下方的几个齿为负压,管子温降不均弯曲(5)炉压控制不对4、淬火时工件的氧化皮不掉怎么办?答:方法:(1)修磨:操作简单,设备成本低。
(2)粗磨。
理由:1、粗磨表面温度相对于粗车要小的多,对工件的热影响也小的多;2、便于发现轧制后出现的裂纹等缺陷;3、去掉缺陷、杂质提高淬火程度(3)粗车。
因为氧化是在原材料、锻造和产品淬火加热过程中产生的。
粗车可以去掉原材料和锻造工序产生的氧化,淬火加热时采用保护气氛(4)1.机加工;2.喷抛丸以上只是提供解决的方法,具体采用什么样的方法,根据现场设备情况和钢管的规格而定。
过热、过烧、脱碳以及氢脆的控制进铸造行业大圈,请扫二维码或长按二维码进入一、过热过热现象我们知道热处理过程中加热过热最易导致奥氏体晶粒的粗大,使零件的机械性能下降。
1.一般过热:加热温度过高或在高温下保温时间过长,引起奥氏体晶粒粗化称为过热。
粗大的奥氏体晶粒会导致钢的强韧性降低,脆性转变温度升高,增加淬火时的变形开裂倾向。
而导致过热的原因是炉温仪表失控或混料(常为不懂工艺发生的)。
过热组织可经退火、正火或多次高温回火后,在正常情况下重新奥氏化使晶粒细化。
2.断口遗传:有过热组织的钢材,重新加热淬火后,虽能使奥氏体晶粒细化,但有时仍出现粗大颗粒状断口。
产生断口遗传的理论争议较多,一般认为曾因加热温度过高而使MnS之类的杂物溶入奥氏体并富集于晶界,而冷却时这些夹杂物又会沿晶界析出,受冲击时易沿粗大奥氏体晶界断裂。
3.粗大组织的遗传:有粗大马氏体、贝氏体、魏氏体组织的钢件重新奥氏化时,以慢速加热到常规的淬火温度,甚至再低一些,其奥氏体晶粒仍然是粗大的,这种现象称为组织遗传性。
要消除粗大组织的遗传性,可采用中间退火或多次高温回火处理。
二、过烧过烧现象加热温度过高,不仅引起奥氏体晶粒粗大,而且晶界局部出现氧化或熔化,导致晶界弱化,称为过烧。
钢过烧后性能严重恶化,淬火时形成龟裂。
过烧组织无法恢复,只能报废。
因此在工作中要避免过烧的发生。
上图为硬铝合金2A12的过烧三、脱碳氧化钢在加热时,表层的碳与介质(或气氛)中的氧、氢、二氧化碳及水蒸气等发生反应,降低了表层碳浓度称为脱碳,脱碳钢淬火后表面硬度、疲劳强度及耐磨性降低,而且表面形成残余拉应力易形成表面网状裂纹。
加热时,钢表层的铁及合金与元素或介质(或气氛)中的氧、二氧化碳、水蒸气等发生反应生成氧化物膜的现象称为氧化。
高温(一般570度以上)工件氧化后尺寸精度和表面光亮度恶化,具有氧化膜的淬透性差的钢件易出现淬火软点。
为了防止氧化和减少脱碳的措施有:工件表面涂料,用不锈钢箔包装密封加热、采用盐浴炉加热、采用保护气氛加热(如净化后的惰性气体、控制炉内碳势)、火焰燃烧炉(使炉气呈还原性)上图标注位置为脱碳层四、氢脆氢脆现象高强度钢在富氢气氛中加热时出现塑性和韧性降低的现象称为氢脆。