镜像法和电轴法
- 格式:ppt
- 大小:1.35 MB
- 文档页数:33
§18 镜像法一、镜像法1. 定义:就是解静电场问题得一种间接方法,它巧妙地应用唯一性定理,使某些瞧来棘手得问题很容易地得到解决。
该方法就是把实际上分区均匀媒质瞧成就是均匀得,对于研究得场域用闭合边界处虚设得简单得电荷分布,代替实际边界上复杂得电荷分布来进行计算。
即镜像法处理问题时不直接去求解电位所满足得泊松方程,而就是在不改变求解区域电荷分布及边界条件得前提条件下,用假想得简单电荷分布(称为镜像电荷)来等效地取代导体面域(电介质分界面)上复杂得感应(半极化)电荷对电位得贡献,从而使问题得求解过程大为简化。
2. 应用镜像法应主意得问题应主意适用得区域,不要弄错。
在所求电场区域内:①不能引入镜像电荷;②不能改变它得边界条件;③不能改变电介质得分布情况; ④在研究区域外引入镜像电荷,与原给定得电荷一起产生得电荷满足所求解(讨论)得边界条件;⑤其求得得解只有在所确定得区域内正确且有意义。
3. 镜像法得求解范围应用于电场与电位得求解;也可应用于计算静电力;确定感应电荷得分布等。
二、镜像法应用解决得问题一般就是边界为平面与球面得情况1. 设与一个无限大导电平板(置于地面)相距远处有一点电荷,周围介质得介电常数为,求解其中得电场。
解:在电介质中得场,除点电荷所引起得场外,还应考虑无限大导电平板上得感应电荷得作用,但其分布不知(未知),因此无法直接求解。
用镜像法求解该问题。
对于区域,除所在点外,都有以无限远处为参考点在边界上有: 即边界条件未变。
由唯一性定理有对于大场不存在推广到线电荷得情况,对于无限长线电荷也适合上述方法求解。
例115 、P54求空气中一个点电荷在地面上引起得感应电荷分布情况。
解:用镜像法求解P点:感应电荷密度, (大地)点电荷例1-16 P55解:用镜像法,如图所示,边界条件2. 镜像法应用于求解两种不同介质中置于点电荷或电荷时得电场问题。
解:应用镜像法求解区域如图b,如图c 设中电位为,中电位为满足条件:在中除所在点外,有,在中在两种媒质分界面上应有, 由有与两个镜像电荷来代替边界得极化电荷若q 为得线电荷则有:3. 点电荷对金属面得镜像问题点电荷与接地金属球得问题①与得电场中,求电位为零得等位面。
/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。
例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。
一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。
然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。
这些等效电荷称为镜像电荷,这种求解方法称为镜像法。
可见,惟一性定理是镜像法的理论依据。
在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。
(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。
(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。
4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。
如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。
待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。
在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。
点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。
根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。
阶段测测试题目为单选、多选。
简单练习题目为名词解释、填空、简答。
作业题目为计算、论述题目类型:单选、名词解释、填空、简答、计算、论述。
矢量分析与场论初步0-1 正交坐标系与矢量运算 0-2 标量场和矢量场 0-3 标量场的梯度0-4 矢量场的通量与散度 0-5 矢量场的环量与旋度 0-6 亥姆霍茨定理 0-7 三种特殊形式的场 单选:一个标量场中某个曲面上梯度为零时 CA 其旋度必不为零B 其散度为零C 该面为等值面D 该标量场也为零 一个矢量场的散度为零时 BA 沿任一闭合曲线的线积分不为零B 沿任一闭合曲面的通量为零C 其旋度必不为零D 其梯度必为零直角坐标系中的单位向量e x 与e y 的数量积是 A A 1 B e x C e y D e z 直角坐标系中的单位向量e x 与e y 的矢量积是 D A 1 B e x C e y D e z一个矢量场的散度为零时 BA 沿任一闭合曲线的线积分不为零B 沿任一闭合曲面的通量为零C 其旋度必不为零D 其梯度必为零下述公式中不正确的是(其中C 是常数矢量) CA 、 0C =∇B 、0C =•∇ C 、C B B C ⨯=⨯D 、0C =⨯∇ 已知z y x x y z x y x e e e A )2()3()32(-+-+-=,矢量A 的散度为 B A 、1 B 、2 C 、3 D 、4名词解释:正交坐标系 各个坐标轴(单位向量)互相垂直 标量 只有大小而无方向的量 矢量 有大小又有方向的量梯度 标量场的梯度是一个矢量,是空间坐标点的函数;梯度的大小为该点标量函数的最大变化率,即该点最大方向导数;梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数的增加方向。
矢量场的通量 矢量 E 沿有向曲面S 的面积分 S E d S ⋅⎰=Φ散度 矢量的散度是一个标量,是空间坐标点的函数;散度代表矢量场的通量源的分布特性,是通量密度。
