七年级数学下册数据的分析平均数中位数众数平均数平均数
- 格式:ppt
- 大小:1.56 MB
- 文档页数:25
6.1 平均数、中位数、众数6。
1。
1 平均数第1课时平均数【知识与技能】在现实的情景中理解平均数的意义,认识平均数的优、缺点.【过程与方法】通过探究,使学生掌握平均数的概念,利用平均数解决一些实际问题。
【情感态度】培养学生对数学的感悟能力。
【教学重点】平均数的意义及平均数的计算.【教学难点】正确运用平均数处理一些实际问题.一、情景导入,初步认知在小学我们已经学过平均数,你能用平均数的知识解决下面的问题吗?某校有24人参加了“希望杯〞数学课外活动小组,分成三组进行竞争,在一次“希望杯〞初赛前进行了摸底考试,成绩如下:甲:80、79、81、82、90、85、94、98乙:90、83、78、84、82、96、97、80丙:93、82、97、80、88、83、85、83怎样比拟这次考试三个小组的数学成绩呢?解决这个问题我们只需要用到平均数,在小学我们学过平均数,但非常浅显,现在我们继续学习平均数,希望通过这节课的学习,同学们能加深对平均数概念的理解。
【教学说明】通过实际问题的导入,使学生初步感知平均数。
二、思考探究,获取新知1.一个小组10名同学的身高(单位:cm〕如下表所示:(1〕计算10名同学身高的平均数.〔2〕在数轴上标出表示这些同学的身高及其平均数。
〔3〕观察表示平均数的点与其他的点的位置关系,你能得出什么结论?解:(1〕平均数为:x=〔151+156+153+158+154+161+155+157+154+157〕÷10=155。
6(cm〕。
〔2)在数轴上为:(3)这些点都位于x两侧,不会都在平均数的一侧;x可以作为这组同学的身高的代表值,它反映了这组同学的身高的平均水平。
【归纳结论】平均数是一组数据的数值的代表值,它刻画了这组数据整体的平均水平。
2.某农业技术员试种了三个品种的棉花各10株,秋收时他清点了这30株棉花的结桃数并记录在下表,哪个品种更好?分析:平均数可以作为一组数据的数值的代表值,要比拟哪个品种较好,只要确定这三种棉花的平均结桃数就可以了。
第五讲、数据分析一、数据的代表(一)、(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。
注:如果有n 个数n x x x ,,,21 的平均数为x ,则①n ax ax ax ,,,21 的平均数为a x ; ②b x b x b x n +++,,,21 的平均数为x +b ; ③b ax b ax b ax n +++,,,21 的平均数为a x b +。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
(3)平均数的计算方法 ①定义法:当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=②加权平均数法:当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
③新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x '11=,a x x '22=,…,a x x n n '=。
)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
(4)算术平均数与加权平均数的区别与联系①联系:都是平均数,算术平均数是加权平均数的一种特殊形式(它特殊在各项的权相等,均为1)。
平均数、中位数和众数数学教案设计第一章:平均数的概念与计算1.1 导入:通过一个实际问题引入平均数的概念,如“小明身高1.4米,小华身高1.3米,他们的平均身高是多少?”1.2 讲解平均数的定义:平均数是一组数据的总和除以数据的个数。
1.3 演示计算平均数的方法:以一组具体的数据为例,展示如何计算平均数。
1.4 练习:让学生解决一些有关平均数的问题,巩固对平均数概念的理解。
第二章:中位数的概念与计算2.1 导入:通过一个实际问题引入中位数的概念,如“一组数据按照大小顺序排列,中间的那个数是什么?”2.2 讲解中位数的定义:中位数是一组数据按照大小顺序排列后,位于中间位置的数。
2.3 演示计算中位数的方法:以一组具体的数据为例,展示如何计算中位数。
2.4 练习:让学生解决一些有关中位数的问题,巩固对中位数概念的理解。
第三章:众数的概念与计算3.1 导入:通过一个实际问题引入众数的概念,如“一组数据中出现次数最多的数是什么?”3.2 讲解众数的定义:众数是一组数据中出现次数最多的数。
3.3 演示计算众数的方法:以一组具体的数据为例,展示如何计算众数。
3.4 练习:让学生解决一些有关众数的问题,巩固对众数概念的理解。
第四章:平均数、中位数和众数的应用4.1 导入:通过一个实际问题引入平均数、中位数和众数在生活中的应用,如“一家公司的员工工资如何通过平均数、中位数和众数来描述?”4.2 讲解平均数、中位数和众数在生活中的应用:解释平均数、中位数和众数在描述数据集中趋势方面的作用。
4.3 演示如何应用平均数、中位数和众数:以一组具体的数据为例,展示如何应用平均数、中位数和众数来描述数据。
4.4 练习:让学生解决一些有关平均数、中位数和众数应用的问题,巩固对这三个概念的理解。
第五章:综合练习与拓展5.1 设计一些综合性的练习题,让学生运用平均数、中位数和众数的概念和计算方法。
