专题:点电荷形成的电场中的场强和电势分布特点
- 格式:ppt
- 大小:2.45 MB
- 文档页数:24
几种典型电场线分布示
意图及场强电势的特点
文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-MG129]
所示。
②等量异种点电荷电场中的等势面:是两簇对称曲面,如图2所示。
③等量同种点电荷电场中的等势面:是两簇对称曲面,如图3所示。
④匀强电场中的等势面是垂直于电场线的一簇平面,如图4所示。
⑤形状不规则的带电导体附近的电场线及等势面,如图5所示。
注意:带方向的线表示电场线,无方向的线表示等势面。
图中的等势“面”画成了线,即以“线”代“面”。
所示。
④匀强电场中的等势面是垂直于电场线的一簇平面,如图4所示。
⑤形状不规则的带电导体附近的电场线及等势面,如图5所示。
注意:带方向的线表示电场线,无方向的线表示等势面。
图中的等势“面”画成了线,即以“线”代“面”。
匀强电场等量异种点电荷的电场等量同种点电荷的电场 - - - - 点电荷与带电平+孤立点电荷周围的电场 几种典型电场线分布示意图及场强电势特点表重点一、场强分布图二、列表比较下面均以无穷远处为零电势点,场强为零。
孤立的正点电荷 电场线直线,起于正电荷,终止于无穷远。
场强 离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越低;与场源电荷等距的各点组成的球面是等势面,每点的电势为正。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
孤立的负点电荷 电场线 直线,起于无穷远,终止于负电荷。
场强离场源电荷越远,场强越小;与场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越高;与场源电荷等距的各点组成的球面是等势面,每点的电势为负。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量电场大部分是曲线,起于正电荷,终止于无穷远;有两条同种正点电荷线电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同种正点电荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最高,由中点至无穷远处逐渐降低至零。
等量异种点电荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。
电势中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。
连线上场强以中点最小不等于零;关于中点对称的任意两点场强大小相等,方向相同,都是由正电荷指向负电荷;由连线的一端到另一端,先减小再增大。
电势由正电荷到负电荷逐渐降低,中点电势为零。
中垂线上场强以中点最大;关于中点对称的任意两点场强大小相等,方向相同,都是与中垂线垂直,由正电荷指向负电荷;由中点至无穷远处,逐渐减小。
电势中垂面是一个等势面,电势为零(以无穷远处为零电势点,场强为零)(以无穷远处为零电势点,场强为零)注意:电场线、等势面的特点和电场线与等势面间的关系:①电场线的方向为该点的场强方向,电场线的疏密表示场强的大小。
关于等量点电荷周围场强和电势的分布特点作者:田军来源:《试题与研究·教学论坛》2017年第24期等量点电荷在空间的场强分布比较复杂,但在两条线(点电荷连线及其中垂线)上仍有其规律性,为研究方便,设它们带电量为Q,两电荷连线AB长度为L,中点为O。
一、等量的同种电荷形成的电场的特点1.场强特点①两点电荷连线上:任取一点P,设AP长度为x,则P点场强EP为两点电荷在该点的场强EA、EB的矢量和,方向沿AB连线,O点左侧从A指向B,右侧从B指向A(沿两电荷连线指向较远一侧电荷,若两电荷为等量负电荷则反之)。
P点电场强度大小知:EP=,∴当x=时,EP=0,即在两电荷连线中点O处场强最小,从O点向两侧逐渐增大,数值关于O点对称,方向相反。
②两点电荷连线的中垂线上:在O点两侧,电场强度方向均沿中垂线方向从O点指向无限远(若两电荷为等量负电荷则反之),由极限分析法易得:在O点处,E=0;在距O点无限远处,E=0。
说明中间某位置有极大值,可见:合电场强度的大小随着距O点的距离增大,先从零增大到最大,然后逐渐减小。
在中垂线上,任取一点P,设OP=x,由点电荷场强公式,P 点场强EP=2EAcosθ==运用数学方法,令y=,求导可得:y=令y′=0,则x2+2=3x2x2+2,即x2+2=3x2,∴当x=±L时,EP有最大值,∴从中点沿中垂线向两侧,电场强度的数值先增大后减小,两侧方向相反,关于O点对称的点数值相等。
2.电势特点①中点O点处的电势:φO=φA+φB=4>0②两点电荷连线上任意一点P处的电势:总结:在两个等量正电荷的连线上,由A点向B点方向,电势先减后增,在rA=R/2(即中点O处)电势最小,但电势总为正。
③两点电荷连线的中垂线上任意一点Q处的电势:总结:在两个等量正电荷的连线的中垂线上,由O点向N(M)点方向,电势一直减小且大于零,即O点最大,N(M)点为零。
二、等量的异种电荷形成的电场的特点1.场强特点①两电荷连线上任取一点G,设AG长度为x,则G点场强EG为两点电荷分别在该点的场强EA、EB的矢量和,方向从A指向B(由正电荷指向负电荷一侧),由点电荷场强公式知:∵x+(L-x)等于定值L,∴当x=(L-x),即x=时,x与(L-x)乘积最大,EG有最小值,即在两电荷连线中点O处场强最小,从O点向两侧逐渐增大,数值关于O点对称。
