推荐-文科训练4 精品
- 格式:doc
- 大小:84.13 KB
- 文档页数:3
1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
高三文科数学考前训练(四)一、选择题(5×10=50分)1.复数22ii+-(i 是虚数单位)表示复平面内的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.函数1()3f x x =-的定义域是( )A .[2,)+∞B .[2,3)C .(,3)(3,)-∞⋃+∞D .()[2,3)3,⋃+∞ 3. 已知等差数列b a ,,1,等比数列5,2,3++b a ,则该等差数列的公差为( ) A .3或3-B .3或1-C .3D .3-4.把函数sin y x =的图象上所有点的横坐标缩小到原来的一半,纵坐标保持不变,再把所得函数图象向左平移4π个单位长度,得到的函数图象对应的解析式是( )A .cos2y x =B .sin 2y x =-C .sin(2)4y x π=-D .sin(2)4y x π=+5.某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形,则该几何体的表面积为( )A .80B .88224+C .40224+D .1186.函数()sin cos()6f x x x π=-+的单调递增区间为( )A .7[2,2]()66k k k Z ππππ--∈ B .5[2,2]()66k k k Z ππππ-+∈ C .4[2,2]()33k k k Z ππππ--∈ D .2[2,2]()33k k k Z ππππ-+∈ 7.如图,平行四边形ABCD 中,2,1,60AB AD A ==∠=,点M 在AB 边上,且13AM AB DM DB =⋅,则等于( )A. BC .1-D .1 8.已知抛物线24x y =-的准线与双曲线22221(0,0)y x a b a b-=>>的两条渐近线围成一个等腰直角三角形,则该双曲线的离心率是( ) A .2 BCD .59.一艘海轮从A 处出…发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,则C B 、两点间的距离是( ) A .102海里B .103海里C .202海里D .203海里10.在R 上定义运算⊗:)1(y x y x -=⊗.若对任意2>x ,不等式2)(+≤⊗-a x a x 都成立,则实数a 的取值范围是( )A .[]7,1-B .(]3,∞-C .(]7,∞-D .(][)+∞-∞-,71,二、填空题(5×5=25分)11.某班50名学生在一次健康体检中,身高全部介于155cm 与185cm 之间.其身高频率分布直方图如图所示. 则该班级中身高在[]185,170之间的学生共有 人. 12.已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上,则圆C 的方程为13.设变量,x y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则11y s x +=+的取值范围是14.阅读右面的程序框图,则输出的S 等于 15.下列命题正确的序号为 . ①函数)3ln(x y -=的定义域为]3,(-∞;②定义在],[b a 上的偶函数b x a x x f +++=)5()(2最小值为5;③若命题:p 对R x ∈∀,都有022≥+-x x ,则命题:p ⌝R x ∈∃,有022<+-x x ;④若0,0>>b a ,4=+b a ,则ba 11+的最小值为1. 三、解答题(75分)16.(本题满分13分)已知平面向量(sin,cos)44x x ππ==a b 错误!未找到引用源。
宜昌市第一中学2015届高三年级文科综合训练卷(四)考试时间:2015年1月8日 7:55-10:25第Ⅰ卷(选择题,140分)本卷共35个小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
某同学习惯每天早晨在上学路上观察天空的太阳(下左图),图中SN为南北方向,PQ垂直于SN。
若a、b为该同学在两个不同日期的相同时刻(北京时间7:00)经过P点时所看到的天空中的太阳位置。
据此回答1~2题。
1.P点位于A.南半球135ºE B.北半球105ºE C.南半球105ºE D.北半球135ºE2.若该同学于某日(天气晴)早晨7:00(北京时间)到达P点时看天空,太阳还未从地平线升起,请判断,此时上右图中④地的气候特点是A.高温多雨 B.低温干燥 C.温和多雨 D.高温干燥“世界手套看中国,中国手套看嘉祥”这是手套业内人士津津乐道的一句流行语。
“中国手套名城”山东嘉祥县形成了防寒、滑雪、打猎、射击等四大系列上百种手套产品的加工与生产能力,加工的手套95%销往国外市场。
下图示意嘉祥手套产业协作关系,读图,完成3~4题。
3.数百家手套生产加工及配套企业,形成了以县城为中心,以重点乡镇为依托,向全县多数乡村辐射传导的发展格局,大量手套企业集聚有利于A.共同利用基础设施,加强交流协作 C.增强集聚优势,实现产业升级B.降低工人工资,增加利润 D.降低生产成本,提高批发价格4.嘉祥手套产业的协作关系对当地的影响是A.削弱同类企业间的竞争 B.提高区域竞争力C.限制了其它产业的发展 D.降低专业化程度下图为某区域1月某日24小时内不同时刻海平面气压分布示意图,四幅图的等压距均为2.5百帕。
读图完成5~7题。
5.根据天气系统的发展过程,四幅天气图的先后排序为A.③④②① B.④③②① C.①④②③ D.②①④③6.形成图中雨区降水的主要天气系统是A.冷锋 B.暖锋 C.反气旋 D.高压7.关于图示区域大气状况的叙述,正确的是A.甲地在①时刻风力最大 B.该日甲地风向发生显著变化C.甲地气温随天气系统移动而上升 D.雨区降水形式可能为暴雪“花环式”海流发电站是用一串螺旋桨组成的,它的两端固定在浮筒上,浮筒里装有发电机。