5.2 让学生进行小组讨论,探讨平均数、中位数和众数在实际生活中的应用,并提出自己的观点和例子。
章节测试题1.【答题】为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A. 众数是9B. 中位数是9C. 平均数是9D. 锻炼时间不低于9小时的有14人【答案】D【分析】此题根据众数,中位数,平均数的定义解答.【解答】由图可知,锻炼9小时的有18人,∴9在这组数中出现18次为最多,∴众数是9.把数据从小到大排列,中位数是第23位数,第23位是9,∴中位数是9.平均数是(7×5+8×8+9×18+10×10+11×4)÷45=9,∴平均数是9.由以上可知A、B、C都对,故D错.选D.2.【答题】已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A. a<13,b=13B. a<13,b<13C. a>13,b<13D. a>13,b=13【答案】A【分析】根据平均数的计算公式求出正确的平均数,再与原来的平均数进行比较,得出a的值,根据中位数的定义得出最中间的数还是13岁,从而选出正确答案.【解答】∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;选A.3.【答题】某班数学兴趣小组10名同学的年龄情况如下表:年龄(岁)12 13 14 15人数 1 4 4 1则这10名同学年龄的平均数和中位数分别是()A. 13.5,13.5B. 13.5,13C. 13,13.5D. 13,14【答案】A【分析】根据中位数及平均数的定义求解即可.【解答】将各位同学的成绩从小到大排列为:12,13,13,13,13,14,14,14,14,15,中位数是=13.5,平均数是=13.5.选A.4.【答题】在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A. 7B. 8C. 9D. 10【答案】B【分析】根据中位数的定义,把把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:7,8,8,8,9,10,最中间两个数的平均数是(8+8)÷2=8,则中位数是8.选B.5.【答题】为响应“节约用水”的号召,小刚随机调查了班级35名同学中5名同学家庭一年的平均用水量(单位:吨),记录如下:8,9,8,7,10,这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据按从小到大的顺序排列为:7,8,8,9,10,则中位数为:8,平均数为:=8.4.选B.6.【答题】一次数学模考后,李老师统计了20名学生的成绩.记录如下:有6人得了85分,有5人得了80分,有4人得了65分,有5人得了90分.则这组数据的中位数和平均数分别是()A. 82.5,82.5B. 85,81C. 82.5,81D. 85,82.5【答案】B【分析】根据中位数、平均数的定义分别列出算式,再进行计算即可.【解答】解:∵共有20个数,∴中位数是第10、11个数的平均数,∴中位数是(85+85)÷2=85;平均数是(85×6+80×5+65×4+90×5)=81;选B.7.【答题】一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10B. 10,12.5C. 11,12.5D. 11,10【答案】D【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.8.【答题】一组数据:0,1,2,3,3,5,5,10的中位数是()A. 2.5B. 3C. 3.5D. 5【答案】B【分析】根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.【解答】将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;选B.9.【答题】在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A. 47B. 48C. 48.5D. 49【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,由此计算即可.【解答】解:这组数据的中位数为=48.5.10.【答题】7位同学中考体育测试立定跳远成绩(单位:分)分别是:8,9,7,6,10,8,9,这组数据的中位数是()A. 6B. 8C. 9D. 10【答案】B【分析】把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,由此即可确定这组数据中位数.【解答】把这组数据从小到大排序后为6,7,8,8,9,9,10,其中第四个数据为8,∴这组数据的中位数为8.选B.11.【答题】数字1、2、5、3、5、3、3的中位数是()A. 1B. 2C. 3D. 5【答案】C【分析】将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】将数据从大到小排列为:1,2,3,3,3,5,5,则中位数是3.选C.12.【答题】数据0,1,1,3,3,4的中位数和平均数分别是()A. 2和2.4B. 2和2C. 1和2D. 3和2【答案】B【分析】根据中位数和平均数的定义求解即可.【解答】解:这组数据的中位数为:(1+3)÷2=2,平均数为:=2.选B.13.