第九章第三节 抽样误差
- 格式:ppt
- 大小:872.00 KB
- 文档页数:39
抽样误差、抽样平均误差与抽样极限误差一、基本概念抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。
因此,又称为随机误差,它不包括登记误差,也不包括系统性误差。
影响抽样误差的因素有:1、总体各单位标志值的差异程度;2、样本的单位数;3、抽样的方法;4、抽样调查的组织形式。
抽样误差又分为两种:1、抽样平均误差。
抽样平均误差是反映抽样误差一般水平的指标,它的实质含义是指抽样平均数(或成数)的标准差。
即它反映了抽样指标与总体指标的平均离差程度。
抽样平均误差的作用首先表现在它能够说明样本指标代表性的大小。
平均误差大,说明样本指标对总体指标的代表性低;反之,则高。
(记为μx 或μp )2、抽样极限误差。
抽样极限误差指在进行抽样估计时,根据研究对象的变异程度和分析任务的要求所确定的样本指标与总体指标之间可允许的最大误差范围(记为∆)。
二、计算公式(一)抽样平均误差1、样本平均数的平均误差以μx 表示样本平均数的平均误差,σ表示总体的标准差。
根据定义:即n x σμ=,(若为不重复抽样,则总体方差σ要用进行修正)它说明在重复抽样的条件下,抽样平均误差与总体标准差成正比,与样本容量的平方根成反比。
例1:有5个工人的日产量分别为(单位:件):6,8,10,12,14,用重复抽样的方法,从中随机抽取2个工人的日产量,用以代表这5个工人的总体水平。
则抽样平均误差为多少?解:根据题意可得:(件)总体标准差(件)抽样平均误差(件)注意:在计算抽样平均误差时,通常得不到总体标准差的数值,一般可以用样本标准差来代替总体标准差。
2、抽样成数的平均误差总体成数P 可以表现为总体是非标志的平均数。
即E(X)=P ,它的标准差。
根据样本平均误差和总体标准差的关系,可以得到样本成数的平均误差的计算公式。
(不重复抽样时要修正)注意:当总体成数未知时,可以用样本成数来代替。
第九章抽样推断一、名词1、抽样推断:即由样本指标来推断总体指标的统计方法。
2、抽样误差:是指抽样指标和全及指标之间的绝对离差。
3、抽样极限误差:是指样本指标与全及指标之间产生的抽样误差被允许的最大可能范围,也叫允许误差。
4、点估计:就是直接用样本指标代表总体指标的估计方法。
5、区间估计:就是把抽样指标与抽样平均误差结合起来,来推断总体指标所在的可能范围的方法。
6、假设检验:就是先对研究总体的参数做出某种假设,然后抽取样本,构造适当的统计量,利用样本提供的信息对假设的正确性进行判断的过程。
二、填空题1.抽样推断是由(样本指标)来推断(相应的全及指标)的统计方法。
2.影响抽样误差大小的因素主要有:总体各单位标志值的差异程度、(样本的单位数目)、(抽样的具体方法)和抽样调查的组织形式。
3.抽样误差是由于抽样的(随机性)而产生的误差,这种误差不可避免,但可以控制在(所允许的范围)之内。
4.抽样平均误差是样本平均数的(标准差),是所有可能样本指标与总体指标之离差的(平均数)。
5.抽样极限误差,是指样本指标与全及指标之间产生的(抽样误差)被允许的(最大可能范围)。
6.用样本指标估计总体指标,要做到三个要求,即:(无偏性)、(一致性)、(有效性)。
7.抽样估计的方法有(点估计)和(区间估计)两种。
8.总体参数的区间估计必须同时具备(估计值)、(抽样误差范围)和(概率保证程度)三个要素。
9.总体中各单位标志值之间的变异程度越大,要求的样本单位数就(越多),即样本容量就(越大),总体各单位标志值变异程度与样本容量之间成(正比)。
10.允许误差越大,需要的样本单位数目就(越少);允许误差越小,需要的样本单位数目就(越多)。
11.对推断结果要求的可靠程度越高,必要样本单位数目就(越多);反之,可靠程度越低,必要样本单位数目就(越少)。
12.参数估计是用样本统计量估计(总体参数),而假设检验则是先对总体参数(提出假设),然后,运用样本资料验证假设(是否成立)。
