第一章 药物分离纯化技术 绪论
- 格式:ppt
- 大小:904.00 KB
- 文档页数:10
分离纯化过程 :通过物理,化学或生物等手段,或将这些方法结合,将某混合物系分离纯化成两个或多个组成彼此不同的产物的过程。
分离纯化过程按原理分类可分为两类 :机械分离(相间无物质的传递 ,传质分离(相间有物质的传递回收率 :R=Q/Q0X100%(1%以上常量分析的回收率应大于 99%;痕量组的分离应大于 90%或 95%。
分离因子 :SA,B=RA/RB=(QA/QB /(Q0A/Q0B 分离因子的数值越大,分离效果越好。
萃取:将样品中的目标化合物选择性的转移到另一相中或选择性地保留在原来的相中(转移非目标产物 , 从而使目标化合物与原来的复杂基体相互分离的方法。
反萃取 :在溶剂萃取分离过程中,当完成萃取操作后,为进一步纯化目标产物或便于下一步分离操作的正确,往往需要将目标产物转移到水相,这种调节水相条件,将目标产物从有机相转入水相的萃取操作。
物理萃取 :溶质根据相似相溶的原理在两相间达到分离平衡。
特点:被萃取物在水相和有机相中都以中性分子的形式存在,溶剂与被萃取物之间没有化学结合,也不外加萃取剂,两种分子的大小与结构越相似, 他们之间的互溶性越大。
化学萃取 :也称为反应萃取,是利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性符合分子实现向有机相的分配。
分配定律 :即溶质的分配平衡规律,指在恒温恒压条件下,溶质在互不相容的亮相中达到分离平衡时,如果其在两相中的相对分子质量相等(不发生解离,缔合,配位等,溶质以同一分子形式存在 ,则其在两相中的平衡浓度之比为常数。
即C1/C2=A。
C1, C2为溶质在两相中分配达到平衡时的浓度,严格讲是活度。
应用条件:1,必须是稀溶液; 2,溶剂对溶质的互溶没有影响; 3,必须是同一种分子类型,即不发生缔合或解离。
萃取率 :表示一种溶剂对某种溶质的萃取能力, 在萃取过程中被萃取组分从原始料液相转移到萃取相的量。
萃取率 =萃取相中溶质总量 /原始料液中溶质总量X100%=M2V2/(M1V1+ M2V2 X100%=E/(E+1 萃取因素 E =萃取相中溶质的量 /萃余相中溶质的量 = M2V2/M1V1=A*V2/V1。
《药物分离与纯化技术》教案第一节本课程的研究对象和内容一、药品生产过程药品生产过程包括原料药生产过程和药物制剂过程。
(一)原料药生产过程药物成分获得化学合成法针对所需合成药物成分的分子结构、光学构象等要求,制订合理的化学合成工艺路线和步骤,确定出适当的反应条件,设计或选用适当的反应器,完成合成反应操作以获得含药物成分的反应产物。
生物发酵法生物发酵则通过自然界的生物机体、组织、细胞,通过生长代谢合成含有具有预防、治疗和诊断功能药物成分的发酵液。
中药提取法通过对中药材有效成分的分析,选择适宜的提取方法,以获得含有药物成分的混合液。
药物分离获得的是含有药物成分的混合物,需要采用固—液分离技术、膜分离技术、液—液萃取技术等各种分离技术,将药物成分从复杂的混合物中分离浓缩。
药物纯化运用离子交换技术、吸附技术、除菌技术、结晶技术等各种纯化技术,对药物进行精制,获得较纯净的药物成分。
把混合物中性质差异比较大的(如固—液非均相混合物的固体和液体)物质的分开过程,溶液中用沉淀方法容易除去的杂质的溶液净化过程,药物成分含量很低的溶液的浓缩过程,都称为分离过程。
把混合物中性质相近的物质分开的过程,溶液中含量很低的杂质的去除过程,药液中热原、色素、细菌等的去除过程,从溶液中析出固体实现精制的过程,都称为纯化过程。
药物干燥最后通过热干燥或冷冻干燥、成品加工过程获得符合药典规定质量要求的原料药。
成品加工原料药在物理形态等方面还不能完全符合产品质量要求或达不到制剂要求,需要通过对其进行整粒、筛分等操作,使原料药的颗粒大小符合颗粒度要求。