【答题】七(1)班的6位同学在一节体育课上进行引体向上训练时,统计数据分别为7,12,10,6,9,6则这组数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将该组数据按从小到大依次排列,找到位于中间位置的两个数,求出其平均数即为正确答案.【解答】解:将该组数据按从小到大依次排列为6,6,7,9,10,12,位于中间位置的数为7,9,其平均数为x==8,故中位数为8.选C.14.【答题】为了解长城小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:这40名居民一周体育锻炼时间的中位数是()A. 4小时B. 4.5小时C. 5小时D. 5.5小时【答案】C【分析】中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【解答】由统计表可知:统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.选C.15.【答题】下列数据3,2,3,4,5,2,2的中位数是()A. 5B. 4C. 3D. 2【答案】C【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.选C.16.【答题】某射击运动员在一次射击练习中,成绩(单位:环)记录如下:8,9,8,7,10.这组数据的平均数和中位数分别是()A. 8,8B. 8.4,8C. 8.4,8.4D. 8,8.4【答案】B【分析】根据平均数公式求解即可,即用所有数据的和除以5即可;5个数据的中位数是排序后的第三个数.【解答】解:8,9,8,7,10的平均数为×(8+9+8+7+10)=8.4.8,9,8,7,10排序后为7,8,8,9,10,故中位数为8.选B.17.【答题】一组数据:-1、2、1、0、3,则这组数据的平均数和中位数分别是()A. 1,0B. 2,1C. 1,2D. 1,1【答案】D【分析】根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】平均数=(-1+2+1+0+3)÷5=1;把这组数据按从大到小的顺序排列是:-1,0,1,2,3,故这组数据的中位数是:1.选D.18.【答题】爱华中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是()A. 200B. 210C. 220D. 240【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】题目中数据共有5个,按从小到大排列后为:200、200、210、220、240,位于最中间的一个数是210,∴这组数据的中位数是210;选B.19.【答题】一组数据:75、95、85、100、125的中位数是()A. 85B. 95C. 96D. 100【答案】B【分析】根据中位数的定义计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】按从小到大的顺序排列为:75,85,95,100,125,根据中位数的定义得;中位数是95.选B.20.【答题】一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A. 37B. 35C. 33.8D. 32【答案】B【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】先对这组数据按从小到大的顺序重新排序:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.选B.。
平均数中位数和众数的意义分别是什么平均数、中位数和众数是用于描述一组数据特征的统计学指标。
它们各自有着不同的意义和应用场景。
平均数指的是一组数据的所有数值之和除以数据个数,用来衡量数据的集中趋势。
平均数的意义在于能够给出一个数据集中值的一个估计,它可以作为一组数据的“典型值”来描述整体情况。
举个例子,如果你想知道一个班级学生成绩的集中趋势,你可以计算学生们的平均分数。
平均数的一个局限性是它容易受到极端值的影响,所以在分析数据时需要结合其他指标一起考虑。
中位数是按照一组数据的数值大小排列后位于中间位置的数值,用来描述数据的集中趋势。
中位数的意义在于它能够忽略掉数据集中的极端值,而更聚焦于数据的“中间值”。
也就是说,当数据集存在极端值时,中位数能够更好地反映出数据的典型特征。
举个例子,如果你想知道一个城市居民的收入水平,你可以计算这个城市居民的收入中位数,它能够给出一个更接近大多数人实际收入的值。
众数是在一组数据中出现次数最多的数值,用来描述数据的分布情况。
众数的意义在于它可以告诉我们数据集中的“最常见”的数值是什么。
举个例子,如果你要研究一家公司员工的职位水平分布,你可以计算员工职位的众数,从而了解公司中职位分布最为密集的层级。
众数可以帮助我们理解数据的分布情况,同时也可以用于分析数据的趋势和模式。
总结来说,平均数、中位数和众数三者各自有着不同的意义和应用场景。
平均数用来描述数据的集中趋势,中位数用来忽略极端值更准确地反映数据的典型特征,众数用来表示最常出现的数值,描述数据的分布情况。
在实际应用中,我们可以根据具体的问题选择合适的统计指标来分析数据,以更好地理解和解释数据的特征。
掌握平均数中位数和众数的计算统计学中有三个常用的统计量,分别是平均数、中位数和众数。
