初三二次函数的图像与性质
- 格式:docx
- 大小:37.64 KB
- 文档页数:4
第二十二章 二次函数第5讲 二次函数的图象和性质【板块一】二次函数的图象和性质题型一 开口方向、对称轴、顶点坐标及位置【例1】(1)抛物线y =2x ²+1的开口方向是 向上 ,对称轴是 y 轴 ,顶点坐标是 (0,1) ;二次函数y =-12(x +1)²﹣2的图象的开口方向是 向下 ,对称轴是直线 x =﹣1 ,顶点坐标是(﹣1.﹣2). (2)抛物线y =2x ²+1在x 轴的 上 方;当x >0时,图象自左向右逐渐 上升 ,它的顶点是最低点;抛物线y =-12(x +1)²﹣2,当x 为全体实数 时,它的图象在x 轴的 下方 ,顶点是 最高点 。
【解析】当a >0时,开口向上;当a <0时,开口向下,y =a (x ﹣h )²+k 的顶点坐标为(h ,k ),对称轴是直线x =h ;当a >0时,抛物线的顶点为最低点,当a <0时,抛物线的顶点为最高点。
题型二 抛物线的开口大小【例2】如图,若抛物线y =ax ²与四条直线x =1,x =2,y =1,y =2围成的正方形ABCD 有公共点,则a 的取值范围是( )A .14≤a ≤1B .12≤a ≤2C .12≤a ≤1D .14≤a ≤2 【解析】确定a 的取值范围,就是探究抛物线的开口大小,当抛物线经过点D 时,开口最小;抛物线经过点B 时,开口最大,而这两条抛物线的解析式的a 值分别2,14,∴14≤a ≤2. 故选D.【例3】如图,在同一平面直角坐标系中,作出①y =x ²;②y =-12x ²,③y =-2x ²的图象,则三个图象I ,Ⅱ,Ⅲ对应的抛物线的解析式依次是 ②③① .【解析】当a >0时,开口向上,当a <0时,开口向下;当|a |越大,开口越小,当|a |越小,开口越大。
故抛物线I 的解析式为y =-12x ²,抛物线Ⅱ的解析式为y =﹣2x ²;抛抛物线Ⅲ的解析式为y =x ².故填②③① 题型三 抛物线的对称性 【例4】抛物线y =ax ²+bx +5经过A (2,5).B (﹣1,2)两点。
九年级数学竞赛专题 ---二次函数的图像与性质一、内容概述二次函数有丰富的内容,下面从四个方面加以总结1.定义: 形如函数2(0)y ax bx c a =++≠称为二次函数,对实际问题二次函数也有定义域.2.图像二次函数的图像为抛物线,一般作二次函数图像,取五个点,先确定顶点的横坐标,再以它为中心向左、向右对称取点.3.性质 对2(0)y ax bx c a =++≠的图像来讲,(1)开口方向:当0a >时,抛物线开口向上;当0a <时,抛物线开口向下。
(2)对称轴方程:2bx a=-(3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭(4)抛物线与坐标轴的交点情况: 若240bac -<,则抛物线与x 轴没有交点;若240b ac -=,则抛物线与x 轴有一个交点;若240b ac ->,则抛物线与x 轴有两个交点,分别为,;另外,抛物线与y 轴的交点为()0,c .(5)抛物线在x a=(6)y 与x 的增减关系:当0a >,2b x a >-时,y 随x 的增大而增大,2bx a <-时,y 随x 的增大而减小;当0a <,2b x a >-时,y 随x 的增大而减小,2bx a<-时,y 随x 的增大而增大.(7)最值:当0a >时,y 有最小值,当2b x a =-时,244ac b y a -最小值=;当0a <时,y 有最大值,当2b x a =-时,244ac b y a-最大值=(8)若抛物线与x 轴两交点的横坐标为1x 、2x (12x x <),则:当0a >时,12x x x <<时,0y <;12x x x x <>或时,0y >;当0a<时,12x x x <<时,0y >;12x x x x <>或时,0y <.4.求解析式抛物线的解析式常用的有三种形式:(1)一般式:2(0)y ax bx c a =++≠(2)顶点式:2()(0)y a x h k a =-+≠,其中(,)h k 是抛物线的顶点坐标。
二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。
2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。
二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。
2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。
