概率论与数理统计切比雪夫不等式和大数定律
- 格式:pptx
- 大小:473.21 KB
- 文档页数:17
概率论与数理统计第五章大数定律及中心极限定理课前导读概率论是研究大量试验后呈现出的统计规律性的一门理论。
数学中研究大量的工具是极限。
因此这一章学习概率论中的极限定理。
第一节大数定律随着试验次数的增大,事件的频率逐步稳定到事件的概率。
意味着随着试验次数的增多,在其中一种收敛意义下,频率的极限是概率。
大数定律解释了这一结论。
首先介绍切比雪夫不等式。
一、切比雪夫(Chebyshev)不等式随机变量X的取值总是围绕着其期望变动,若X的分布已知时,可以计算事件\{,X-E(X),\geq \epsilon \}的概率。
切比雪夫不等式:对切比雪夫不等式的直观理解:方差越小,X在其期望附近取值的密集程度越高,原理期望的区域的概率上加越小。
进一步说明了方差的概率意义,方差时随机变量取值与其中心位置的偏离程度的一种度量指标。
当随机变量X的分布未知时,可由X的观测数据估计得到X的期望和方差,然后使用切比雪夫不等式估计X关于E(X)的偏离程度。
二、依概率收敛随机变量序列即由随机变量构成的一个序列。
不能用类似定义数列极限的方式定义随机变量序列的极限,因为序列中的每一个元素X_n是随机变量,取值不确定,不可能和一个常数c的距离任意小。
只能说一些事件A发生的频率f_n(A)收敛到A的概率P(A)。
依概率收敛的定义:定理2:三、大数定律三个大数定律:切比雪夫大数定律、辛钦大数定律和伯努利大数定律。
注意这三个大数定律的条件有何异同。
定理3 切比雪夫大数定律:若随机变量序列相互不相关,方差存在且一致有上界,当n充分大时,随机序列的前n项的算术平均值和自身的期望充分接近几乎总是发生的。
定理4 相互独立同分布的大数定律(辛钦大数定律):辛钦大数定律为算术平均值法则提供了理论依据。
伯努利大数定律:伯努利大数定律是相互独立同分布大数定律的特例,限定分布为两点分布。
伯努利大数定律体现了:随着试验次数的增大,事件的频率逐步稳定到时间的概率,这里的稳定即为依概率收敛。
课程号:课程名称:总学:学分:在数学学院领导的组织及大力支持下,经过编写人员的努力,《概率论与数理统计》新书已正式出版,主要用于理工类(非数学专业)本科生教学。
该书是根据教育部颁发的教学大纲并参照全国硕士研究生入学数学考试要求编写的,一个重要特点是提倡启发式教学,鼓励学生自学,以提高其数学素质及解决实际问题的能力。
因此,书中安排了不少例题,并在每一章末设一节综合例题。
我们的建议是,综合例题一般不讲,由学生自看;书中其它例题及作业题则由教师根据需要灵活掌握,不必每例都讲到,也不必每题都布置学生做;打*的内容则不讲。
书中一些易懂的内容可以安排学生自学。
全书预计授课51学时,加上习题课10学时,共计61学时。
教学的基本内容,基本要求及建议课时安排如下,教师可根据学生情况适当微调,数学二可适当降低要求。
第一章随机事件及概率一、基本内容样本空间及随机事件,事件之间的关系及运算,频率的定义及定义性质,概率的定义及性质,古典概率,几何概率,条件概率及乘法公式,全概率及贝叶斯公式,事件的独立性及运算,可靠性问题。
二、基本要求1.理解随机事件及样本空间的概念,掌握事件之间的关系及运算。
2.了解频率及概率的条件及定义,掌握概率的基本性质并能用于计算。
3.掌握古典概率的条件及定义,会计算一般的古典概率;了解几何概率的思想及计算方法。
4.熟练掌握条件概率、乘法公式、全概率及贝叶斯公式,能应用这些公式作概率计算并了解贝叶斯决策的思想。
5.理解事件独立性的概念,掌握用事件的独立性进行概率计算的方法,并对可靠性问题研究有大致的了解。
三、建议课时安排(10学时)1.随机事件及运算1学时2.频率与概率1学时3.等可能概型(包括古典及几何概率) 2学时4.条件概率、全概率及贝叶斯公式2学时5.独立性及可靠性问题2学时6.习题课10学时第二章离散型随机变量11学时一、基本内容随机变量及离散型随机变量的定义,超几何分布,二项分布及泊松分布的定义及计算,泊松定理,一维分布函数,二维离散型随机变量,二维分布函数,边缘分布,条件分布及独立性,随机变量函数的分布及可加性。