等量的点电荷形成的电场中的场强和电势特点一. 等量的同种电荷形成的电场的特点(以正电荷形成的场为例)设两点电荷的带电量均为q,间距为R,向右为正方向1.场强特点:在两个等量正电荷的连线上,由A点向B点方向,电场强度的大小先减后增,即中点O处, 场强最小为0;场强的方向先向右再向左, 除中点O外,场强方向指向中点O在两个等量正电荷连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减;场强的方向由O点指向N(M)。
外推等量的两个负电荷形成的场结论:在两个等量负电荷的连线上,由A点向B点方向,电场强度的大小先减后增,中点O处, 场强最小为零;场强的方向先向左再向右(除中点O外)。
在等量负电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减,场强的方向由N(M)指向O点2.电势特点:在两个等量正电荷的连线上,由A点向B点方向,电势先减后增,中点O处, 电势最小,但电势总为正。
在两个等量正电荷的连线的中垂线上,由O点向N(M)点方向,电势一直减小且大于零,即O点最大,N(M)点为零外推等量的两个负电荷形成的场在两个等量负电荷连线上,由A点向B点方向,电势先增后减,在中点O处, 电势最大但电势总为负;在两个等量负电荷连线的中垂线上,由O点向N(M)点方向,电势一直增大且小于零,即O点最小,N(M)点为零二:等量的异种电荷形成的电场的特点1.场强特点在两个等量异种电荷的连线上,由A点向B点方向,电场强度的大小先减小后增大,中点O处场强最小;场强的方向指向负电荷在两个等量异种电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小一直在减小;场强的方向平行于AB连线指向负电荷一端2.电势特点:在两个等量异种电荷的连线上,由A点向B点方向,电势一直在减小,中点O处电势为零,正电荷一侧为正势,负电荷一侧为负势。
等量异种电荷连线的中垂线上任意一点电势均为零即等量异种电荷的连线的中垂线(面)是零势线(面)库仑定律内容表述:真空中两个静止点电荷之间的相互作用力的大小跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上公式: 静电力常量:k = 9.0×109 N·m2/C2库仑定律适用条件:真空中,点电荷点电荷——理想化模型,实际上是不存在的.但只要带电体本身的大小跟它们之间的距离相比可以忽略,带电体就可以看作点电荷.并非是体积小就能当点电荷(理想化研究方法)启示与小结:可以看出,万有引力公式和库仑定律公式在表面上很相似,只有质量和电荷量的区别,体现了科学的一种对称美,它们的实质区别是:首先万有引力公式计算出的力只能是相互吸引的力,绝没有相排斥的力.其次,由计算结果看出,电子和质子间的万有引力比它们之间的静电引力小的很多,因此在研究微观带电粒子间的相互作用时,主要考虑静电力,万有引力虽然存在,但相比之下非常小,所以可忽略不计电场:是力的作用媒介:电荷之间的相互作用是通过特殊形式的物质——电场发生的,电荷的周围都存在电场,电场的物质性是客观存在的,具有物质的基本属性——质量和能量。
匀强电等量异种点电荷的等量同种点电- - - 点电荷及带+孤立点电荷周围 几种典型电场线分布示意图及场强电势特点表一、场强分布图二、列表比较 下面均以无穷远处为零电势点,场强为零。
孤立的 正点电荷电场线直线,起于正电荷,终止于无穷远。
场强离场源电荷越远,场强越小;及场源电荷等距的各点组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越低;及场源电荷等距的各点组成的球面是等势面,每点的电势为正。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
孤立的 电场线直线,起于无穷远,终止于负电荷。
场强 离场源电荷越远,场强越小;及场源电荷等距的各点负点电荷组成的球面上场强大小相等,方向不同。
电势离场源电荷越远,电势越高;及场源电荷等距的各点组成的球面是等势面,每点的电势为负。
等势面以场源电荷为球心的一簇簇不等间距的球面,离场源电荷越近,等势面越密。
等量同种负点电荷电场线大部分是曲线,起于无穷远,终止于负电荷;有两条电场线是直线。
电势每点电势为负值。
连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是背离中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先升高再降低,中点电势最高不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向中点;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
电势中点电势最低,由中点至无穷远处逐渐升高至零。
等量同电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势每点电势为正值。
种正点电荷连线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都是指向中点;由连线的一端到另一端,先减小再增大。