3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。
4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。
三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。
2.求对称轴:对称轴为x=h。
3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。
4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。
四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。
2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。
3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。
五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。
初三数学:《二次函数的图象和性质》知识点归纳二次函数图像的性质:1.二次函数(a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点是原点(0,0)。
(1)二次函数图像怎么画作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。
(2)二次函数与的图像和性质:2.二次函数(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与的图像形状相同,只是位置不同。
函数的图像是由抛物线向上(或下)平移|k|个单位得到的。
当a>0时,抛物线的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。
当a<0时,抛物线的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。
顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。
3.二次函数(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与的图像形状相同,位置不同,函数(a≠0)的图像是由抛物线向右(或左)平移|h|个单位得到的。
画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。
当a>0时,抛物线的开口向上,在对称轴的左边(xh时),曲线自左向右上升,函数y随x的增大而增大。
顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。
二次函数与三角函数的图像与性质一、二次函数的图像与性质1.图像特点:二次函数的图像是一条开口向上或向下的抛物线。
开口向上的抛物线顶点在最低点,开口向下的抛物线顶点在最高点。
2.性质:二次函数的图像具有对称性,对称轴是抛物线的轴线,即x = -b/2a。
对称轴上的点关于抛物线对称。
3.顶点:二次函数的顶点坐标为(-b/2a, c - b^2/4a)。
顶点是抛物线的最高点或最低点,取决于a的正负。
4.零点:二次函数与x轴的交点称为零点。
二次函数最多有两个零点。
5.开口方向:当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
6.增减性:当a > 0时,随着x的增大,y值增大;当a < 0时,随着x的增大,y值减小。
二、三角函数的图像与性质1.正弦函数(sin x):–图像特点:正弦函数的图像是一条周期性波动的曲线,周期为2π。
–性质:正弦函数的值域为[-1, 1],在0°到π之间,正弦函数是增函数;在π到2π之间,正弦函数是减函数。
2.余弦函数(cos x):–图像特点:余弦函数的图像与正弦函数相似,也是一条周期性波动的曲线,周期为2π。
–性质:余弦函数的值域为[-1, 1],在0°到π之间,余弦函数是减函数;在π到2π之间,余弦函数是增函数。
3.正切函数(tan x):–图像特点:正切函数的图像是一条周期性波动的曲线,周期为π。
–性质:正切函数的值域为全体实数,在每个周期内,正切函数是增函数。
4.弧度制与角度制的转换:–弧度制:π rad = 180°。