这三个统计量可以帮助我们更好地理解和分析数据。
本文将为您详细介绍如何计算平均数、中位数和众数,并通过例子进行说明。
一、平均数的计算方法平均数是一个数据集的所有数值之和除以数据个数,用于描述数据的集中趋势。
下面是计算平均数的步骤:1. 将数据集中的所有数值相加。
2. 将结果除以数据个数。
3. 得到的结果即为平均数。
例如,我们有一组数据集:2, 4, 6, 8, 10。
我们可以按照以下步骤计算平均数:1. 将所有数值相加:2 + 4 + 6 + 8 + 10 = 30。
2. 将结果除以数据个数:30 / 5 = 6。
3. 得到的结果6即为平均数。
二、中位数的计算方法中位数是一个数据集中的中间数,它将数据集按照大小排列后,中间位置上的数值就是中位数。
下面是计算中位数的步骤:1. 将数据集中的数值按照大小顺序排列。
2. 如果数据个数为奇数,中位数就是中间位置上的数值;如果数据个数为偶数,中位数是中间位置上的两个数值的平均数。
例如,我们有一组数据集:2, 4, 6, 8, 10。
我们可以按照以下步骤计算中位数:1. 将数据集按大小排列:2, 4, 6, 8, 10。
2. 数据个数为奇数,中位数是中间位置上的数值,即6。
三、众数的计算方法众数是指一个数据集中出现次数最多的数值,一个数据集可以有一个或多个众数。
下面是计算众数的步骤:1. 统计数据集中每个数值的出现次数。
2. 找出出现次数最多的数值。
例如,我们有一组数据集:2, 4, 6, 8, 10, 4。
我们可以按照以下步骤计算众数:1. 统计数据集中每个数值的出现次数:2(1次),4(2次),6(1次),8(1次),10(1次)。
2. 出现次数最多的数值是4,因此4是该数据集的众数。
综上所述,平均数、中位数和众数是三个常用的统计量,可以帮助我们更好地了解和分析数据。
通过计算平均数,我们可以得到数据集的集中趋势;通过计算中位数,我们可以了解数据集的中间位置上的数值;通过计算众数,我们可以找出数据集中出现次数最多的数值。
章节测试题1.【答题】在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如表:这些运动员跳高成绩的众数是()A. 1.55B. 1.60C. 1.65D. 1.70【答案】D【分析】根据众数的定义找出出现次数最多的数即可.【解答】∵1.70出现了5次,出现的次数最多,∴这些运动员跳高成绩的众数是1.70;选D.2.【答题】小明记录某社区七次参加“防甲型H1N1流感活动”的人数分别如下:33,32,32,31,32,28,26.这组数据的众数是()A. 28B. 31C. 32D. 33【答案】C【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】在这一组数据中32是出现次数最多的,故众数是32.选C.3.【答题】一组数据:2,6,2,8,4,2的众数是()A. 8B. 6C. 4D. 2【答案】D【分析】众数是指一组数据中出现次数最多的数据.【解答】数据2,6,2,8,4,2中,2出现了3次,出现的次数最多,∴这组数据的众数是2.选D.4.【答题】某学习小组7个男同学的身高(单位:米)为:1.66,1.65,1.72,1.58,1.64,1.66,1.70,那么这组数据的众数为()A. 1.65B. 1.66C. 1.67D. 1.70【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】1.66出现两次,出现的次数最多,1.66为众数.选B.5.【答题】学业考试体育测试结束后,某班体育委员将本班50名学生的测试成绩制成如下的统计表.这个班学生体育测试成绩的众数是()A. 30分B. 28分C. 25分D. 10分【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】总共50个数据,出现次数最多的有28分为10人次,因此众数为28分.选B.6.【答题】数据:1,2,2,3,5的众数是()A. 1B. 2C. 3D. 5【答案】B【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】众数是一组数据中出现次数最多的数,此题中1,3,5各出现了一次,2出现了两次,∴这组数据的众数是2.选B.7.【答题】在数据1、3、5、5、7中,中位数是()A. 3B. 4C. 5D. 7【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:1、3、5、5、7,则中位数为:5.选C.8.【答题】数据4,5,8,6,4,4,6的中位数是()A. 3B. 4C. 5D. 6【答案】C【分析】根据中位数的概念求解.【解答】这组数据按照从小到大的顺序排列为:4,4,4,5,6,6,8,则中位数为:5.选C.9.【答题】从某校九年级中随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分,5分.将测量的结果制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些学生分数的中位数是()A. 1B. 2C. 3D. 4【答案】C【分析】首先利用扇形图以及条形图求出总人数,进而求得每个小组的人数,然后根据中位数的定义求出这些学生分数的中位数.