(二)制药工业的特点技术密集型产业;生产工艺复杂;生产岗位分工明确;产品品种多;生产投入高;产品质量要求严格。
二、研究对象和内容药物分离与纯化技术:从含有药物成分的混合物中,经分离、纯化并加丁制成符合药典规定的药品生产技术。
研究内容:固—液分离技术、膜分离技术、液—液萃取技术、离子交换技术、吸附技术,除菌技术、结晶技术、干燥技术、药物的加工与包装技术等。
药物分离纯化技术
药物分离纯化技术是指将混合物中的目标药物分离出来,并进行纯化的过程。
常用的药物分离纯化技术包括以下几种:
1. 薄层色谱(TLC):将混合物样品沿着薄层分离材料上均匀涂敷,然后用溶剂在材料上上升,通过不同药物的分区系数和吸附作用,将药物分离出来。
2. 柱层析:将混合物样品加入到柱层析柱中,利用不同药物在固定相和流动相间的分配系数和吸附作用,使药物在柱中分离。
3. 溶剂萃取:利用不同药物在不同溶剂中的溶解度差异,通过多次萃取步骤将目标药物从混合物中分离出来。
4. 结晶分离:选择适当的溶剂和结晶条件,将目标药物从混合物中结晶出来,然后通过过滤或离心分离固体药物。
5. 膜分离技术:利用膜的分子筛选性能,通过溶质在膜上的迁移速率差异将药物分离出来。
6. 超滤技术:通过膜的筛选作用,去除混合物中的大分子物质,将目标药物分离出来。
7. 蒸馏技术:利用混合物中不同成分的沸点差异,将目标药物通过升温、蒸发然后冷凝的方式分离出来。
以上只是一些常见的药物分离纯化技术,具体应根据不同药物的特性和需求选择合适的方法。
药物分离纯化技术嘿,朋友们!今天咱来聊聊药物分离纯化技术。
这玩意儿啊,就好比是在一堆乱糟糟的杂物里找出宝贝一样重要!你想想看,药物就像是一个大杂烩,里面有各种各样我们需要的有效成分,但也有好多杂质混在里面呢。
这时候,药物分离纯化技术就闪亮登场啦!它就像一个神奇的魔法师,能把那些我们真正想要的东西给变出来,把杂质统统赶跑。
比如说,有些药物成分就像调皮的小孩子,藏在角落里不愿意出来,这可咋办呢?那咱就得想办法把它们哄出来呀!用各种巧妙的方法,让它们乖乖地现身。
这过程可不简单,得有耐心,还得有技术。
有时候,就像是在大海捞针一样困难。
但咱可不能退缩,得鼓起勇气往前冲!咱得仔细研究,找到最合适的方法,把那一点点珍贵的成分给分离出来。
再打个比方,这药物分离纯化技术就像给药物做一次超级精细的“美容”。
把那些不好看的、多余的东西去掉,只留下最精华、最有用的部分。
让药物变得干干净净、漂漂亮亮的,这样才能更好地发挥作用呀!你说,要是没有这技术,那我们吃的药里面不就有好多乱七八糟的东西啦?那可不行,咱得对自己的身体负责呀!所以说,这药物分离纯化技术真的是太重要啦!而且哦,这技术可不是一成不变的。
它也在不断进步,不断创新呢!就像我们的生活一样,每天都有新的变化。
科学家们一直在努力,让这个技术变得越来越厉害,能分离出更纯、更好的药物成分。
你想想,以后我们吃的药效果越来越好,副作用越来越小,那得多棒啊!这可都得感谢药物分离纯化技术的不断发展呀!总之,药物分离纯化技术就是药物领域里的大功臣,没有它可不行!咱可得好好重视它,让它为我们的健康保驾护航!这可不是开玩笑的事儿,这是关乎我们每个人生命和健康的大事儿啊!所以啊,大家都要了解了解这个神奇的技术,说不定哪天就能派上大用场呢!。
生物制药中的分离纯化技术生物制药是一种通过生物学过程生产的药物,利用微生物、植物和动物等生物系统生产出的生物制剂,在临床治疗中具有极高的价值。
但是,由于不同来源的生物制剂中含有大量的复杂成分,如蛋白质、核酸、多糖等,在生产的过程中需要通过分离纯化技术来提取所需的成分,从而达到纯化和提纯的目的。
一、生物制药的分离纯化技术概述生物制药的分离纯化技术是指通过化学、物理等方法对发酵产生的混合物进行处理,将所需的成分分离和纯化。
