流体3-3 伯努利方程
- 格式:ppt
- 大小:1.39 MB
- 文档页数:12
伯努利方程三种形式公式
第一种形式的伯努利方程公式是:
P₁ + 1/2ρv₁² + ρgh₁ = P₂ + 1/2ρv₂² + ρgh₂
其中P₁和P₂分别表示两个位置的压力,ρ表示流体的密度,v₁和v₂表示两个位置的流速,g为重力加速度,h₁和h₂表示两个位置的高度。
这个公式描述了流体在两个位置之间能量守恒的关系。
等式左边的第
一项表示压力能,第二项表示动能,第三项表示单位质量的重力势能。
等
式右边的三项表示相应位置的压力能、动能和重力势能。
这个公式适用于
流体在不完全关闭的管道、管道两端处于同一高度的情况。
第二种形式的伯努利方程公式是:
P + 1/2ρv² + ρgh = const
这是一个简化形式的伯努利方程,它将两个位置的参数合并成一个常数。
这个公式的物理意义是,当流体在流动过程中没有受到外界力的作用时,流体的总能量保持不变。
这个公式适用于理想的水平管道、无摩擦的
流动。
第三种形式的伯努利方程公式是:
P + 1/2ρv² = const
这是伯努利方程的最简形式,它忽略了重力势能的影响。
这个公式适
用于理想的非粘性流体在无重力情况下的流动,如气体等。
这三种形式的伯努利方程公式分别适用于不同的流体力学问题。
选择
适用的公式取决于具体的流动条件和需要分析的问题。
无论选择哪种形式,
伯努利方程都提供了一个重要的工具,可以帮助我们研究流体力学中的能量转换和守恒。
流体伯努利方程一、引言流体力学是研究流体运动规律的学科。
在流体力学中,伯努利方程是一个非常重要的方程,它描述了流体在不同位置速度和压力之间的关系。
本文将详细介绍伯努利方程的定义、推导过程和应用。
二、伯努利方程的定义伯努利方程是描述了在理想流体中沿着一条不可压缩且没有粘性的管道中,当速度增加时,压力会降低。
这个方程可以用于解释飞机飞行、水管爆裂等问题。
三、伯努利方程的推导1. 基本假设为了推导伯努利方程,我们需要做出一些基本假设:(1)理想流体:即无黏性和无压缩性。
(2)不可压缩:即密度是恒定不变的。
(3)定常流:即时间上不变化。
(4)沿着一条直线运动:即没有旋转或弯曲。
2. 推导过程根据上述基本假设,我们可以得到以下公式:A1V1 = A2V2 (质量守恒定律)P1 + ½ρV12 = P2 + ½ρV22 (动量守恒定律)其中,A1和A2是管道的横截面积,V1和V2是流体在不同位置的速度,P1和P2是流体在不同位置的压力,ρ是流体的密度。
将第一个公式中的V1用Q/A1代替,V2用Q/A2代替,其中Q为流量,则可得到:Q = A1V1 = A2V2将上述公式带入第二个公式中,并消去A1和A2,则可得到:P1 + ½ρ(V12 – V22) = 0这就是伯努利方程。
四、伯努利方程的应用伯努利方程可以应用于很多领域。
以下列举几个例子:1. 飞机飞行在飞机飞行时,空气从机翼底部流过时速度增加,从而压力降低。
相反,在机翼顶部空气速度减小,从而压力增加。
这种差异产生了升力。
2. 水管爆裂当水管中有一个狭窄的部分时,水速度会增加并且压力会降低。
如果水管中有一个裂口,则水会通过裂口喷出,并且喷出口附近的压力会降低。
3. 油轮泄漏当油轮泄漏时,油从管道中流出并形成一个射流。
由于射流速度增加,压力会降低,从而导致油从管道中流出。
五、总结伯努利方程是描述理想流体中速度和压力之间关系的重要方程。
伯努利方程推导流速公式
伯努利方程是流体力学中的重要方程,它描述了流体在不同位置的压强、速度和高度之间的关系。
根据伯努利方程,我们可以推导出流体的流速公式。
设想一个理想的流体流动系统,由一个管道连接两个不同高度的水柱。
根据伯努利方程,系统中的总机械能保持恒定。
首先,我们可以假设该流体为不可压缩的理想流体,没有粘性和黏性损失。
根据这个假设,我们可以得出两个重要的结论:
1. 在不考虑阻力的情况下,流体在较高位置速度较小,压强较大;而在较低位置速度较大,压强较小。
这是因为根据质量守恒定律,流体在流动过程中质量是恒定的,在面积较小的地方速度较大,在面积较大的地方速度较小。
2. 在管道中的流体流动过程中,流速的增加伴随着压强的降低,速度的减小伴随着压强的增加。
