药物分离与纯化技术提纲(自制)
- 格式:docx
- 大小:25.66 KB
- 文档页数:3
第一章绪论1.药物分离与纯化过程分为机械分离与传质分离,机械分离针对非均相混合物,传质分离(物质传递)针对均相混合物,分为平衡分离过程与速度控制分离。
2.分离剂可以是能量或物质(质量)。
第二章药物分离纯化前的预处理技术1.预处理的目的:将目的产物转移到易于分离的相态中(液相),同时除去大部分杂质,改变流体特性,利于后续分离。
2.药物成分的形成阶段只能获得含有目的药物成分的混合物,难以进行药物分离。
3.预处理主要完成任务:(1)去除大部分可溶性杂质(阳离子、生物大分子)(2)采用凝聚或絮凝技术,将胶体状态的杂质转化为易于分离的较大颗粒。
(3)改善料液的流动性,便于固液分离(4)固液分离(5)将胞内产物从细胞内释放出来4.沉淀技术:(1)高价离子:Ca2+、Mg2+、Fe3+a影响离子交换b对药物降解加速催化作用(2)生物大分子(可溶性黏胶状物):蛋白、核酸、多糖a粘度增大,影响固-液分离。
b乳化作用,吸附离子基团。
5.沉淀法去除杂质常用的方法:等电点沉淀法,变性沉淀法,盐析法,有机溶剂沉淀法,反应沉淀法。
6.等电点沉淀法原理:蛋白质是两性电解质,当溶液PH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀。
7.变性沉淀法原理:利用蛋白质、酶、核酸等生物大分子对某种物理或化学因素的敏感性差异,实现分离。
8.盐析法概念:在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。
9.盐析法影响因素:(1)盐析剂的性质和加入量(2)溶液的pH值(3)蛋白类化合物的性质(4)蛋白浓度(5)温度10.常用的凝聚剂:AlCl3·6H2O、Al2(SO43·18H2O(明矾)、K2SO4·Al2(SO43·24H2O、FeSO4·7H2O、FeCl3·6H2O、ZnSO4和MgCO3等。
药物分离纯化技术药物分离纯化技术是指将从动物或植物中提取得到的药物混合物中的目标化合物分离出来,并通过一系列步骤将其纯化至高纯度的过程。
以下是常用的药物分离纯化技术:1. 液相色谱(Liquid Chromatography,LC):将药物混合物溶解于溶剂中,通过将混合物通过填充剂或固定相的柱子上来实现目标物的分离。
常用的液相色谱方法包括高效液相色谱(HPLC)和逆向相色谱等。
2. 气相色谱(Gas Chromatography,GC):将药物混合物蒸发成气体,并通过气相色谱柱上的分离工作逐步分离出目标物。
气相色谱适用于易挥发或揮发性较强的化合物。
3. 薄层色谱(Thin Layer Chromatography,TLC):将药物混合物涂敷在薄层色谱板上,通过溶剂的上升作用,根据化合物在薄层上的分区来分离目标物。
4. 指示剂色谱(Bioautography):将药物混合物在裂解液中裂解后,涂敷在含有微生物的琼脂板上,通过微生物的生长情况来检测药物混合物中的目标物。
5. 半制备液相色谱(Preparative Liquid Chromatography,PLC):与液相色谱类似,但用于大规模制备药物纯化,适用于小样品到大样品的纯化过程。
6. 结晶技术(Crystallization):通过调节药物混合物在溶液中的溶解度,使目标化合物以结晶的形式在溶液中析出,再通过过滤和干燥等步骤来纯化。