分离纯化技术主要包括:1. 溶液层析技术溶液层析是一种通过分子结构、大小、电荷等特性,通过静态或动态的方式,利用吸附剂将混合物中的不同化合物分离开的技术。
溶液层析广泛应用于蛋白质、核酸等大分子生物制品的分离和纯化中。
2. 凝胶过滤技术凝胶过滤是一种利用孔径大小分离分子的技术。
通过将混合物在凝胶柱中进行过滤,大分子会被阻挡在凝胶柱表面,而小分子则可以通过凝胶柱被洗脱。
凝胶过滤主要应用于分离纯化大分子的蛋白质、多肽和核酸等。
3. 离子交换层析技术离子交换层析是一种利用有机或无机离子交换体作为固定相,通过可控制的盐度梯度和pH值来分离混合物的不同成分的技术。
离子交换层析广泛应用于蛋白质、核酸等带电性物质的分离和纯化中。
4. 亲合层析技术亲合层析是一种通过将特定物质负载在固定相上,与混合物中的目标分子发生特异性结合,分离纯化目标分子的技术。
亲合层析一般应用于蛋白质、核酸等生物大分子结构的分离和纯化中。
以上四种分离纯化技术,在生物制药的分离纯化过程中经常使用。
不同的技术适用于不同的生物制品,生产过程会考虑到最终产品的纯度、产量以及经济成本等方面。
二、现代生物制药分离纯化技术的进展当前,随着现代生物技术的发展,生物制药的分离纯化技术也得到了不断的进步和完善。
新的技术和方法不断涌现,不仅可以提高生产效率,而且还可以提高产品的纯度和质量,降低产品的成本。
以下是一些新技术的介绍。
1. 前体蛋白纳米管系统前体蛋白纳米管系统是利用基因工程技术,将生物分子直接吸附在纳米管表面,从而实现分离的目的。
《药物分离与纯化技术》说课作者:石锐来源:《经济技术协作信息》 2018年第33期一、课程定位《药物分离与纯化技术》是生物制药技术专业在第三学期开设的课程。
本课程的教学目标是培养学生熟练地进行生物药物分离纯化工作,具备从发酵液、动植物细胞培养液或动植物体等原料中提取和精制生物药物的能力。
因此本课程在构建学生职业工作能力过程中起支柱作用,在生物制药技术专业课程体系中处于重要的地位,是专业主干课程。
是生物制药的专业核心课程,是必修课程。
在课程体系中的定位:该课程的前期课程为生物制药基础、微生物检验技术、生物化学技术。
这些课程为该课程的开设提供了技术理论基础。
后续课程是药物分离纯化实训和学生在相应岗位上的顶岗实习,是对本课程学习内容的实际应用。
在就业岗位中的定位:生物制药技术专业对于的岗位群有发酵工、GMP自检员、药物制剂工、提取工、品管员等。
药物分离与纯化技术课程对应的岗位是药物提取工。
二、教学内容以“工学结合,项目导向”的人才培养方案为指导,根据企业相关岗位的行业标准和任务,遵循学生学习知识时循序渐进的原则,依据与课程相关的新知识、新技能的应用,确定理论和实践教学内容。
本课程的课程设计思路为:1以就业为导向,服务生物制药企业的原则。
根据企业的需求,要求学生掌握生物药韧分离纯化工艺的关键操作技术,最终使学生具备完成药物分离纯化的操作技能以及解决工艺中出现问题的能力。
2以生化产品分离纯化工职业资格标准为依据。
根据生化产品分离纯化工国家职业资格四级标准的技能要求、专业知识要求来培养学生的职业能力。
3以企业生物药物提取工岗位所需要的预处理、初步纯化、高度纯化和成品加工等职业能力为核心。
4采用任务驱动、项目化教学的课程设计理念。
在深入行业调查的基础上,以生产过程为依据,按照生产流程固有的顺序,选择生产过程典型工作技能为培养内容,结合职业教育规律,循序渐进安排教学进程。
根据岗位需求整合课程内容,设立4个学习情境,12个学习任务,并根据职业能力要求设计了单项技能项目和综合技能项目,将必须够用的基本概念、基本理论和实践教学有机结合,突出职业能力的培养。
⽣物分离与纯化技术-绪论(邱⽟华版)第⼀章绪论第⼀节⽣物分离纯化的概念与原理学习⽬标熟悉⽣物物质的概念、种类和来源;了解分离纯化技术并掌握其基本原理。