【解答】总人数为6÷10%=60(人),则2分的有60×20%=12(人),4分的有60-6-12-15-9=18(人),第30与31个数据都是3分,这些学生分数的中位数是(3+3)÷2=3.选C.10.【答题】气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A. 24B. 22C. 20D. 17【答案】C【分析】先把这组数据从小到大排列,再找出最中间的数即可.【解答】把这组数据从小到大排列为:17、17、20、22、24,最中间的数是20,则这组数据的中位数是20;选C.11.【答题】在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是()A. 3元B. 5元C. 6元D. 10元【答案】B【分析】根据中位数的定义,结合所给数据即可得出答案.【解答】将数据从小到大排列为:3,5,5,5,5,6,6,10,中位数为:5.选B.12.【答题】孔明同学参加暑假军事训练的射击成绩如下表:射击次序第一次第二次第三次第四次第五次成绩(环)9 8 7 9 6则孔明射击成绩的中位数是()A. 6B. 7C. 8D. 9【答案】C【分析】将数据从小到大排列,根据中位数的定义即可得出答案.【解答】将数据从小到大排列为:6,7,8,9,9,中位数为8.选C.13.【答题】如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额60 28 24 23 14 16 15 5下列结论不正确的是()A. 2009年恩施州固定资产投资总额为200亿元B. 2009年恩施州各单位固定资产投资额的中位数是16亿元C. 2009年来凤县固定资产投资额为15亿元D. 2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°【答案】D【分析】利用建始县的投资额÷所占百分比可得总投资额;利用总投资额减去各个县市的投资额可得来凤县固定资产投资额,再根据中位数定义可得2009年恩施州各单位固定资产投资额的中位数;利用360°×可得圆心角,进而得到答案.【解答】解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200-60-28-25-23-14-16-15-5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;选D.14.【答题】端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是()A. 22B. 24C. 25D. 27【答案】B【分析】根据中位数的定义把这组数据从小到大排列,找出最中间的数即可.【解答】把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;选B.15.【答题】如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A. 27B. 29C. 30D. 31【答案】C【分析】根据中位数的定义求解即可.【解答】将这组数据从小到大排列为;26,27,30,31,31,∴这组数据的中位数是30,选C.16.【答题】某中学篮球队13名队员的年龄情况如下:则这个队队员年龄的中位数是()A. 15.5B. 16C. 16.5D. 17【答案】B【分析】根据中位数的定义,把13名同学按照年龄从小到大的顺序排列,找出第7名同学的年龄就是这个队队员年龄的中位数.【解答】根据图表,第7名同学的年龄是16岁,∴,这个队队员年龄的中位数是16.选B.17.【答题】数据5,7,5,8,6,13,5的中位数是()A. 5B. 6C. 7D. 8【答案】B【分析】将该组数据按从小到大排列,找到位于中间位置的数即可.【解答】将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.选B.18.【答题】我们知道:一个正整数p(p>1)的正因数有两个:1和p,除此之外没有别的正因数,这样的数p称为素数,也称质数.如图是某年某月的日历表,日期31个数中所有的素数的中位数是()A. 11B. 12C. 13D. 17【答案】C【分析】先根据素数的定义找出日历表中的素数,然后根据中位数的概念求解即可.【解答】根据素数的定义,日历表中的素数有:2、3、5、7、11、13、17、19、23、29、31,共11个,∴这组数据的中位数是13.选C.19.【答题】王先生在“六一”儿童期间,带小孩到凤凰古城游玩,出发前,他在网上查到从5月31日起,凤凰连续五天的最高气温分别为:24,23,23,25,26(单位:℃),那么这组数据的中位数是()A. 23B. 24C. 25D. 26【答案】B【分析】根据中位数的求法,将5个数字从大到小排列,找出中间的数即为中位数.【解答】将5个数字从大到小排列为23、23、24、25、26,最中间为24.∴中位数为24.选B.20.【答题】数据2,-l,0,1,2的中位数是()A. 1B. 0C. -1D. 2【答案】A【分析】将数据按从小到大依次排列,由于数据有奇数个,故中间位置的数即为中位数.【解答】解:将数据2,-l,0,1,2按从小到大依次排列为-l,0,1,2,2,中位数为1.选A.。