7. 蒸馏技术(Distillation):根据药物混合物中的组分在不同温度下的汽化和冷凝特性,通过升温蒸发、冷凝回收来分离纯化目标物。
以上是一些常见的药物分离纯化技术,根据具体情况和要求,可以选择合适的技术来进行药物分离纯化。
药物分离纯化技术
药物分离纯化技术是指将混合物中的目标药物分离出来,并进行纯化的过程。
常用的药物分离纯化技术包括以下几种:
1. 薄层色谱(TLC):将混合物样品沿着薄层分离材料上均匀涂敷,然后用溶剂在材料上上升,通过不同药物的分区系数和吸附作用,将药物分离出来。
2. 柱层析:将混合物样品加入到柱层析柱中,利用不同药物在固定相和流动相间的分配系数和吸附作用,使药物在柱中分离。
3. 溶剂萃取:利用不同药物在不同溶剂中的溶解度差异,通过多次萃取步骤将目标药物从混合物中分离出来。
4. 结晶分离:选择适当的溶剂和结晶条件,将目标药物从混合物中结晶出来,然后通过过滤或离心分离固体药物。
5. 膜分离技术:利用膜的分子筛选性能,通过溶质在膜上的迁移速率差异将药物分离出来。
6. 超滤技术:通过膜的筛选作用,去除混合物中的大分子物质,将目标药物分离出来。
7. 蒸馏技术:利用混合物中不同成分的沸点差异,将目标药物通过升温、蒸发然后冷凝的方式分离出来。
以上只是一些常见的药物分离纯化技术,具体应根据不同药物的特性和需求选择合适的方法。
药物分离与纯化技术
药物分离与纯化技术是制药工业中的一项重要技术,用于从复杂的混合物中分离出目标药物,并进一步提纯得到纯净的药物物质。
以下是一些常用的药物分离与纯化技术:
1. 萃取:利用溶剂选择性地从混合物中提取目标药物。
常用的溶剂有水、有机溶剂和液体萃取剂等。
2. 结晶:通过控制温度和溶剂浓度,使目标药物从溶液中结晶出来。
结晶可以得到纯度较高的药物晶体。
3. 洗脱层析:利用不同物质在固体表面的吸附特性,将混合物中的成分逐个洗脱分离。
常用的洗脱层析方法有凝胶层析、离子交换层析和亲和层析等。
4. 薄层层析:将混合物在薄层介质上进行分离,通过不同成分的迁移率差异实现分离。
常用的薄层介质有硅胶和氧化铝等。
5. 气相色谱:将混合物通过气相色谱柱,根据成分在固定相和移动相间的分配系数差异进行分离。
气相色谱常用于分析药物的化学结构和纯度。
6. 液相色谱:根据成分在固定相和移动相间的分配系数差异进行分离。
常用的液相色谱有高效液相色谱(HPLC)、反相液相色谱和离子对色谱等。
7. 脱色:通过活性炭吸附、凝胶吸附或化学反应等方法去除药物中的颜色杂质。
这些技术可以单独应用,也可以结合使用,根据药物的特性和分离纯化目标进行选择。
通过药物分离与纯化技术,可以得到高纯度的药物物质,提高药物质量和疗效,并确保药物的安全性和稳定性。
对药物的分离、提取、纯化的技术要求下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 分离技术要求。
在药物分离过程中,需要选择适合的分离技术以获取纯净的目标化合物。
生物药物质的分离和纯化技术生物药物在近年来的医疗中发挥了越来越重要的作用,但是由于其含有复杂的蛋白质结构和构型,导致其生产过程中难以控制纯度和活性。
因此,生物药物质的分离和纯化技术成为了生产过程中一个最为关键的环节。
生物药物的分离和纯化技术是把药品原液中的单个蛋白质精细分离出来,在分离的基础上使药品纯度和活性得到提高。
