34切比雪夫不等式与大数定律
- 格式:pptx
- 大小:764.16 KB
- 文档页数:22
第六讲切比雪夫不等式与大数定律主讲教师叶宏副教授概率论与数理统计的研究内容是随机现象的统计规律性,而随机现象的规律性是通过大量的重复试验才呈现出来的.研究大量的随机现象,常常采用极限方法,利用极限定理进行研究. 极限定理的内容很广泛,其中最重要的有两种:大数定律与中心极限定理.设随机变量X 的期望E (X )与方差D (X )存在,则对于任意实数ε> 0,2)()|)((|εεX D X E X P ≤≥-切比雪夫不等式或2)(1)|)((|εεX D X E X P -≥<-理论价值证明大数定律等等实用价值估计概率例已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700 . 利用切比雪夫不等式估计每毫升白细胞数在5200~9400之间的概率.解:设每毫升白细胞数为X ,则EX =7300, DX =7002≤P (5200 X 9400)≤= P (-2100 X -E (X ) 2100)≤≤= P ( |X -E (X )| 2100)≤≤=P (5200-7300 X -7300 9400-7300)≤2)2100()(1X D -≥98911=-=估计每毫升白细胞数在5200~9400之间的概率不小于8/92)(1)|)((|εεX D X E X P -≥<-2)()|)((|εεX D X E X P ≤≥-22140.5{6}_____X Y P X Y +≥≤例设随机变量和的数学期望分别为-和,方差分别为和,而相关系数为-,则{6}{()()6}P X Y P X Y E X Y +≥=+-+≥由切比雪夫不等式()()()220,E X Y E X E Y +=+=-+=解: ()()()2cov(,)D X Y D X D Y X Y +=++()()2()()3XY D X D Y D X D Y ρ=++=2()1612D X Y +≤=大数定律大量的随机现象中平均结果的稳定性大数定律的客观背景:大量抛掷硬币正面出现频率伯努利大数定律设n A 是n 次独立重复试验中事件A 发生的次数, p 是每次试验中A 发生的概率,则0>∀ε有0lim =⎪⎭⎫ ⎝⎛≥-∞→εp n n P A n 或1lim =⎪⎭⎫ ⎝⎛<-∞→εp n n P A n 依概率收敛频率p伯努利大数定律的意义理论价值给概率的统计定义提供了理论依据在概率的统计定义中, 事件A发生的频率“稳定于”事件A在一次试验中发生的概率实用价值如命中率等在n足够大时, 可以用频率近似代替p. 这种稳定称为依概率稳定.切比雪夫大数定律且具有相同的数学期望和方差,2,1,)(,)(2===k X D X E k k σμ则0>∀ε有01lim 1=⎪⎭⎫ ⎝⎛≥-∑=∞→εμn k k n X n P 或11lim 1=⎪⎭⎫ ⎝⎛<-∑=∞→εμn k kn X n P ,,,,21n X X X 相互独立,设随机变量序列辛钦大数定律且具有数学期望(),1,2,k E X k μ==,,,,21n X X X 相互独立同分布,设随机变量序列当n 足够大时, 算术平均值几乎是一常数.具有相同数学期望和方差的独立随机变量序列的算术平均值依概率收敛于数学期望.算术均值数学期望近似代替可被定理的意义平均数法则12~(2),(,,),,1_______n n i X E X X n Y X n→∞=∑ 例设总体为其简单随机样本则时依概率收敛于12,,,n X X X 因为独立同分布,22212,,,n X X X 所以也独立同分布,22()i i i E X DX EX =+()2111=()422+=因此根据大数定律有∑==n i i n X n Y 121依概率收敛于21.2i EX =。
大数定律公式切比雪夫不等式伯努利大数定律的计算公式大数定律是概率论中的一项重要定理,用于描述大样本情况下随机变量的稳定性和收敛性。
其中,切比雪夫不等式和伯努利大数定律是两种常用的计算公式。
下面将分别介绍并推导这两个公式。
一、切比雪夫不等式切比雪夫不等式是描述随机变量与其均值之间关系的一种不等式。
设随机变量X的均值为μ,方差为σ^2,则对于任意正数ε,有:P(|X - μ| ≥ ε) ≤ σ^2 / ε^2其中,P表示概率。
该不等式说明随机变量与其均值相差较大的概率是有限的,且与方差的平方成反比。
推导过程如下:首先,对任意正数ε,可以得到以下不等式:P(|X - μ| ≥ ε) = P((X - μ)^2 ≥ ε^2)再利用方差的定义,有:σ^2 = E[(X - μ)^2]由期望的性质可得:E[(X - μ)^2] ≥ ε^2 * P((X - μ)^2 ≥ ε^2)化简后得到:P(|X - μ| ≥ ε) ≤ σ^2 / ε^2这就是切比雪夫不等式的推导过程。
二、伯努利大数定律伯努利大数定律是概率论中的一项重要定理,用于描述在独立重复试验中事件发生的频率趋于其概率的情况。
设事件A在一次试验中发生的概率为p,进行n次独立重复试验,则对于任意正数ε,有:lim(n→∞) P(|X/n - p| ≥ ε) = 0其中,X表示事件A在n次试验中发生的次数。
推导过程如下:首先,根据事件发生的频率,可以得到以下关系:X/n → p (n→∞)对于任意正数ε,可以得到以下等式:P(|X/n - p| ≥ ε) = P((X/n - p)^2 ≥ ε^2)再利用方差的定义,有:σ^2 = Var(X/n) = E[(X/n - p)^2]由期望的性质可得:E[(X/n - p)^2] ≥ ε^2 * P((X/n - p)^2 ≥ ε^2)化简后得到:P(|X/n - p| ≥ ε) ≤ σ^2 / (nε^2)由于n在趋于无穷大时,分母nε^2趋于无穷大,所以概率P(|X/n - p| ≥ ε)趋于0。