粘滞流体的伯努利方程及应用
- 格式:ppt
- 大小:800.00 KB
- 文档页数:38
工程流体力学综合报告学院:机械工程学院专业:机械工程班级:学号:学生姓名:任课老师:提交日期:2017年12月27 日关于伯努利方程的应用摘要“伯努利原理“是著名的瑞士科学家丹尼尔·伯努利在1726年提出的。
这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。
理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。
即:动能+重力势能+压力势能=常数。
其最为著名的推论为:等高流动时,流速大,压力就小。
伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。
关键词:伯努利方程 公式及原理 应用 流体力学1 伯努利方程伯努利原理往往被表述为p+1/2ρv2+ρgh=C ,这个式子被称为伯努利方程。
式中p 为流体中某点的压强,v 为流体该点的流速,ρ为流体密度,g 为重力加速度,h 为该点所在高度,C 是一个常量。
它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。
需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体1.1 流线上的伯努利方程流线上的伯努利方程:g V g p z g V g p z C gv g p z 222222221112++=++=++ρρρ适于理想流体(不存在摩擦阻力)。
式中各项分别表示单位流体的动能、位能、静压能之差。
如果流动速度为0,则由伯努利方程可得平衡流体的流体静力学基本公式(C g p z =+ρ)。
1.2 总流的伯努利方程总流是无数元流的总和,将元流伯努利方程沿总流过流断面积分,即可推导出总流的伯努利方程,也即总流能量方程。
动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。
由于气体的动力黏度值较小,过流断面速度梯度小,g V g p z g V g p z 222222221111αραρ++=++实际的气流运动的速度分布比较均匀,接近于断面平均流速。
关于伯努利方程的知识讲解把一个乒乓球放在倒置的漏斗中间(图8-29),向漏斗口吹气,会把乒乓球吹跑吗?实际正好相反,乒乓球会贴在漏斗上不掉下来.平行地竖放两张纸,向它们中间吹气,会把两张纸吹开吗?实际正好相反,两张纸会贴近(图8-30).怎样解释上述现象呢?现象中涉及空气的流动.你可能不会想到,解释上述现象,跟说明飞机能够上天,用的是同一个道理,这就是流动的流体中压强和流速的关系.通常把液体和气体统称流体。
这一节把功能关系应用到流动的流体中,推导压强和流速的关系.研究流体的流动,是一门复杂的学问.初步进行研究,需要作一些限定,采用简单的物理模型,这就是理想流体的定常流动.理想流体液体不容易被压缩,在不十分精确的研究中可以认为液体是不可压缩的.气体容易被压缩,但在研究流动的气体时,如果气体的密度没有发生显著的改变,也可以认为气体是不可压缩的.流体流动时,速度不同的各层流体之间有摩擦力,也就是说,流体具有粘滞性.不同的流体,粘滞性不同.油类的粘滞性较大,水、酒精的粘滞性较小,气体的粘滞性更小.研究粘滞性小的流体,在有些情况下可以认为流体没有粘滞性.不可压缩的、没有粘滞性的流体,称为理想流体.定常流动观察一段河床比较平缓的河水的流动,你可以看到河水平静地流着,过一会儿再看,河水还是那样平静地流着,各处的流速没有什么变化.河水不断地流走,可是这段河水的流动状态没有改变.河水的这种流动就是定常流动.流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动就叫做定常流动.自来水管中的水流,石油管道中石油的流动,都可以看作定常流动.流体的流动可以用流线形象地表示.在定常流动中,流线表示流体质点的运动轨迹.