这是由于在输送过程中,流体不可压缩,导致面积变小时速度增加,而压强减小,面积变大时速度减小,压强增加。
根据以上推论,我们可以得出流速公式:
v2 = v1 * (2 * g * h / (v1^2))
其中,v1和v2分别代表两个不同位置处的流体速度,g代表重力加速度,h代表两个位置之间的高度差。
通过这个流速公式,我们可以计算流体的速度,并对流体的运动和压强变化进行分析和预测。
无论是液体流体还是气体流体,都可以通过伯努利方程和流速公式得到流体在不同位置的速度和压强变化。
总结起来,伯努利方程推导出的流速公式是流体力学中的重要工具,它描述了流体在不同位置的速度和压强之间的关系。
这个公式可以应用于液体和气体流体的运动分析中,帮助我们更好地理解流体的行为和特性。
第四章 伯努利方程4.1 伯努利方程4.1.1 理想流体沿流线的伯努利方程1. 伯努利方程的推导将欧拉运动微分方程式积分可以得到流体的压力分布规律,但只能在特殊的条件下,不可能在任何的情况下都可求得其解,故我们需对流场作出如下假设:(1)理想流体(2)定常流动(3)质量力有势(4)不可压缩流体(5)沿流线积分在定常流动的条件下,理想流体的运动微分方程(欧拉运动微分方程)可以写成 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-∂∂+∂∂+∂∂=∂∂-z v v y v v x v v z p f z v v y v v x v v y p f z v v y v v x v v x p f z z z y z x z y z y y y x y x z x y x x x ρρρ111 (4.1) 将这个方程沿流线积分,如图4.1所示,可得到伯努利方程。
为此,将式(4.1)的第一式乘以x d 得x zv v x y v v x x v v x x p x f x z x y x x x d d d d 1d ∂∂+∂∂+∂∂=∂∂-ρ (1) 按照流线方程 zy x v z v y v x d d d == 将有,y v x v x y d d =,z v x v x z d d =故式(1)可写成x x x x x x x x x v v z zv v y y v v x x v v x x p x f d d d d d 1d =∂∂+∂∂+∂∂=∂∂-ρ (2) 式(4.1)的另外两式分别乘y d 、z d 后,作类似的代换,可得y y y v v y yp y f d d 1d =∂∂-ρ (3)z z z v v z zp z f d d 1d =∂∂-ρ (4) 将式(2)、(3)和式(4)相加,得 z z y y x x z y x v v v v v v z zp y y p x x p z f y f x f d d d )d d d (1d d d ++=∂∂+∂∂+∂∂-++ρ (5) p 的全微分可以表示为 dz zp dy y p dx x p dp ∂∂+∂∂+∂∂= 质量力有势,则必存在势函数U ,满足y f y f x f z zU y y U x x U U y y x d d d d d d d ++=∂∂+∂∂+∂∂=而 2/d d d d 2v v v v v v v z z y y x x =++式中等号右端的v 为平均速度。
伯努利方程计算流速伯努利方程是流体力学中的重要定律,它描述了在稳态流动中,流体在不同位置上的速度、压力和高度之间的关系。
通过应用伯努利方程,我们可以计算出流体的流速。
本文将介绍伯努利方程的基本原理,并给出一些应用实例。
伯努利方程的基本原理是基于能量守恒定律。
在没有外力作用的情况下,流体的总能量在流动过程中保持不变。
伯努利方程表示了流体在不同位置上的总能量相等。
伯努利方程的数学表达式如下:P + 1/2ρv^2 + ρgh = constant其中,P表示压力,ρ表示流体的密度,v表示流体的速度,g表示重力加速度,h表示流体元素所在位置的高度。
根据伯努利方程,我们可以计算流体的流速。
以水流为例,我们可以通过测量流体的压力和高度差来计算流速。
假设我们有一个水箱,水箱上方有一个小孔,水从小孔中流出。
我们可以测量水箱的高度和小孔处的压力,根据伯努利方程计算出水流的速度。
我们测量水箱的高度差,记作Δh。
