34切比雪夫不等式与大数定律
- 格式:pptx
- 大小:764.16 KB
- 文档页数:22
第六讲切比雪夫不等式与大数定律主讲教师叶宏副教授概率论与数理统计的研究内容是随机现象的统计规律性,而随机现象的规律性是通过大量的重复试验才呈现出来的.研究大量的随机现象,常常采用极限方法,利用极限定理进行研究. 极限定理的内容很广泛,其中最重要的有两种:大数定律与中心极限定理.设随机变量X 的期望E (X )与方差D (X )存在,则对于任意实数ε> 0,2)()|)((|εεX D X E X P ≤≥-切比雪夫不等式或2)(1)|)((|εεX D X E X P -≥<-理论价值证明大数定律等等实用价值估计概率例已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700 . 利用切比雪夫不等式估计每毫升白细胞数在5200~9400之间的概率.解:设每毫升白细胞数为X ,则EX =7300, DX =7002≤P (5200 X 9400)≤= P (-2100 X -E (X ) 2100)≤≤= P ( |X -E (X )| 2100)≤≤=P (5200-7300 X -7300 9400-7300)≤2)2100()(1X D -≥98911=-=估计每毫升白细胞数在5200~9400之间的概率不小于8/92)(1)|)((|εεX D X E X P -≥<-2)()|)((|εεX D X E X P ≤≥-22140.5{6}_____X Y P X Y +≥≤例设随机变量和的数学期望分别为-和,方差分别为和,而相关系数为-,则{6}{()()6}P X Y P X Y E X Y +≥=+-+≥由切比雪夫不等式()()()220,E X Y E X E Y +=+=-+=解: ()()()2cov(,)D X Y D X D Y X Y +=++()()2()()3XY D X D Y D X D Y ρ=++=2()1612D X Y +≤=大数定律大量的随机现象中平均结果的稳定性大数定律的客观背景:大量抛掷硬币正面出现频率伯努利大数定律设n A 是n 次独立重复试验中事件A 发生的次数, p 是每次试验中A 发生的概率,则0>∀ε有0lim =⎪⎭⎫ ⎝⎛≥-∞→εp n n P A n 或1lim =⎪⎭⎫ ⎝⎛<-∞→εp n n P A n 依概率收敛频率p伯努利大数定律的意义理论价值给概率的统计定义提供了理论依据在概率的统计定义中, 事件A发生的频率“稳定于”事件A在一次试验中发生的概率实用价值如命中率等在n足够大时, 可以用频率近似代替p. 这种稳定称为依概率稳定.切比雪夫大数定律且具有相同的数学期望和方差,2,1,)(,)(2===k X D X E k k σμ则0>∀ε有01lim 1=⎪⎭⎫ ⎝⎛≥-∑=∞→εμn k k n X n P 或11lim 1=⎪⎭⎫ ⎝⎛<-∑=∞→εμn k kn X n P ,,,,21n X X X 相互独立,设随机变量序列辛钦大数定律且具有数学期望(),1,2,k E X k μ==,,,,21n X X X 相互独立同分布,设随机变量序列当n 足够大时, 算术平均值几乎是一常数.具有相同数学期望和方差的独立随机变量序列的算术平均值依概率收敛于数学期望.算术均值数学期望近似代替可被定理的意义平均数法则12~(2),(,,),,1_______n n i X E X X n Y X n→∞=∑ 例设总体为其简单随机样本则时依概率收敛于12,,,n X X X 因为独立同分布,22212,,,n X X X 所以也独立同分布,22()i i i E X DX EX =+()2111=()422+=因此根据大数定律有∑==n i i n X n Y 121依概率收敛于21.2i EX =。