第九章 多阶段抽样第一节 多阶抽样概述一、 多阶抽样的概念1、单阶抽样:从总体中通过一次抽样就能够产生一个完整的样本,这类抽样即为单阶抽样。
前面介绍的几种抽样方式均为单阶抽样。
适合用于总体单元数相对较少的抽样过程。
2、多阶抽样:将整个抽样过程分成若干个阶段,一个阶段一个阶段地进行抽样以完成整个抽样过程,这种抽样即为多阶抽样。
当我们面对的总体单元数很庞大,而且分布范围很广时,如果使用前面所学习的单阶抽样方法,不仅工作量大,而且在精度上很难把握,此时如果改用多阶抽样方法,就会避免上述困难,从而达到理想的抽样效果。
3、关于多阶抽样的具体描述:如果我们面对的一阶单元内总体基本单元数相当大,作全面的调查就会比较困难,或者一阶单元内各二阶单元可以给出相近的结果,作全面的调查又无必要。
此时从费用和抽样估计效率考虑,便可以从总体中随机抽取一部分一阶单元,然后再从被抽中的一阶单元内,随机抽取部分二阶单元并对他们作全面调查,我们把这种抽样技术称为两阶抽样。
如果在被抽中的二阶单元中,再抽取部分三阶单元组成样本,并对抽中的三阶单元进行全面的调查,这就是三阶抽样。
类似地,可以定义四阶抽样或更高阶的抽样,通常将两阶以上的抽样称为多阶抽样。
需要指出的是,多阶抽样中,各阶可以采用不同的抽样方法,也可采用同一种抽样方法,要视具体情况和要求而定。
在两阶抽样中,总体各一阶单元所包含的二阶单元数,有相等和不相等的两种情况。
前者无论在样本的抽取还是在指标的估算方面都相对比较简单,然而在抽样实践中却很少有这种情况的存在,但作为基本方法仍然有其实际意义;后种情况在抽样和指标的估算方法上都较为复杂,然而在实际中普遍存在此种情况。
4、两阶抽样与分层抽样和整群抽样的关系:将总体分为若干个一阶单元,如果在每一个一阶单元中,都随机抽取部分二阶单元,由这些二阶单元中的总体基本单元组成的样本,在抽样的方式上,就相当于分层抽样;如果在全部的一阶单元中,只抽取了部分一阶单元,并对抽中的一阶单元中的所有的基本单元都做全面调查,这就是整群抽样。
第九章抽样与抽样估计一、单项选择题1、抽样极限误差是指抽样指标和总体指标之间(D)。
A.抽样误差的平均数B.抽样误差的标准差C.抽样误差的可靠程度D.抽样误差的最大可能范围2、样本平均数和总体平均数(B)。
解析:样本平均数是以总体平均数为中心,在其范围内变动(P213)A.前者是一个确定值,B.前者是随机变量,后者是随机变量后者是一个确定值C.两者都是随机变量D.两者都是确定值3、某场要对某批产品进行抽样调查,一直以往的产品合格率分别为90%,93%,95%,要求误差范围小于5%,可靠性为95.45%,则必要样本容量应为(B)。
A.144B.105C.76D.1094、在总体方差不变的条件下,样本单位数增加3倍,则抽样误差(C)。
A.缩小1/2B.为原来的3/√3C.为原来的1/3D.为原来的2/35、在其他条件不变的前提下,若要求误差范围缩小1/3,则样本容量(B)。
A.增加9倍B.增加8倍C.为原来的2.25倍D.增加2.25倍6、抽样误差是指(C)。
解析:这题考的是抽样误差的定义(P213)A.在抽查过程中由于观察、测量等差错所引起的误差B.在调查中违反随机原则出现的系统误差C.随机抽样而产生的代表性误差D.人为原因所造成的误差7、在一定的抽样平均误差条件下(A)。
A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度8、抽样平均误差是(B)。
解析:这题考的是抽样平均误差的定义(P214)A.总体的标准差B.样本的标准差C.抽样指标的标准差D.抽样误差的平均差9、对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式(D)。
A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样10、先将总体各单位按主要标志分组,再从各组中随机抽取一定单位组成样本,这种抽样形式被称为(C)解析:这题考的是抽样调查的几种不同的方式的定义(P211)。