第六讲切比雪夫不等式与大数定律主讲教师叶宏副教授概率论与数理统计的研究内容是随机现象的统计规律性,而随机现象的规律性是通过大量的重复试验才呈现出来的.研究大量的随机现象,常常采用极限方法,利用极限定理进行研究. 极限定理的内容很广泛,其中最重要的有两种:大数定律与中心极限定理.设随机变量X 的期望E (X )与方差D (X )存在,则对于任意实数ε> 0,2)()|)((|εεX D X E X P ≤≥-切比雪夫不等式或2)(1)|)((|εεX D X E X P -≥<-理论价值证明大数定律等等实用价值估计概率例已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700 . 利用切比雪夫不等式估计每毫升白细胞数在5200~9400之间的概率.解:设每毫升白细胞数为X ,则EX =7300, DX =7002≤P (5200 X 9400)≤= P (-2100 X -E (X ) 2100)≤≤= P ( |X -E (X )| 2100)≤≤=P (5200-7300 X -7300 9400-7300)≤2)2100()(1X D -≥98911=-=估计每毫升白细胞数在5200~9400之间的概率不小于8/92)(1)|)((|εεX D X E X P -≥<-2)()|)((|εεX D X E X P ≤≥-22140.5{6}_____X Y P X Y +≥≤例设随机变量和的数学期望分别为-和,方差分别为和,而相关系数为-,则{6}{()()6}P X Y P X Y E X Y +≥=+-+≥由切比雪夫不等式()()()220,E X Y E X E Y +=+=-+=解: ()()()2cov(,)D X Y D X D Y X Y +=++()()2()()3XY D X D Y D X D Y ρ=++=2()1612D X Y +≤=大数定律大量的随机现象中平均结果的稳定性大数定律的客观背景:大量抛掷硬币正面出现频率伯努利大数定律设n A 是n 次独立重复试验中事件A 发生的次数, p 是每次试验中A 发生的概率,则0>∀ε有0lim =⎪⎭⎫ ⎝⎛≥-∞→εp n n P A n 或1lim =⎪⎭⎫ ⎝⎛<-∞→εp n n P A n 依概率收敛频率p伯努利大数定律的意义理论价值给概率的统计定义提供了理论依据在概率的统计定义中, 事件A发生的频率“稳定于”事件A在一次试验中发生的概率实用价值如命中率等在n足够大时, 可以用频率近似代替p. 这种稳定称为依概率稳定.切比雪夫大数定律且具有相同的数学期望和方差,2,1,)(,)(2===k X D X E k k σμ则0>∀ε有01lim 1=⎪⎭⎫ ⎝⎛≥-∑=∞→εμn k k n X n P 或11lim 1=⎪⎭⎫ ⎝⎛<-∑=∞→εμn k kn X n P ,,,,21n X X X 相互独立,设随机变量序列辛钦大数定律且具有数学期望(),1,2,k E X k μ==,,,,21n X X X 相互独立同分布,设随机变量序列当n 足够大时, 算术平均值几乎是一常数.具有相同数学期望和方差的独立随机变量序列的算术平均值依概率收敛于数学期望.算术均值数学期望近似代替可被定理的意义平均数法则12~(2),(,,),,1_______n n i X E X X n Y X n→∞=∑ 例设总体为其简单随机样本则时依概率收敛于12,,,n X X X 因为独立同分布,22212,,,n X X X 所以也独立同分布,22()i i i E X DX EX =+()2111=()422+=因此根据大数定律有∑==n i i n X n Y 121依概率收敛于21.2i EX =。
考研数学概率论与数理统计知识点终极梳理概率论与数理统计是硕士研究生入学考试(除数二)的一个重要组成部分,从研究必然问题到研究随机问题,不仅大多数初学者感到困难, 即使是对于曾学过这门学科的考生也有不少问题,特别是在做习题以及解决实际问题方面遇到的困难会更多一些。
从近几年硕士研究生入学考试数学阅卷结果来看,概率论这一部分得分率普遍较低。
在最后几天,建议大家,加强数学基本计算联系,熟练、严谨、规范非常至关重要。
此外,要注意回顾一遍大纲考点,查漏补缺。
第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基木性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维林德伯格定理、棣莫弗拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验。