大数定律公式切比雪夫不等式伯努利大数定律的计算公式大数定律是概率论中的一项重要定理,用于描述大样本情况下随机变量的稳定性和收敛性。
其中,切比雪夫不等式和伯努利大数定律是两种常用的计算公式。
下面将分别介绍并推导这两个公式。
一、切比雪夫不等式切比雪夫不等式是描述随机变量与其均值之间关系的一种不等式。
设随机变量X的均值为μ,方差为σ^2,则对于任意正数ε,有:P(|X - μ| ≥ ε) ≤ σ^2 / ε^2其中,P表示概率。
该不等式说明随机变量与其均值相差较大的概率是有限的,且与方差的平方成反比。
推导过程如下:首先,对任意正数ε,可以得到以下不等式:P(|X - μ| ≥ ε) = P((X - μ)^2 ≥ ε^2)再利用方差的定义,有:σ^2 = E[(X - μ)^2]由期望的性质可得:E[(X - μ)^2] ≥ ε^2 * P((X - μ)^2 ≥ ε^2)化简后得到:P(|X - μ| ≥ ε) ≤ σ^2 / ε^2这就是切比雪夫不等式的推导过程。
二、伯努利大数定律伯努利大数定律是概率论中的一项重要定理,用于描述在独立重复试验中事件发生的频率趋于其概率的情况。
设事件A在一次试验中发生的概率为p,进行n次独立重复试验,则对于任意正数ε,有:lim(n→∞) P(|X/n - p| ≥ ε) = 0其中,X表示事件A在n次试验中发生的次数。
推导过程如下:首先,根据事件发生的频率,可以得到以下关系:X/n → p (n→∞)对于任意正数ε,可以得到以下等式:P(|X/n - p| ≥ ε) = P((X/n - p)^2 ≥ ε^2)再利用方差的定义,有:σ^2 = Var(X/n) = E[(X/n - p)^2]由期望的性质可得:E[(X/n - p)^2] ≥ ε^2 * P((X/n - p)^2 ≥ ε^2)化简后得到:P(|X/n - p| ≥ ε) ≤ σ^2 / (nε^2)由于n在趋于无穷大时,分母nε^2趋于无穷大,所以概率P(|X/n - p| ≥ ε)趋于0。
浅析切比雪夫不等式及其在大数定律中的应用摘要:切比雪夫不等式一直以来在概率统计中占有十分重要的地位,它阐明了实验均数和方差之间的具体关系,并为大数定律提供理论基础,在生产和生活中有广泛的应用。
利用该不等式可以成功推导得到正态分布的3准则,并引出利用中心极限定理将各类分布形式与正态分布相联系。
本文主要介绍切比雪夫不等式和大数定律的推导方式,并举例说明二者在实验科学中的具体应用。
关键词:切比雪夫不等式;大数定律;马尔科夫不等式;标准正态分布1.引言切比雪夫不等式是19世纪俄国数学家切比雪夫在研究概率统计规律中发现的,并用该不等式描述了标准差与实验样本量之间的关系,具有十分普遍的意义,是概率统计中最重要的不等式之一,可以将其推广为切比雪夫定理[2]。
它将随机变量的期望和方差联系起来,并阐述了实验样本数据与理论计算真值的误差具体关系。
除此之外,切比雪夫不等式也是马尔可夫不等式的特殊形式,即随机变量的误差函数大于或等于任意一个正数的概率的上限,该不等式是以俄国数学家马尔可夫命名,但它也曾出现在一些更早的文献中。
切比雪夫不等最重要的应用就是证明了大数定律,这为中心极限定理和正态分布的进一步研究打下基础[3]。
说明了当实验次数达到一定数量时,可以将实验误差看作均匀分布的函数,并可以用实验样本频率来近似的替代实验概率,是各类概率统计方法的前提条件,并为统计方法的一般化提供令人信服的理论基础,是该类方法在各个领域均有广泛的应用。
本文主要介绍切比雪夫不等式及大数定律的推导方式,并与马尔科夫不等式相联系,列举二者在解决实际问题中的具体应用。