然后,我们测量小孔处的压力,记作P。
假设水的密度为ρ,重力加速度为g。
根据伯努利方程,我们可以得到以下等式:P + 1/2ρv^2 + ρgh = constant由于小孔处的速度非常小,我们可以忽略1/2ρv^2这一项。
此外,我们将参考点设为水箱底部,即Δh为小孔处的高度差。
根据这些假设,我们可以简化伯努利方程为:P + ρgh = constant将P和ρgh的值代入上述方程,我们可以解出水流的速度v。
除了上述实例,伯努利方程还可以应用于其他许多情况。
例如,在空气动力学中,伯努利方程可以用于计算飞机在不同位置上的空速。
在涡流流量测量中,伯努利方程可以用于计算流体的流速。
此外,在水力工程中,伯努利方程可以用于计算水流的速度和压力。
伯努利方程是流体力学中的重要定律,可以用于计算流体的流速。
通过测量流体的压力和高度差,并应用伯努利方程,我们可以准确地计算出流体的速度。
除了上述实例,伯努利方程还可以应用于各种不同的情况中。
伯努利方程三种公式1.伯努利定理伯努利定理是伯努利方程最基本的形式,适用于无粘度、不可压缩、可压缩的流体在稳定流动过程中的情况。
该定理的数学表达式如下:P + 0.5ρv² + ρgh = 常数其中,P为流体在其中一位置的压强,ρ为流体的密度,v为流体的流速,g为重力加速度,h为流体所在位置的高度。
这个定理表明,在稳态流动的过程中,当流速增加时,压强降低;当流速减小时,压强增加。
伯努利定理的应用广泛,例如可以解释飞机升力产生的原理。
2.精细伯努利定理精细伯努利定理是伯努利方程的一种推广形式,适用于粘性流体(包括有粘度、可压缩和不可压缩的流体)。
该定理是通过对流体在一段流动管道中的微元进行能量平衡而推导得出的。
精细伯努利定理的数学表达式如下:P + 0.5ρv² + ρgh + hδP = 常数其中,δP是流体受到粘度效应产生的附加压强。
精细伯努利定理中的附加压强项考虑了粘性对流体流动的影响,使得该定理适用于更广泛的应用情况。
例如在液体流经狭窄或弯曲管道时,会出现流速变化和附加压强的影响。
3.伯努利方程的动能定理形式P₁ + 0.5ρv₁² + ρgh₁ = P₂ + 0.5ρv₂² + ρgh₂ + W其中,P₁和P₂分别表示流体在起始位置和结束位置的压强,v₁和v₂分别表示流体在起始位置和结束位置的流速,h₁和h₂分别表示起始位置和结束位置的高度,W表示单位时间内除了涡旋引起的机械功之外的其他功。
该定理表明,除了涡旋的机械功之外,流体在一段路径上的压强和动能之和是一个常数。
该定理的应用范围较狭窄,一般适用于非稳态的流动情况。
以上就是伯努利方程的三种不同形式的公式。
它们在流体力学的研究和应用中具有重要的作用,可以帮助分析和解释流体运动的规律,并应用于相关领域的问题求解。
第三章习题简答3-1 已知流体流动的速度分布为22y x u x -= ,xy u y 2-=,求通过1,1==y x 的一条流线。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 dy y x xydx )(222-=-两边积分可得C y y x yx +-=-3322即0623=+-C y x y将x=1,y=1代入上式,可得C=5,则 流线方程为05623=+-y x y3-3 已知流体的速度分布为⎭⎬⎫==-=-=tx x u ty y u y x 00εωεω(ω>0,0ε>0)试求流线方程,并画流线图。
解:由流线微分方程yx u dyu dx =得dy u dx u x y =则有 tydy txdx 00εε-=两边积分可得C y x +-=22流线方程为C y x =+223-5 以平均速度s m v /5.1=流入直径为D=2cm 的排孔管中的液体,全部经8个直径d=1mm 的排孔流出,假定每孔出流速度依次降低2%,试求第一孔与第八孔的出流速度各为多少?题3-5图解:由题意得:v 2=v 1(1-2%),v 3=v 1(1-2%)2,…,v 8=v 1(1-2%)7 根据质量守恒定律可得282322212832144444dv d v d v d v D v Q Q Q Q Q πππππ⋅+⋅⋅⋅+⋅+⋅+⋅=⋅+⋅⋅⋅+++=sm d vD v v d v v v v d D v /4.80)98.01(001.002.002.05.1)98.01()98.01(98.01)98.01(4)(448228221812832122=-⨯⨯⨯=--⋅=∴--⋅=+⋅⋅⋅+++⋅=⋅πππ则 v 8=v 1(1-2%)7=80.4×(1-2%)7=69.8m/s3-6 油从铅直圆管向下流出。