图8-31是液体流过圆柱体时流线的分布.AB处液体流过的横截面积大,CD处液体流过的横截面积小,液体在CD处流得急,流速大.AB处的流线疏,CD处的流线密.这样,从流线的分布可以知道流速的大小.流线疏的地方,流速小;流线密的地方,流速大.伯努利方程现在研究理想流体做定常流动时,流体中压强和流速的关系.图8-32表示一个细管,其中流体由左向右流动.在管的a1处和a2处用横截面截出一段流体,即a1处和a2处之间的流体,作为研究对象.a1处的横截面积为S1,流速为v1,高度为h1.a1处左边的流体对研究对象的压强为p1,方向垂直于S1向右.a2处的横截面积为S2,流速为v2,高度为h2.a2处右边的流体对研究对象的压强为p2,方向垂直于S2向左.经过很短的时间间隔Δt,这段流体的左端S1由a1移到b1,右端S2由a2移到b2.两端移动的距离分别为Δl1和Δl2.左端流入的流体体积为ΔV1=S1Δl1,右端流出的流体体积为ΔV2=S2Δl2,理想流体是不可压缩的,流入和流出的体积相等,ΔV1=ΔV2,记为ΔV.现在考虑左右两端的力对这段流体所做的功.作用在左端的力F1=p1S1,所做的功W1=F1Δl1=p1S1Δl1=p1ΔV.作用在右端的力F2=p2S2,所做的功W2=-F2Δl2=-p2S2Δl2=-p2ΔV.外力所做的总功W=W1+W2=(p1-p2)ΔV.(1)外力做功使这段流体的机械能发生改变.初状态的机械能是a1到a2这段流体的机械能E1,末状态的机械能是b1到b2这段流体的机械能E2.由b1到a2这一段,经过时间Δt,虽然流体有所更换,但由于我们研究的是理想流体的定常流动,流体的密度ρ和各点的流速v没有改变,动能和重力势能都没有改变,所以这一段的机械能没有改变.这样,机械能的改变E2-E1就等于流出的那部分流体的机械能减去流入的那部分流体的机械能.力势能为mgh2=ρgh2ΔV.机械能的改变为右边对这段液体的的作用力向左,而这段液体的位移向右,所以功是负值。
伯努利方程阻力公式伯努利方程是描述流体在不可压缩、黏性流动中能量守恒的基本理论方程,也是流体力学中的重要基础。
伯努利方程可以应用于多种情况下,例如液体在管道中的流动、飞机在空气中的飞行、水流经过水轮机的运动等等。
其中,伯努利方程的阻力公式是指描述流体流动中的阻力与速度、密度以及求解问题所涉及的相应量之间的关系。
在伯努利方程中,阻力与速度的关系可以通过流体的粘滞性及流动的特性来决定。
对于稳态、学流条件下的流动,可以将流体的黏性损失和速度剖面分布考虑在内,并根据实际情况进行适当的简化。
一般情况下,流体流经管道或沿着壁面流动时,都会产生阻力。
首先考虑层流情况下的阻力公式。
在细长的平行板间流动时,每一层流体由于其黏滞性而发生剪切,从而产生了内摩擦力。
此时,流体的速度剖面呈现出线性分布,最大速度位于管道中心。
根据流体的黏滞性特性可知,流体层间的摩擦力与流体的速度剖面有关。
设流体的速度剖面为v(r),其中r为距离管道中心轴的径向距离。
根据流体动力学的一般原理,流体受到的剪切力与速度梯度成正比,即有:F = -ηA(dv/dr)其中F为流体层中的剪切力,A为流体层的剪切面积,dv/dr表示速度梯度。
在稳态流动时,剪切力与速度梯度达到平衡,整个体系不断消耗的能量称为黏滞性损失。
根据能量守恒定律可知,流体流动过程中失去的能量转化为了黏滞性损失,即有:P = Fv = ηAv(dv/dr)其中P表示单位时间内单位面积的功率损耗。
黏滞性损失与流体的温度相关,通常可通过流体的黏度η来表征。
对于稳态流动,黏滞性损失恒定,在整个流动中得到了平均分布。
由于阻力损失是黏滞性造成的,因此可以假设单位长度的黏滞性损失与单位长度的阻力损失成正比。
即有:Fr = ηAr(dv/dr) = krv(dv/dr)其中Fr表示单位长度的阻力损失,k为与黏滞特性有关的常数。
对上式两边同时积分,可以得到:∫dFr/Fr = ∫krdv/v右边的积分可以求出来,即:ln(Fr) = ln(v) + C1其中C1是积分常数。