生物药物质分离和纯化的难点就在于,不同的分子量、极性、电荷、疏水性等特性,导致不同物质在离子交换、凝胶过滤、亲和层析和逆相高效液相等不同技术中表现出不同的行为,从而使得药品的分离和纯化变得极其复杂。
常见的生物药物质分离和纯化技术主要有以下几种:1.离子交换层析技术离子交换层析技术是通过蛋白质表面带有的正、负电荷与固定于固定相上的相反电荷之间起到吸附分离作用。
整个分离和纯化过程中需要调整运行条件,如盐度、pH、温度等,来使得目标蛋白成功地与离子交换基团相互作用,从而使得其他物质被洗脱,随后目标蛋白通过洗脱的过程得到纯化。
2.凝胶过滤技术凝胶过滤技术是利用凝胶颗粒的孔径大小不同来过滤分别具有不同分子量的生物大分子。
常用于纯化较大分子的生物大分子,如蛋白质、免疫球蛋白等。
运用凝胶过滤技术可以使目标蛋白与凝胶颗粒进一步分离,从而达到目标蛋白的纯化提纯。
3.亲和层析技术亲和层析技术是通过固定到固定相质量表面上的活性配体和目标蛋白之间的特异性结合作用来分离目标分子。
在分离过程中,根据目标蛋白的生物特性和生理功能可以选择不同的亲和配体,如金属离子、受体蛋白、抗体等。
亲和层析技术的优点是,分离和纯化目标蛋白的选择性很高,引起的非特异性吸附现象较小,分离过程较快,与离子交换层析、逆相高效液相相比,会降低纯化过程中的一些较难消除的杂散反应。
4.逆相高效液相技术逆相高效液相技术是利用高效液相色谱仪(HPLC)来对细胞和组织提取物中的蛋白质进行精密分离。
逆相高效液相技术是在一种无水有机溶剂(如甲醇、乙腈)中进行,通过这种条件下蛋白质上极性残基(如酸性残基、碱性残基)与柱面上有机溶剂上的亲疏水相互作用来实现分离。
药物分离纯化技术
药物分离纯化技术是指通过一系列化学、物理或生物学的
方法,将混合物中的目标药物分离出来并纯化的一种技术。
常用的药物分离纯化技术包括以下几种。
1. 薄层层析:利用吸附剂在薄层上的分离作用,将混合物
中的组分分离出来。
这种方法操作简单、快速,适用于小
规模的样品。
2. 柱层析:将混合物通过柱层析柱,利用不同组分在固定
相上吸附和脱附的差异来实现分离。
3. 液液萃取:利用溶解度差异将目标药物从混合物中提取
出来。
一般是将混合物和提取剂进行混合,然后通过萃取
剂的溶解度选择性地提取目标药物。
4. 活性炭吸附:利用活性炭对目标药物具有吸附作用,将混合物中的目标药物吸附到活性炭上,然后通过洗脱等方法将药物从活性炭上分离出来。
5. 膜分离:利用不同孔径大小的膜来分离混合物中的目标药物。
常用的膜分离技术包括微滤、超滤、逆渗透等。
6. 结晶技术:通过控制溶液的温度、浓度等条件,使药物从溶液中结晶出来,然后通过过滤、洗涤等步骤将结晶物纯化。
7. 固相萃取:利用固相吸附剂的选择性吸附作用将目标药物从混合物中分离出来。
常用的固相萃取方法包括固相萃取柱、固相萃取板和固相微萃取等。
以上仅为常见的药物分离纯化技术,具体使用哪种技术还需要根据具体情况进行选择。
药物分离纯化技术嘿,朋友们!今天咱来聊聊药物分离纯化技术。
这玩意儿啊,就好比是在一堆乱糟糟的杂物里找出宝贝一样重要!你想想看,药物就像是一个大杂烩,里面有各种各样我们需要的有效成分,但也有好多杂质混在里面呢。
这时候,药物分离纯化技术就闪亮登场啦!它就像一个神奇的魔法师,能把那些我们真正想要的东西给变出来,把杂质统统赶跑。