管直径cm d 101=,管口处的速度为s m v /4.11=,试求管口处下方H=1.5m 处的速度和油柱直径。
伯努利方程的原理及其应用摘要:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,是流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 发展和原理 应用1.伯努利方程的发展及其原理:伯努利方程是瑞士物理学家伯努利提出来的,是理想流体做稳定流动时的基本方程,流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
伯努利方程的原理,要用到无黏性流体的运动微分方程。
无黏性流体的运动微分方程:无黏性元流的伯努利方程:实际恒定总流的伯努利方程:z 1+g p ρ1+g v 2121α=z 2+gp ρ2+g v 2222α+h w总流伯努利方程的物理意义和几何意义:Z ----总流过流断面上某点(所取计算点)单位重量流体的位能,位置高度或高度水头;gpρ----总流过流断面上某点(所取计算点)单位重量流体的压能,测压管高度或压强水头;g2v 2α----总流过流断面上单位重量流体的平均动能,平均流速高度或速度水头; hw ----总流两端面间单位重量流体平均的机械能损失。
总流伯努利方程的应用条件:(1)恒定流;(2)不可压缩流体;(3)质量力只有重力;(4)所选取的两过水断面必须是渐变流断面,但两过水断面间可以是急变流。
(5)总流的流量沿程不变。
(6)两过水断面间除了水头损失以外,总流没有能量的输入或输出。
(7)式中各项均为单位重流体的平均能(比能),对流体总重的能量方程应各项乘以ρgQ。
2.伯努利方程的应用:伯努利方程在工程中的应用极其广泛,下面介绍几个典型的例子:※文丘里管:文丘里管一般用来测量流体通过管道时的流量。
流体的伯努利方程中文名称:伯努利方程英文名称:Bernoulli equation定义及摘要:流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变。
这个理论是由瑞士数学家丹尼尔·伯努利在1738年提出的,当时被称为伯努利原理。
后人又将重力场中欧拉方程在定常流动时沿流线的积分称为伯努利积分,将重力场中无粘性流体定常绝热流动的能量方程称为伯努利定理。
这些统称为伯努利方程,是流体动力学基本方程之一。
伯努利方程实质上是能量守恒定律在理想流体定常流动中的表现,它是流体力学的基本规律。
在一条流线上流体质点的机械能守恒是伯努利方程的物理意义。
理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。
因著名的瑞士科学家D.伯努利于1738年提出而得名。
对于重力场中的不可压缩均质流体,方程为p+ρgh+(1/2)*ρv^2=c式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度;c为常量。
上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。
但各流线之间总能量(即上式中的常量值)可能不同。
对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。
显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。
飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。
据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。
在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。