第2课时加权平均数【知识与技能】体会“权”的差异对平均数的影响,算术平均数和加权平均数的联系与区别,能应用加权平均数解释现实生活中的一些简单现象,并能用它解决一些实际问题.【过程与方法】通过独立思考和小组讨论获得基本数学活动经验和交流合作的能力.【情感态度】进一步增强统计意识和数学应用能力,体会数学与自然及人类社会的密切联系,了解数学的价值,加深对数学的理解和学好数学的信心.【教学重点】“权”的意义和加权平均数的计算.【教学难点】“权”的意义和加权平均数的计算.一、情景导入,初步认知1.数据2、3、4、1.5的平均数是______.2.一次数学测验中,3名同学的数学成绩分别是60,80和100分,则他们的平均成绩是多少?3.平均数有什么意义?【教学说明】通过回顾旧知让学生对将要学习的知识在心理上产生亲近感,并做好接受新知识的准备.二、思考探究,获取新知1.学校举行运动会,入场式中有七年级的一个队列,已知这个队共有100人,每行10人,其中前面两行同学的平均身高都是160厘米,接着3行同学的平均身高都是155厘米,最后5行同学的平均身高都是150厘米.怎样求这个队列的平均身高?解:(1)我们可以把这100名同学的身高加起来再除以100,就是平均身高.你还有其它的计算办法吗?(2)这组数据中有许多相同的数,相同的数求和可以用乘法来计算.所以可以这样来计算他们的平均身高:x =(160×20+155×30+150×50)÷100=160×20100+155×30100+150×50100=160×0.2+155×0.3+150×0.5 =153.5(cm).【教学说明】通过此问题让学生意识到以前学的简单的算术平均数已经解决不了现在的问题,从而需要学习新的知识来解决此类问题.2.在上面的算式中,0.2,0.3,0.5分别是160,155,150这三个数在数据组中所占的比例,分别称它们为这三个数的权数.160的权数是0.2; 155的权数是0.3; 150的权数是0.5.153.5是160、155、150分别以0.2、0.3、0.5为权的加权平均数. 思考:一组数据中所有的权的和是多少?“权”可以是百分数或者分数吗? 3.有一组数据如下:1.60、1.60、1.60、1.64、1.64、1.68、1.68、1.68 (1)计算这组数据的平均数.(2)这组数据中1.60、1.64、1.68的权分别是多少?求出这组数据的加权平均数. (3)这组数据的平均数和加权平均数有什么关系? 解:(1)这组数据的平均数为1.603 1.642 1.6838⨯+⨯+⨯=1.64.(2)1.60的权数为38,1.64的权数是14,1.68的权为38.这组数据的加权平均数为:3131.60 1.64 1.68848⨯+⨯+⨯=1.64.(3)这组数据的平均数和加权平均数相等,意义也恰好完全相同,但我们不能把求加权平均数看成是求平均数的简便运算,在许多实际问题中,权数及相应的加权平均数都有特殊的含义,平均数可看作是权数相同的加权平均数.【教学说明】通过此例题,加深学生对每个数据相对应的“权”的理解.并且应用加权平均数来解决实际问题,在学生解答之后出示解题过程,可以让学生养成规范的解题习惯.三、运用新知,深化理解1.见教材P141例1.2.如果一组数据x1,x2,x3,x4的平均数是x,那么另一组数据x1,x2+1,x3+2,x4+3的平均数是(C)A.xB.x+1C.x+1.5D.x+63.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电(C)A.41度B.42度C.45.5度D.46度4.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克(B)A.6.7元B.6.8元C.7.5元D.8.6元5.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.统计数据如下表:请根据以上数据回答:(1)50户居民每天丢弃废旧塑料袋的平均个数是___个.(2)该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约____万个.解:3.7;3.7.6.某班进行个人投篮比赛,下表记录了在规定时间内投进n个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?解:设投进3个球的人数为a,投进4个球的人数为b,根据已知有答:投进3个球的人数为9人,投进4个球的人数为3人.7.某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序组织200名职工利用投票推荐的方式对三人进行民主评议,三人得票(没有弃权票,每位职工只能推荐1人)如下图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人的成绩,那么谁将被录用?解:(1)甲、乙、丙的民主评议得分分别为:50分,80分,70分.(2)甲的平均成绩为:75935021872.6733++=≈ (分),乙的平均成绩为:80708023033++=≈76.67(分), 丙的平均成绩为:90687022833++=≈76.00(分). 由于76.67>76>72.67,所以候选人乙将被录用.(3)如果将理论考试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:475393350433⨯+⨯+⨯++ =72.9(分),乙的个人成绩为:480370380433⨯+⨯+⨯++ =77(分),丙的个人成绩为:490368370433⨯+⨯+⨯++ =77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.