–角度制:1° = π/180 rad。
5.三角函数的定义:–正弦函数:sin x = 对边/斜边。
–余弦函数:cos x = 邻边/斜边。
–正切函数:tan x = 对边/邻边。
三、二次函数与三角函数的图像与性质的联系与区别1.联系:二次函数与三角函数都是周期性函数,具有周期性波动的特点。
二次函数的图像和性质总结二次函数(Quadratic Function)是高中数学中重要的一个部分,是指一种形式为y=ax²+bx+c(a≠0)的函数。
二次函数的图像是一条抛物线,其性质包括:开口方向、顶点、对称轴、最值、零点、增减性等。
下面将对二次函数的图像和性质进行详细总结。
一、图像特征:1.开口方向:-当a>0时,抛物线开口向上;-当a<0时,抛物线开口向下。
2.顶点:-对于抛物线开口向上的情况,顶点是抛物线的最低点;-对于抛物线开口向下的情况,顶点是抛物线的最高点。
3.对称轴(y轴):- 对于一般的二次函数y=ax²+bx+c,其对称轴的方程为x=-b/2a;-对于抛物线开口向上的情况,对称轴是抛物线的最低点;-对于抛物线开口向下的情况,对称轴是抛物线的最高点。
4.最值:-对于抛物线开口向上的情况,最小值为顶点的纵坐标;-对于抛物线开口向下的情况,最大值为顶点的纵坐标。
5.零点:- 零点是指二次函数y=ax²+bx+c与x轴的交点;-二次函数可能有0个、1个或2个零点;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
6.增减性:-当a>0时,抛物线开口向上,函数在对称轴两侧递增;-当a<0时,抛物线开口向下,函数在对称轴两侧递减。
二、性质总结:1.函数的解析式:- 二次函数的解析式一般形式为y=ax²+bx+c,其中a、b、c为常数,a≠0;-通过解析式可以得到函数的图像特征。
2.零点:-零点是指函数与x轴的交点;- 零点可以通过解二次方程ax²+bx+c=0来求解;- 当判别式D=b²-4ac>0时,有两个不相等的实数根;- 当判别式D=b²-4ac=0时,有两个相等的实数根;- 当判别式D=b²-4ac<0时,无实数根。
二次函数图像性质与应用二次函数,也叫做一元二次方程,是中学数学中非常重要的一门知识。
它的图像是一条叫做抛物线的曲线,也广泛应用于物理学、经济学、生物学等领域。
在这篇文章中,我将会介绍二次函数的图像性质以及在现实生活中的应用。
一、二次函数的图像性质二次函数是以 x 的二次方作为自变量的函数。
它的一般式为:y = ax^2 + bx + c其中,a、b、c 都是实数,a 不等于 0。
这个式子是抛物线的标准式,根据 a 的正负可以确定抛物线的形状。
如果 a 大于 0,抛物线开口朝上;如果 a 小于 0,抛物线开口朝下。
除了开口方向,二次函数还有一些其他的图像性质。
以下是一些重要的性质:1、对称轴二次函数的对称轴是一个垂直于 x 轴的直线。
它过抛物线的顶点,用下面的公式可以求出它的方程:x = -b / 2a2、零点二次函数的零点就是方程 y = 0 的解。
抛物线和 x 轴的交点就是它的零点。
用下面的公式可以求出它的值:x = (-b ± √(b^2 - 4ac)) / 2a如果判别式 b²-4ac 大于 0,那么二次函数就会有两个不同的零点;如果判别式等于 0,那么二次函数有一个二重根;如果判别式小于 0,那么二次函数没有实数解。
3、极值二次函数的极值就是抛物线的顶点。
如果 a 大于 0,那么它的极小值就是 y = c - (b²/4a),对应的 x 坐标是 -b/2a;如果 a 小于 0,那么它的极大值就是 y = c - (b²/4a),对应的 x 坐标也是 -b/2a。
二、二次函数在现实生活中的应用二次函数在现实生活中的应用非常广泛。
以下是几个例子。
1、建筑设计建筑设计中常常需要使用二次函数。
比如说,建筑师需要设计一个带拱形的门,那么他们会使用二次函数来描述这个门的形状。
不同的二次函数可以绘制出不同形状的门,用于满足客户的设计需求。
2、股市预测股市是一个非常复杂的市场,股票价格每天都有不同的波动。
初三二次函数的图像与性质
二次函数是初中数学中的一个重要概念。
在数学学习的过程中,我
们常常会接触到二次函数,并且需要了解它的图像特点以及性质。
本
文将详细介绍初三二次函数的图像和性质,并且给出相关的例题和解析。
一、二次函数的定义及一般式
二次函数是指函数$y=ax^2+bx+c$,其中$a,b,c$为常数且$a\neq 0$。
它的图像是抛物线,并且开口的方向由$a$的正负决定。
当$a>0$时,