在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项。
伯努利⽅程(压⼒与流量的关系)伯努利⽅程Bernoulli equation流体宏观运动机械能守恒原理的数学表达式。
1738年瑞⼠数学家D.伯努利在《⽔动⼒学──关于流体中⼒和运动的说明》中提出了这⼀⽅运动⽅程(即欧拉⽅程)在定态流动条件下沿流线积分得出;也可由热⼒学第⼀定律导出。
它是⼀维流动问题中的⼀个程。
它可由理想流体运动⽅程主要关系式,在分析不可压缩流体的定态流动时⼗分重要,常⽤于确定流动过程中速度和压⼒之间的相互关系。
⽅程的形式对于不可压缩的理想流体,密度不随压⼒⽽变化,可得:式中Z为距离基准⾯的⾼度;p为静压⼒;u为流体速度;ρ为流体密度;g为重⼒加速度。
⽅程中的每⼀项均为单位质量流体所具有的机械能,其单位为N·m/kg,式中左侧三项,依次称为位能项、静压能项和动能项。
⽅程表明三种能量可以相互转换,但总和不变。
当流体在⽔平管道中流动时Z不变,上式可简化为:此式表述了流速与压⼒之间的关系:流速⼤处压⼒⼩,流速⼩处压⼒⼤。
对于单位重量流体,取管道的1、2两截⾯为基准,则⽅程的形式成为:式中每⼀项均为单位重量流体的能量,具有长度的因次,三项依次称为位头、静压头和动压头(速度头)。
对于可压缩理想流体,密度随压⼒⽽变化。
若这⼀变化是可逆等温过程,则⽅程可写成下式:若为可逆绝热过程,⽅程可写为:式中γ为定压⽐热容c p和定容⽐热容c V之⽐,即⽐热容⽐,也称为绝热指数。
对于粘性流体,流动截⾯上存在着速度分布,如⽤平均流速ū表达动能项,应对其乘以动能校正系数α。
此外,还需考虑因粘性引起的流动阻⼒,即造成单位质量流体的机械能损失h f,若在流体流动过程中,单位质量流体⼜接受了流体输送机械所做的功W,在这些条件下,若取处于均匀流段的两截⾯1和2为基准,则⽅程可扩充为:α值可由速度分布计算⽽得, 流体在圆管内作层流流动时α=2;作湍流流动时,α≈1.06。
⽅程的应⽤伯努利⽅程阐明的位能、动能、静压能相互转换的原理,可⽤来分析计算⼀些实际问题,例如:①计算流体从⼩孔流出的流速设在容器中盛有液体,液⾯维持不变,距液⾯下h处的容器壁⾯上开有⼀⼩孔,液体在重⼒作⽤下⾃⼩孔流出。
伯努利方程三种公式伯努利方程是流体力学中非常重要的一个方程,用于描述沿着流体流动方向上的动能、压力和重力势能之间的关系。
伯努利方程是通过对连续性方程和动量方程的积分得到的。
在本文中,将介绍伯努利方程的三种常用形式及其应用。
首先,我们来看一般形式的伯努利方程:\[P + \frac{1}{2}\rho v^2 + \rho gh = \text{常数}\]其中,\(P\)表示流体的静压力,\(\rho\)表示流体的密度,\(v\)表示流体的速度,\(g\)表示重力加速度,\(h\)表示流体的高度。
接下来,我们将讨论伯努利方程的三种常用形式。
1.高度形式:\[P + \rho gh = \text{常数}\]假设流体在两个不同高度的点1和点2之间流动,忽略速度对伯努利方程的影响,则可以得到高度形式的伯努利方程。
这个形式可以用于描述流体在不同高度处的压强差。
2.速度形式:\[\frac{1}{2}\rho v_1^2 + \rho gh_1 = \frac{1}{2}\rho v_2^2 + \rho gh_2\]在忽略压强差对伯努利方程的影响时,可以得到速度形式的伯努利方程。
这个形式可以用于描述流体在不同位置处的速度差。
3.压强形式:\[P_1 + \frac{1}{2}\rho v_1^2 = P_2 + \frac{1}{2}\rho v_2^2\]在忽略重力势能对伯努利方程的影响时,可以得到压强形式的伯努利方程。
这个形式可以用于描述流体在不同位置处的压强差。
接下来,我们将简要介绍一些应用伯努利方程的情况:1.飞机的升力产生:伯努利方程可以用于解释飞机如何产生升力。
飞机的机翼上方是曲率较大的表面,而下方是曲率较小的表面。
根据伯努利方程,飞机上方的流速较大,压力较小,而下方的情况相反。
这种压力差会产生一个向上的力,即升力,使得飞机能够在空中飞行。
2.水泵和水管系统:3.喷气发动机原理:喷气发动机的工作原理也可以通过伯努利方程来解释。