【教学说明】考查学生的综合学习能力和灵活运用新知的能力. 四、师生互动,课堂小结 1.本节课你收获了什么?2.“权”的意义是什么?如何计算加权平均数?3.它与我们的生活息息相关.1.布置作业:教材第147页“习题6.1”中第1、3题.2.完成同步练习册中本课时的练习.本节课问题设置层层递进让学生感到本节课内容易于理解和掌握,先独立思考而后再小组合作突破难点.反思这一堂课,发现我在平均数教学过程中对概念忽略了,认为这一节内容只需要掌握计算方法即可,其实这不对,概念的学习是一个长效性的过程,概念虽然简单,但不留给学生充分的时间去消化理解,一些稍变化一些的题型都会让学生无所适从.所以,这部分教材处理仍然要注意不能过于“一带而过”,学习平均数概念不是目的,关键在于让学生学会学习概念的方法,一个数学概念的形成是需要时间的.第五章一元一次方程1 认识一元一次方程第1课时认识一元一次方程【知识与技能】1.理解一元一次方程,方程的解等概念.2. 会根据具体问题列一元一次方程.【过程与方法】通过实际问题建立方程模型,归纳一元一次方程的概念,培养学生的认知能力和归纳概括能力.【情感态度】结合本课教学特点,向学生进行理想主义教育和热爱学习教育,激发学生学习的兴趣. 【教学重点】建立一元一次方程的概念,会根据具体问题列出一元一次方程.【教学难点】根据具体问题中的等量关系,列出一元一次方程.一、情境导入,初步认识教材第130页最上方的彩图如果设小彬的年龄为x岁,那么“乘2再减5”就是_________,因此可以得到方程:__________________.【教学说明】学生根据两人的对话找出相等关系,列出方程,初步体会根据实际问题建立方程模型的思想.二、思考探究,获取新知1.列方程问题1 (1)小颖种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm.大约几周后树苗长高到1m?如果设周后树苗长高到1m,那么可以得到方程:__________________.(2)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每小时比原计划多行走1km,因此提前12min到达乙地,张叔叔原计划每小时行走多少千米?设张叔叔原计划每小时行走x km,可以得到方程:__________________.(3)根据第六次全国人口普查统计表数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8930人,与2000年第五次全国人口普查相比增长了147.30%.2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程:__________________.(4)某长方形操场上的面积是5850m 2,长和宽之差为25m,这个操场的长与宽分别是多少米?如果设这个操场的宽为x m ,那么长为(x +25)m ,由此可以得到方程__________________.【教学说明】 学生根据题意,找出相等关系列出方程,进一步体会方程建模思想. 【归纳结论】 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学知识解决实际问题的一种常用方法.2.一元一次方程及方程的解问题2 (1)由上面的问题你得到了哪些方程?其中哪些是你熟悉的方程? (2)方程2x -5=21,40+5x =100,x (1+147.30%)=8930有什么共同点?【教学说明】 学生通过观察,与同伴进行交流,找出这些方程的共同点,归纳一元一次方程的概念.【归纳结论】 在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程.使方程左、右两边的值相等的未知数的值,叫做方程的解. 三、运用新知,深化理解1.下列各式中,是一元一次方程的有________(填序号) . (1)833x =+;(2)8x -;(3)1=2x +2;(4)5x 2=20;(5)x +y =8. 2.如果3x n –1=2是关于x 的一元一次方程,那么n =________.3.x =2________方程4x –1=3的解.(填“是”或“不是”)4.小刚准备用自己节省零花钱购买一台MP4来学习英语,他已存有50元,并计划从本月起每月节省30元,直到他有260元.设x 个月后小刚有260元,则可列出计算月数的方程为( )A.30x +50=260B.30x – 50=260C.x – 50=260D.x +50=260【教学说明】 学生自主完成,加深对新学知识的理解.检测对一元一次方程和方程的求解的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(1)(3) 2. 2 3.不是 4.A 四、师生互动,课堂小结1.师生共同回顾一元一次方程,方程的解的概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教学引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题5.1”中选取.2.完成练习册中本课时的相应作业.