比如说,有些药物成分就像调皮的小孩子,藏在角落里不愿意出来,这可咋办呢?那咱就得想办法把它们哄出来呀!用各种巧妙的方法,让它们乖乖地现身。
这过程可不简单,得有耐心,还得有技术。
有时候,就像是在大海捞针一样困难。
但咱可不能退缩,得鼓起勇气往前冲!咱得仔细研究,找到最合适的方法,把那一点点珍贵的成分给分离出来。
再打个比方,这药物分离纯化技术就像给药物做一次超级精细的“美容”。
把那些不好看的、多余的东西去掉,只留下最精华、最有用的部分。
让药物变得干干净净、漂漂亮亮的,这样才能更好地发挥作用呀!你说,要是没有这技术,那我们吃的药里面不就有好多乱七八糟的东西啦?那可不行,咱得对自己的身体负责呀!所以说,这药物分离纯化技术真的是太重要啦!而且哦,这技术可不是一成不变的。
它也在不断进步,不断创新呢!就像我们的生活一样,每天都有新的变化。
科学家们一直在努力,让这个技术变得越来越厉害,能分离出更纯、更好的药物成分。
你想想,以后我们吃的药效果越来越好,副作用越来越小,那得多棒啊!这可都得感谢药物分离纯化技术的不断发展呀!总之,药物分离纯化技术就是药物领域里的大功臣,没有它可不行!咱可得好好重视它,让它为我们的健康保驾护航!这可不是开玩笑的事儿,这是关乎我们每个人生命和健康的大事儿啊!所以啊,大家都要了解了解这个神奇的技术,说不定哪天就能派上大用场呢!。
第一章绪论
1.药物分离与纯化过程分为机械分离与传质分离,机械分离针对非均相混合物,传质分离(物质传递)针对均相混合物,分为平衡分离过程与速度控制分离。
2.分离剂可以是能量或物质(质量)。
第二章药物分离纯化前的预处理技术
1.预处理的目的:将目的产物转移到易于分离的相态中(液相),同时除去大部分杂质,改变流体特性,利于后续分离。
2.药物成分的形成阶段只能获得含有目的药物成分的混合物,难以进行药物分离。
3.预处理主要完成任务:
(1)去除大部分可溶性杂质(阳离子、生物大分子)
(2)采用凝聚或絮凝技术,将胶体状态的杂质转化为易于分离的较大颗粒。
(3)改善料液的流动性,便于固液分离
(4)固液分离
(5)将胞内产物从细胞内释放出来
4.沉淀技术:
(1)高价离子:Ca2+、Mg2+、Fe3+
a影响离子交换
b对药物降解加速催化作用
(2)生物大分子(可溶性黏胶状物):蛋白、核酸、多糖
a粘度增大,影响固-液分离。
b乳化作用,吸附离子基团。
5.沉淀法去除杂质常用的方法:等电点沉淀法,变性沉淀法,盐析法,有机溶剂沉淀法,反应沉淀法。
6.等电点沉淀法原理:蛋白质是两性电解质,当溶液PH值处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,由于分子间引力,形成蛋白质聚集体,进而产生沉淀。
7.变性沉淀法原理:利用蛋白质、酶、核酸等生物大分子对某种物理或化学因素的敏感性差异,实现分离。
8.盐析法概念:在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。
9.盐析法影响因素:
(1)盐析剂的性质和加入量
(2)溶液的pH值
(3)蛋白类化合物的性质
(4)蛋白浓度
(5)温度
10.常用的凝聚剂:AlCl3·6H2O、Al2(SO4)3·18H2O(明矾)、K2SO4·Al2(SO4)3·24H2O、FeSO4·7H2O、FeCl3·6H2O、ZnSO4和MgCO3等。