抛物线开口向上;而当$a<0$时,抛物线开口向下。
二次函数的一般式为$y=ax^2+bx+c$,其中$a,b,c$为常数。
其中,
$a$代表抛物线的开口方向与开口的大小,$b$影响抛物线的位置,
$c$影响抛物线和$y$轴的交点。
【例题1】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数的图
像和性质。
解:根据给定的二次函数方程,我们可以得到$a=2$,$b=-3$,
$c=1$。
由于$a>0$,所以抛物线开口向上。
考虑二次函数的图像特点,我们可以使用一些方法来绘制它的图像。
首先,我们可以找出抛物线的对称轴,对称轴的方程为$x=-
\frac{b}{2a}$。
代入$a=2$,$b=-3$,我们得到$x=-\frac{-
3}{2\times2}=\frac{3}{4}$。
因此,对称轴的方程为$x=\frac{3}{4}$。
接下来,我们需要计算抛物线的顶点坐标。
顶点坐标可以通过将对
称轴的$x$坐标代入原函数方程计算得到。
将$x=\frac{3}{4}$代入
$y=2x^2-3x+1$,我们得到$y=2(\frac{3}{4})^2-
3(\frac{3}{4})+1=\frac{9}{8}-\frac{9}{4}+1=\frac{1}{8}$。
因此,顶点
坐标为$(\frac{3}{4}, \frac{1}{8})$。
不难看出,根据顶点的坐标和对称轴的方程,我们可以绘制出该二
次函数的图像。
它是一个开口向上的抛物线,对称轴为$x=\frac{3}{4}$,顶点坐标为$(\frac{3}{4}, \frac{1}{8})$。
既然我们已经知道了二次函数的图像,接下来我们来了解它的性质。
二、二次函数的性质
1. 零点和交点:二次函数可能有零,也可能没有。
当二次函数有零
点时,这些点就是函数图像与$x$轴的交点。
零点可以通过解方程
$ax^2+bx+c=0$求得。
若该方程有两个根,说明二次函数与$x$轴有两
个交点;若该方程有一个根,说明二次函数与$x$轴有一个交点;若该
方程没有实根,说明二次函数与$x$轴没有交点。
【例题2】某二次函数的方程是$y=2x^2-3x+1$,求该二次函数与
$x$轴的交点。
解:我们已经知道了这个二次函数的方程为$y=2x^2-3x+1$。
要求
它与$x$轴的交点,我们需要解方程$2x^2-3x+1=0$。
通过使用求根公式$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$,我们可以求
出该方程的根。
代入$a=2$,$b=-3$,$c=1$,我们得到$x=\frac{-(-
3)\pm\sqrt{(-3)^2-4\times2\times1}}{2\times2}=\frac{3\pm\sqrt{1}}{4}$。
化简后得到$x=\frac{3\pm1}{4}$,即$x=\frac{1}{2}$和$x=1$。
因此,该二次函数与$x$轴的交点为$(\frac{1}{2}, 0)$和$(1, 0)$。
2. 单调性:二次函数在对称轴两侧具有不同的单调性。
当$a>0$时,对称轴上的函数值最小,函数图像开口向上,所以函数在对称轴两侧
递增;当$a<0$时,对称轴上的函数值最大,函数图像开口向下,所以
函数在对称轴两侧递减。
3. 极值点:二次函数的顶点是它的极值点。
当$a>0$时,函数的顶
点为最小值点;当$a<0$时,函数的顶点为最大值点。
通过以上性质,我们可以更好地理解和分析二次函数的图像。
【例题3】如果一个二次函数的顶点坐标为$(3, 4)$,且开口向上,
求该二次函数的方程。
解:已知顶点坐标为$(3, 4)$,开口向上。
根据顶点的坐标,我们可
以得到对称轴的方程为$x=3$。
由于开口向上,所以$a>0$。
代入到一般式$y=ax^2+bx+c$,我们得
到$y=a(x-3)^2+4$。
至此,我们可以得到该二次函数的方程为$y=a(x-3)^2+4$,其中$a>0$。
通过以上的例题和解析,我们对初三二次函数的图像与性质有了较为深入的了解。
掌握了二次函数的图像特点和性质,我们可以更好地解题和应用二次函数。
综上所述,初三二次函数的图像是一个抛物线,其开口的方向由$a$的正负决定。
初三二次函数的性质包括零点和交点、单调性以及极值点等。
理解并掌握这些概念,可以帮助我们更好地应对与二次函数相关的问题和题目。
初三同学们在学习二次函数时,可通过总结归纳了解二次函数的图像与性质,并灵活应用于解题过程中。
希望本文所述能为初三同学的数学学习提供一定的帮助。