我们可以发现,正态分布最为重要的3准则便由此得到,并拓宽中心极限定理的一般化应用。
2.基本原理2.1 切比雪夫不等式切比雪夫不等式的具体表述如下:设任意一组随机变量为X,且该组数据的期望为E(X)=,方差为D(x)=。
对于任意一个正数,均有如下表示[1]:将已知数据带入可得,求解得到n1437,即实验次数至少要达到1437次。
切比雪夫不等式与大数定律切比雪夫不等式和大数定律是概率论中重要的两个理论。
它们在统计学、数学和物理学等领域具有广泛的应用。
本文将依次介绍切比雪夫不等式和大数定律的概念、原理及应用。
一、切比雪夫不等式切比雪夫不等式是描述随机变量离其均值的偏离程度的概率上界。
设随机变量X具有均值μ和方差σ^2,k为任意大于0的常数,则切比雪夫不等式可表示为:P(|X-μ|≥kσ) ≤ 1/k^2其中,P表示概率。
该不等式表明,当k取较大值时,随机变量X 与其均值之间的偏离概率将变得非常小。
也就是说,随机变量X与其均值之间的差异愈大,差异大于k倍标准差的概率将愈小。
切比雪夫不等式在统计推断和概率论中有许多应用。
例如,在对总体均值进行估计时,可以利用切比雪夫不等式给出一个近似的置信区间;在概率分布函数未知的情况下,切比雪夫不等式可用于确定随机变量落入某一区间的概率上界。
二、大数定律大数定律是概率论中指出在独立同分布的随机变量序列中,样本平均值近似等于总体均值的定律。
大数定律有多种形式,其中最著名的是弱大数定律和强大数定律。
1. 弱大数定律:对于独立同分布的随机变量序列X1, X2, ..., Xn,假设它们具有相同的均值μ和方差σ^2。
则对于任意ε>0,有:lim(n→∞) P(|(X1+X2+...+Xn)/n-μ|>ε) = 0这意味着当样本容量n趋于无穷大时,样本均值与总体均值之间的偏离程度将趋于零。
2. 强大数定律:对于独立同分布的随机变量序列X1, X2, ..., Xn,假设它们具有相同的均值μ和方差σ^2。
则几乎处处有:(X1+X2+...+Xn)/n → μ (当n→∞)这意味着当样本容量趋于无穷大时,样本均值将收敛于总体均值。
大数定律为我们提供了一种判断样本均值近似等于总体均值的准则。
它广泛地应用于概率论、统计学、经济学等领域。
例如,在随机过程和随机演化等问题中,大数定律提供了重要的理论基础。
用切比雪夫不等式证明伯努利大数定律
伯努利大数定律是统计数学中极为重要的定律,它表明了在某些条件下,一个事件发生的概率能够通过多次重复试验收敛到某个值。
这个定律是数学家费米于1713年发表的,后来由英国数学家伯努利于1785年重新提出并发展,因此被称为“伯努利大数定律”。
【用切比雪夫不等式证明伯努利大数定律】
伯努利大数定律的定义可以用下面的公式表示:
P(A)≥P(B)
其中,P(A)代表事件A发生的概率,P(B)代表事件B发生的概率。
伯努利大数定律要求当P(A)和P(B)均趋于1时,P(A)≥P(B)。
现在我们来用切比雪夫不等式证明伯努利大数定律。
由伯努利大数定律可知,当n回投掷硬币,投出双面n次后,投出正面次数S的概率大于等于S/n的概率。
其中,S表示正面投出的次数。
由切比雪夫不等式可知:
P(S≥k)=1-P(S<k)≥1-P(|S-k|≥c)=1-P(|S-k|≥n/2) 其中,k=n/2,c=n/2
根据上式,我们可以得出P(S≥n/2)≥1-P(S<n/2),即P(S≥n/2)≥1-P(S≤n/2),因此P(S≥n/2)≥P(S≤n/2),也就是P(S≥n/2)≥1/2,即P(S≥n/2)≥P(S/n),这正符合伯努利大数定律的要求,说明切比雪夫不等式可以用来证明伯努利大数定律。
【结论】
从上面的分析可以看出,切比雪夫不等式可以用来证明伯努利大
数定律,即P(A)≥P(B),这样我们就可以更好的理解伯努利大数定律了。