突飞猛进,⽇益成熟的现代⽣物技术,正在成为推动世界新技术⾰命的重要⼒量,其产业化发展必将对⼈类社会的经济发展和⽣活⽅式产⽣越来越⼤的影响。
⽣物技术产业主要制备具有⽣活活性的⽣物物质并使其商品化,利⽤专门的设备和技术将⽣物物质从⽣物原料中分离纯化出来并保持其活性,其中以复杂、周期长、影响因素多。
分离纯化技术是现代⽣物技术产业下游⼯艺过程的核⼼,是决定产品的安全、效⼒、收率和成本的技术基础,在⽣物技术产业中起着重要的作⽤。
⼀、⽣物物质及其来源1.⽣物物质“⽣物物质”这个词汇是在20世纪末随着⽣物技术的发展逐渐出现的,它指的是来源于⽣物中天然的或利⽤现代⽣物⼯程技术以⽣物为载体合成的,从氨基酸、多肽等低分⼦化合物到病毒、微⽣物活体制剂等具有复杂结构和成分的⼀类物质。
它们存在于⽣物体内直接参与⽣物机体新陈代谢过程,并能与⽣物各种机能产⽣⽣物活化效应,因此也称为⽣物活性物质,⽽在产业中的⽣物物质的制成品被称为⽣物产品。
⽣物物质的种类繁多,分布⼴。
按照其化学本质和特性分类,常见的有如下⼀些类型。
(1)氨基酸及其衍⽣物类主要包括天然氨基酸及其衍⽣物,这是⼀类结构简单、分⼦量⼩、易制备的⽣物物质,约有60多种。
⽬前主要⽣产的品种有⾕氨酸、赖氨酸、天冬氨酸、精氨酸、半胱氨酸、苯丙氨酸、苏氨酸和⾊氨酸等,其中⾕氨酸的产量最⼤,约占氨基酸总量的80%左右。
(2)活性多肽类活性多肽是由多种氨基酸按⼀定顺序连接起来的多肽链化合物,分⼦量⼀般较⼩,多数⽆特定空间构像。
多肽在⽣物体内浓度很低,但活性很强,对机体⽣理功能的调节起着⾮常重要的作⽤,主要有多肽类激素,⽬前应⽤于临床的多肽药物已达20多种以上。
(3)蛋⽩质类这类⽣物物质主要由简单蛋⽩和结合蛋⽩(包括糖蛋⽩、脂蛋⽩、⾊蛋⽩等)。
药物分离纯化技术1. 引言药物分离纯化技术是制药过程中的关键步骤之一。
它涉及到从天然产物或合成产物中提取和纯化目标化合物的过程。
药物的分离纯化不仅能够提高药物的纯度和活性,还可以去除不需要的杂质,确保药物的安全性和有效性。
本文将介绍几种常见的药物分离纯化技术及其原理。
2. 色谱技术色谱技术是一种常见的药物分离纯化技术,它根据物质在固定相(静相)和流动相(动相)之间的相互作用力的差异,使物质分离成不同的组分。
2.1. 液相色谱液相色谱(Liquid chromatography,简称LC)是一种基于物质在固定相(如硅胶、石英等)和流动相(溶液)之间的相互作用力差异进行分离的技术。
液相色谱可以根据分离原理的不同分为多种类型,如高效液相色谱(High Performance Liquid Chromatography,简称HPLC)和反相液相色谱等。
2.2. 气相色谱气相色谱(Gas chromatography,简称GC)是一种将混合物中的化合物通过在固定相中的分配和吸附过程进行分离的技术。
气相色谱主要适用于挥发性物质和热稳定性较好的化合物的分离。
气相色谱的分离原理是根据化合物在固定相和流动相之间的分配系数差异实现。
3. 薄层色谱技术薄层色谱(Thin-layer chromatography,简称TLC)是一种将混合物中的化合物通过在薄层固定相上的分配和吸附过程进行分离的技术。
薄层色谱具有简单、快速、成本低等特点,常用于快速检验和预筛某种化合物是否存在于混合物中。
4. 萃取技术萃取技术是一种基于溶解度差异将混合物中的化合物转移到另一个溶剂中的方法。
根据溶剂的选择和使用方式的不同,萃取技术又可以分为固相萃取、液液萃取等。
4.1. 固相萃取固相萃取(Solid-phase extraction,简称SPE)是一种通过将混合物通过固定相进行分配、吸附和洗脱的方法。
固相萃取通常利用固体填料(如吸附树脂、硅胶等)进行分离纯化。