本节课学生从实际问题中找出相等关系,列出方程,要了解一元一次的概念,运用等式的性质解一元一次方程培养学生动手、动脑习惯,激发学生学习的兴趣.6.1平方根第1课时算术平方根【知识与技能】1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算或计算器求某些非负数的算术平方根. 【过程与方法】通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.【情感态度】通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和学习兴趣.【教学重点】理解算术平方根的概念.【教学难点】根据算术平方根的概念正确求出非负数的算术平方根.一、情境导入,初步认识教师出示下列问题1,并引导学生分析.问题1由学生直接给出结果.问题1 求出下列各数的平方.1,0,(-1),-1/3,3,1/2.问题2下列各数分别是某实数的平方,请求出某实数.25,0,4,4/25,1/144,-1/4,1.69.对学生进行提问,针对学生可能会得出的一个值,由学生互相交流指正,再由教师指明正确的考虑方式.由于52=25,(-5)2=25,故平方为25的数为5或-5.02=0,故平方为0的数为0.22=4,(-2)=4,故平方为4的数为2或-2.问题3 学校要举行美术比赛,小壮想裁一块面积为25dm2的正方形画布画一幅画,这块画布的边长应取多少?分析:本题实质是要求一个平方后得25的数,由上面的讨论可知这个数为±5,但考虑正方形的边长不能为负数,所以正方形边长应取5dm.二、思考探究,获取新知教师归纳出新定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a,读作“根号a”,a叫作被开方数.规定:0的算术平方根是0.例1求下列各数的算术平方根.分析:正数的算术平方根是正数,零的算术平方根是零,负数没有算术平方根.【教学说明】(1)算术平方根是非负数,要注意不要弄错算术平方根的符号.如:不要把23-)(=3写成23-)(=-3;(2)要审清题意,不要被表面现象迷惑.如求81的算术平方根,错误地理解为求81的算术平方根81.探究:当a 为负数时,a 2有没有算术平方根?其算术平方根与a 有什么关系?举例说明所得结论.【教学指导】当a 为负数时,a 2为正数,故a 2有算术平方根,如a=-5时,a 2=(-5)2=25,252 a =5,5是-5的相反数,故a<0时,a 2的算术平方根与a 互为相反数,表示为-a.当a 2为正数时,a 的算术平方根表示为2a ,其值为a,即2a =a.当a=0时, 2a =0.【教学说明】应用上述结论解题时,可如例题的解答写出过程,熟练后再直接写出结果.对2a 结果的讨论,可以检验学生是否真正理解了算术平方根的含义.学生中出现的问题,可由学生间交流讨论.教师向学生介绍用计算器求算术平方根的方法,并由学生实际运用,体会方法.三、运用新知,深化理解【教学说明】学生自主探究,教师巡视,了解学生对本节课知识的掌握情况,及时予以指导,帮助学生巩固新知.【答案】1.A 2.A 3.D四、师生互动,课堂小结1.读一读本节课学习的主要内容,说出平方根与平方的关系.2.算术平方根的意义是什么样的?3.怎样求一个正数的算术平方根?【教学说明】小组间学生互相交流并总结.1.布置作业:从教材“习题6.1”中选取.2.完成练习册中本课时的练习.本课时采用观察、思考、讨论等探究活动归纳得出相应结论,使学生感受到算术平方根的概念与以前学过的求一个数的平方之间的联系.教学时应注意让学生通过探究活动经历一个由特殊到一般的认识过程,从而更好地接受新知识.。
众数、中位数、平均数的特点及其应用-概述说明以及解释1.引言1.1 概述概述在统计学和数据分析领域,众数、中位数和平均数是常用的统计指标,用于描述和分析数据集的集中趋势。
它们可以帮助我们理解数据的分布情况,并从中提取有用的信息。
本文将重点介绍众数、中位数和平均数的特点及其应用。
众数是指在一组数据中出现频率最高的数值。
它可以用来反映数据的集中程度,并且适用于各种数据类型。
众数的计算相对简单,只需要统计每个数值出现的次数,然后找出出现次数最多的数值即可。
众数在实际应用中常用于描述一组数据的典型取值,如民意调查中的最受欢迎的候选人、销售数据中最畅销的产品等。
中位数是将一组数据按照大小排序后位于中间位置的数值。
它不受极值的影响,更能反映数据的中间位置。
计算中位数的方法相对直观,只需要将数据排序,并确定中间位置的数值即可。
中位数在实际应用中常用于描述数据的中间水平,如家庭收入的中位数可以反映社会的平均收入水平,股票价格的中位数可以反映市场的平均估值水平等。
平均数是指一组数据的总和除以数据的个数,是最常用的统计指标之一。
它可以反映数据的整体水平,并且易于计算和理解。
平均数的计算非常简单,只需要将所有数值相加,然后除以数值的个数即可。
平均数在实际应用中广泛用于描述数据的均值水平,如平均工资可以反映一个地区的平均收入水平,平均成绩可以反映一个班级的整体学习水平等。
众数、中位数和平均数在统计分析中扮演着重要的角色,并且在不同领域有着广泛的应用。
它们能够提供关于数据集的集中趋势、分布形态和离散程度等信息,帮助我们理解数据背后的规律和趋势。
同时,在决策和预测中,这些统计指标也能够提供有用的参考,帮助我们做出更准确的判断和预测。
本文将详细介绍众数、中位数和平均数的特点及其应用,并探讨它们在实际生活中的意义和作用。
通过对这些统计指标的深入了解和应用,我们可以更好地应对数据分析和决策问题,并为未来的研究和实践提供更多的启示和方向。