/jp2007/02/wlkc/htm/c_4_p_4.htm§4.4 镜像法镜像法是求解电磁场的一种特殊方法,特别适用于边界面较规则(如平面、球面和柱面等)情况下,点源或线源产生的静态场的计算问题。
例如当一点电荷q 位于一导体附近时,该导体将处于点电荷q产生的静电场中,在导体表面上会产生感应电荷,则空间的电场应为该感应电荷产生的电场和点电荷q产生的电场的叠加。
一般情况下,在空间电场未确定之前,导体表面的感应电荷分布是不知道的,因此直接求解该空间的电场是困难的。
然而,在一定条件下,可以用一个或多个位于待求场域边界以外虚设的等效电荷来代替导体表面上感应电荷的作用,且保持原有边界上边界条件不变,则根据惟一性定理,空间电场可由原来的电荷q和所有等效电荷产生的电场叠加得到。
这些等效电荷称为镜像电荷,这种求解方法称为镜像法。
可见,惟一性定理是镜像法的理论依据。
在镜像法应用中应注意以下几点:(1)镜像电荷位于待求场域边界之外。
(2)将有边界的不均匀空间处理为无限大均匀空间,该均匀空间中媒质特性与待求场域中一致。
(3)实际电荷(或电流)和镜像电荷(或电流)共同作用保持原边界上的边界条件不变。
4.4.1 点电荷对无限大接地导体平面的镜像zqdx设在自由空间有一点电荷位于无限大接地导体平面上方,且与导体平面的距离为d 。
如图4.2(a)所示上半空间的电位分布和电场强度计算可用镜像法解决。
待求场域为0z >空间,边界为0z =的无限大导体平面,边界条件为在边界上电位为零,即(,,)0x y z φ= (4.29)设想将无限大平面导体撤去,整个空间为自由空间。
在原边界之外放置一镜像电荷'q ,当'q q =-,且'q 和q 相对于0z =边界对称时,如图4.2(b)所示。
点电荷q 和镜像电荷'q 在边界上产生的电位满足式(4.29)所示的边界条件。
根据镜像法原理,在0z >空间的电位为点电荷q 和镜像电荷'q 所产生的电位叠加,即1/21/2222222011{}4()()qx y z d x y z d φπε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.30)上半空间任一点的电场强度为E φ=-∇电场强度E 的三个分量分别为3/23/22222220{}4()()x qxxE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31a)3/23/22222220{}4()()y qyyE x y z d x y z d πε=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31b)3/23/22222220{}4()()z qz dz dE x y z d x y z d πε-+=-⎡⎤⎡⎤++-+++⎣⎦⎣⎦(4.31c)可见,在导体表面0z =处,0x y E E ==,只有z E 存在,即导体表面上法向电场存在。
镜像法求解静电场
静电场是指在没有电流流动的情况下,由电荷所产生的电场。
静电场的研究对于电学领域的发展具有重要的意义。
在静电场的研究中,镜像法是一种常用的求解方法。
镜像法是一种基于对称性的求解方法。
它的基本思想是将电荷在一个导体表面上的影像电荷作为一个新的电荷,然后再求解这个新的电荷所产生的电场。
这个新的电荷与原电荷之间的距离相等,但是方向相反。
这种方法可以简化计算,特别是在对称的情况下,可以大大减少计算量。
在使用镜像法求解静电场时,需要先确定一个导体表面作为镜面。
然后,根据对称性,将电荷在镜面上的影像电荷计算出来。
最后,将原电荷和影像电荷的电场叠加起来,就可以得到整个静电场的分布情况。
镜像法的应用范围非常广泛。
它可以用于求解各种形状的导体的静电场分布,包括球形、圆柱形、平面等。
在实际应用中,镜像法可以用于求解电容器的电场分布、电荷在导体表面上的分布等问题。
镜像法是一种非常实用的求解静电场的方法。
它可以大大简化计算,特别是在对称的情况下,可以大大减少计算量。
在实际应用中,镜像法可以用于求解各种形状的导体的静电场分布,具有广泛的应用前景。
镜像法在静电场中,如果在所考虑的区域内没有自由电荷分布时,可用拉普拉斯方程求解场分布;如果在所考虑的区域内有自由电荷分布时,可用泊松方程求解场分布。
如果在所考虑的区域内只有一个或者几个点电荷,区域边界是导体或介质界面时,一般情况下,直接求解这类问题比较困难,通常可采用一种特殊方法—镜象法来求解这类问题。
镜像法是直接建立在唯一性定理基础上的一种求解静电场问题的方法。
适用于解决导体或介质边界前存在点源或线源的一些特殊问题。
镜像法的特点是不直接求解电位函数所满足的泊松或拉普拉斯方程,而是在所求区域外用简单的镜像电荷代替边界面上的感应电荷或极化电荷。
根据唯一性定理,如果引入镜像电荷后,原求解区域所满足的泊松或拉普拉斯方程和边界条件不变,该问题的解就是原问题的解。
下面我们举例说明。
1导体平面的镜像例.1 在无限大的接地导电平面上方h 处有一个点电荷q ,如图3.2.1所示,求导电平板上方空间的电位分布。
解 建立直角坐标系。
此电场问题的待求场区为0z >;场区的源是电量为q 位于(0,0,)P h 点的点电荷,边界为xy 面,由于导电面延伸到无限远,其边界条件为xy 面上电位为零。
导电平板上场区的电位是由点电荷以及导电平面上的感应电荷产生的,但感应电荷是未知的,因此,无法直接利用感应电荷进行计算。
现在考虑另一种情况,空间中有两个点电荷q 和q -,分别位于(0,0,)P h 和点(0,0,)P h '-,使得xy 面的电位为零,如图3.2.2。
这种情况,对于0z >的空间区域,电荷分布与边界条件都与前一种情况相同,根据唯一性定理,这两种情况0z >区域的电位是相同的。
也就是说,可以通过后一种情况中的两个点电荷来计算前种问题的待求场。
对比这两种情况,对0z >区域的场来说,后一种情况位于(0,0,)P h '-点的点电荷与前一种情况导电面上的感应电荷是等效的。
由于这个等效的点电荷与待求场区的点电荷相对于边界面是镜像对称的,所以这个等效的点电荷称为镜像电荷,这种通过场区之内的电荷与其在待求场区域之外的镜像电荷来进行计算电场的方法称为镜像法。