电势由连线的一端到另一端先降低再升高,中点电势最低不为零。
中垂线上场强以中点最小为零;关于中点对称的任意两点场强大小相等,方向相反,都沿着中垂线指向无穷远处;由中点至无穷远处,先增大再减小至零,必有一个位置场强最大。
等量的点电荷形成的电场中的场强和电势特点一. 等量的同种电荷形成的电场的特点(以正电荷形成的场为例)设两点电荷的带电量均为q,间距为R,向右为正方向1.场强特点:在两个等量正电荷的连线上,由A点向B点方向,电场强度的大小先减后增,即中点O处, 场强最小为0;场强的方向先向右再向左, 除中点O外,场强方向指向中点O在两个等量正电荷连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减;场强的方向由O点指向N(M)。
外推等量的两个负电荷形成的场结论:在两个等量负电荷的连线上,由A点向B点方向,电场强度的大小先减后增,中点O处, 场强最小为零;场强的方向先向左再向右(除中点O外)。
在等量负电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小先增后减,场强的方向由N(M)指向O点2.电势特点:在两个等量正电荷的连线上,由A点向B点方向,电势先减后增,中点O处, 电势最小,但电势总为正。
在两个等量正电荷的连线的中垂线上,由O点向N(M)点方向,电势一直减小且大于零,即O点最大,N(M)点为零外推等量的两个负电荷形成的场在两个等量负电荷连线上,由A点向B点方向,电势先增后减,在中点O处, 电势最大但电势总为负;在两个等量负电荷连线的中垂线上,由O点向N(M)点方向,电势一直增大且小于零,即O点最小,N(M)点为零二:等量的异种电荷形成的电场的特点1.场强特点在两个等量异种电荷的连线上,由A点向B点方向,电场强度的大小先减小后增大,中点O处场强最小;场强的方向指向负电荷在两个等量异种电荷的连线的中垂线上,由O点向N(M)点方向,电场强度的大小一直在减小;场强的方向平行于AB连线指向负电荷一端2.电势特点:在两个等量异种电荷的连线上,由A点向B点方向,电势一直在减小,中点O处电势为零,正电荷一侧为正势,负电荷一侧为负势。
等量异种电荷连线的中垂线上任意一点电势均为零即等量异种电荷的连线的中垂线(面)是零势线(面)库仑定律内容表述:真空中两个静止点电荷之间的相互作用力的大小跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上公式: 静电力常量:k = 9.0×109 N·m2/C2库仑定律适用条件:真空中,点电荷点电荷——理想化模型,实际上是不存在的.但只要带电体本身的大小跟它们之间的距离相比可以忽略,带电体就可以看作点电荷.并非是体积小就能当点电荷(理想化研究方法)启示与小结:可以看出,万有引力公式和库仑定律公式在表面上很相似,只有质量和电荷量的区别,体现了科学的一种对称美,它们的实质区别是:首先万有引力公式计算出的力只能是相互吸引的力,绝没有相排斥的力.其次,由计算结果看出,电子和质子间的万有引力比它们之间的静电引力小的很多,因此在研究微观带电粒子间的相互作用时,主要考虑静电力,万有引力虽然存在,但相比之下非常小,所以可忽略不计电场:是力的作用媒介:电荷之间的相互作用是通过特殊形式的物质——电场发生的,电荷的周围都存在电场,电场的物质性是客观存在的,具有物质的基本属性——质量和能量。
等势面:一、定义:电场中电势相等的点构成的面 二、等势面的性质:① 在同一等势面上各点电势相等,所以在同一等势面上移动电荷,电场力不做功 ② 电场线跟等势面一定垂直,并且由电势高的等势面指向电势低的等势面。
③ 等势面越密,电场强度越大 ④ 等势面不相交,不相切三、等势面的用途:由等势面描绘电场线,判断电场中电势的高低。
四、几种电场的电场线及等势面① 点电荷电场中的等势面:以点电荷为球心的一簇球面如图l 所示。
② 等量异种点电荷电场中的等势面:是两簇对称曲面,如图2所示。
③ 等量同种点电荷电场中的等势面:是两簇对称曲面,如图3所示。
④ 匀强电场中的等势面是垂直于电场线的一簇平面,如图4所示。
⑤ 形状不规则的带电导体附近的电场线及等势面,如图5所示。
注意:带方向的线表示电场线,无方向的线表示等势面。
图中的等势“面”画成了线,即以“线”代“面”。
等 量 异 种 点 电 荷电场线大部分是曲线,起于正电荷,终止于负电荷;有三条电场线是直线。
电势 中垂面有正电荷的一边每一点电势为正,有负电荷的一边每一点电势为负。
连 线 上 场强 中点E 最小且不等于零;关于中点对称的点E 大小相等,方向相同,E 方向由正电荷指向负电荷;由连线的一端到另一端,E 先减小再增大。
电势 由正电荷到负电荷逐渐降低,中点电势为零。
中 垂 线 上场强 中点E 最大且不等于零;关于中点对称的点E 大小相等,方向相同,且都与中垂线垂直由正电荷指向负电荷;由中点至无穷远处,逐渐减小。
电势中垂面是一个等势面,电势为零。
等量 同 种 正 点 电 荷电场线大部分是曲线,起于正电荷,终止于无穷远;有两条电场线是直线。
电势 每点电势为正值。
连 线 上 场强 中点E 最小且为零;关于中点对称的点E 大小相等,方向相反,E 方向沿连线指向中点;由连线的一端到另一端E 先减小再增大。
电势 由连线的一端到另一端先降低再升高,中点电势最低不为零。
中 垂 线 上场强 中点E 最小且为零;关于中点对称的点E 大小相等,方向相反,E 方向沿中垂线背离中点;由中点至无穷远处,E 先增大再减小至零。