11.凝聚作用与絮凝作用的区别:凝聚作用是指某些电解质(凝聚剂)作用下,破坏胶体系统分散状态,而使胶体粒子聚集过程,而絮凝作用是通过架桥作用将许多微粒聚集在一起,形成粗大的松散絮团的过程。
12.助滤剂:具有一定刚性的颗粒或纤维状的固体。
13.常用助滤剂:硅藻土,珍珠岩,活性碳等。
14.细胞破碎方法
(1)机械法:高压均浆法(可大规模操作),珠磨法(可较大规模操作)、超声破碎法、X-press法
(2)非机械法:酶解法、化学渗透法、渗透压法、冻结融化法、干燥法。
15.高压匀浆法原理:细胞悬浮液在高压的作用下从阀座与阀之间的环隙高速喷出,每秒速度高达几百米,高速喷出的浆液又射到静止的撞击环上,被迫改变方向从出口管流出。
细胞在这一系列高速运动过程中经历了剪切、碰撞及由高压到常压的变化,从而造成细胞破碎。
第三章萃取技术
1.杠杆原理:
2.影响液液萃取的因素:被分离物质本身,萃取剂的选择及用量,操作条件(pH,温度,盐析),设备。
3.分配系数K↑被萃取组分在萃取剂中含量越高,萃取分离越易进行
4.选择性系数β值的大小,说明溶萃取剂对原溶液中各组分的分离能力。
β越大,越有利于萃取分离。
萃取操作中β值均应大于1。
β=1即没有分离效果,换言之,该溶剂不能用作原料液的萃取剂。
5.萃取剂的物理、化学性质:a密度,b界面张力,c黏度,d化学性质与其他
6.萃取剂的经济指标:价格便宜,来源方便,对环境污染小,便于回收(蒸馏,蒸发)等。
7.乳化是指一种以细小液滴的形式均匀分散在另一不相溶的液体生成的液体称为乳状液或乳浊液。
8.破乳化:(1)物理法:加热法,稀释法,吸附法。
(2)化学法:盐析
(3)顶替法
(4)转型法:加入表面活性剂——转型
(5)机械方法:过滤和离心,加速碰撞而聚集
9.萃取剂回收:单组分溶剂回收(简答蒸馏)低浓度溶剂回收(精馏)
10.浸取(固液萃取)是指用溶剂将固体物中的某些可溶组分提取出来,使之与固体的不溶部分(或称惰性物)分离的过程。
11.浸取溶剂的影响:
(1)浸取溶剂的选择:
常用的浸取溶剂:水、乙醇、丙酮、乙醚、乙酸乙酯等。
(2)浸取辅助剂
常用的浸取辅助剂:酸、酸、表面活性剂
(3)浸取溶剂用量及浸取次数
(4)浸取溶剂的Ph值
12.浸取操作条件的影响:
(1)浸取温度
(2)浸出时间
(3)浸取压力
13.浸取方法:l.浸渍法2.煎煮法(有效成分溶于水、对湿热较稳定的药材)3.渗漉法(浓度梯度大,浸出效果好,溶剂用量少,适合贵重、含量低的药材浸出。
药材-粉碎-润湿-装填-浸啧-渗漉-滤过渗漉液-浓缩至规定浓度。
)4.回流法 5. 连续回流法
14.双水相的形成:两高分子化合物水溶液相互混合时,如两种被混合分子间,存在空间排斥力,他们的线团结构无法相互渗透,则在达到平衡后就可能分成两相,形成双水相。
(分子量越大,分子间的作用力也越大)
15.双水相萃取过程主要包括:双水相的形成、溶质在双水相中的分配和两相的分离。
16.双水相萃取的特点:
①萃取操作条件比较温和;
②安全性能高,产品活性损失少,无有机溶剂残留、污染;
③易于放大,各种参数可按比例放大而产物收率并不降低,这是其他分离技术无法比拟的。
④操作方便,设备投资小,操作简单;萃取体系具有较好的可调性;
⑤适合生物活性物质的萃取,(含水量高(70%~90%),适宜提取水溶性的蛋白质、酶等生物活性物质且不易引起蛋白质的变性失活;
17.影响双水相萃取的影响因素
①聚合物(类型、分子量、浓度)
②盐(种类、离子强度、浓度)
③被分离物质
④温度
⑤pH。