2023届高三一轮复习联考(四)全国卷8.已知函数J(x)=屈s in(2x+0)—cos(2x+0),0 E(气],且f(O)=l,则0=re_6.A产4.B亢_3.c产2.D文科数学试题注意事项:l.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交 回。
考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x lx2<l},B = {x I O<x<2},则AnB=A.(—1, 2)2.(2+i)(2—3i)=A.l—i3.下列命题中的假命题是迈A.3 x E R, s in x=— 2A.—2B.25.函数f(x)=cos x+sin 2x的图象可能是yB.(—1,0)B.7—IyC.(O, 1)C.l—4iB.3 xER,ln x=—lC.'efxER,x2>0D.'efxER,3气>04.已知数列{a n}是各项均为正数的等差数列,a s=10,且a4• a6=96,则公差为C.—2或2D.4y yAXB c D16.已知a=lg—,b=cos l,c=z-2,则a,b,c的大小关系为2A.a<b<cB.a<c<bC.b<a<cxD.Cl,2)D.7—4iD.b<c<a.,7.如图,正方形ABCD中,E、F分别为AB、A D的中点,且BF=入B E+AXDµBD,则入十µ的值是1 EA.1B.—23D.2C.—2 B CX 2 y 2 ',9直线l:y=瓦x与椭圆C:勹+—=1交于P,Q两点,F是椭圆C的右焦点,且PP·QF=a z, b20,则椭圆的离心率为A.4—2祁B.2点—3C.点—l10.已知正数a,b满足矿+2矿=1,则a矿的最大值是A. 屈屈B. C.— D.—11如图所示,在正方体ABCD—A1B1C卫中,O,F分别为BD,AA]的中D,点,设二面角F—D10—B的平面角为a直线O F与平面B B丸D所成A,'\ \B角为p,则::;:三:高三三三三:三<言昙三三:个立体,被任一平行千这两个平面的平面所截,如果两个截面的面积相等,则这两个几何体的体积相等.上述原理在中国被称为祖睢原理,国外则一般称之为卡瓦列利原理.已知y将双曲线C:三——=1与直线y=土2围成的图形绕y轴8 2旋转一周得到一个旋转体E,则旋转体E的体积是昼2D二、填空题:本题共4小题,每小题5分,共20分。
[A卷]1.(2021·宁波市高三模拟) 用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:选B.由题意知,用平行于水平面的平面去截球所得的底面圆是看不见的,所以在俯视图中该部分应当是虚线圆,结合选项可知选B.2.下列命题中,错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台C.圆台的全部平行于底面的截面都是圆D.圆锥全部的轴截面都是全等的等腰三角形解析:选B.依据棱台的定义,用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.3.(2021·台州市高三调考)一个空间几何体的三视图如图所示,其体积为()A.16B.32C.48 D.96解析:选A.由题意作出直观图P-ABCD如图所示,则该几何体是一个四棱锥,底面是一个直角梯形,其面积为12×(2+4)×4=12,高为4,因此其体积V=13×12×4=16.4.(2021·高考全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2C.4 D.8解析:选B.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,所以(5π+4)r2=16+20π,所以r2=4,r=2,故选B.5.如图是一个体积为10的空间几何体的三视图,则图中x的值为()A.2 B.3C.4 D.5解析:选A.依据给定的三视图可知,该几何体对应的直观图是一个长方体和四棱锥的组合体,所以几何体的体积V=3×2×1+13×3×2×x=10,解得x=2.故选A.6. 如图,水平放置的三棱柱的侧棱长为1,且侧棱AA1⊥平面A1B1C1,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为()A.2 3 B. 3C.32D.1解析:选C.由直观图、正视图以及俯视图可知,侧视图是宽为32,长为1的长方形,所以面积S=32×1=32.故选C.7.一平面截一球得到直径为2 5 cm的圆面,球心到这个平面的距离是2 cm,则该球的体积是() A.12πcm3B.36πcm3C.646πcm3D.108πcm3解析:选B.由于球心和截面圆心的连线垂直于截面,由勾股定理得,球半径R=22+(5)2=3,故球的体积为43πR3=36π(cm3).8.(2021·石家庄市第一次模拟)一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112解析:选B.由三视图可知该几何体是一个组合体,下面是一个棱长为4的正方体;上面是一个三棱锥,三棱锥的高为3.故所求体积为43+13×12×4×4×3=72.9.已知某组合体的正视图与侧视图相同(其中AB=AC,四边形BCDE为矩形),则该组合体的俯视图可以是________(把正确的图的序号都填上).解析:几何体由四棱锥与四棱柱组成时,得①正确;几何体由四棱锥与圆柱组成时,得②正确;几何体由圆锥与圆柱组成时,得③正确;几何体由圆锥与四棱柱组成时,得④正确.答案:①②③④10.把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长是10 cm,则圆锥的母线长为________ cm.解析:作出圆锥的轴截面如图,设SA=y,O′A′=x,利用平行线截线段成比例,得SA′∶SA=O′A′∶OA,则(y-10)∶y=x∶4x,解得y=403.所以圆锥的母线长为403cm.答案:40311.(2022·高考课标全国卷Ⅱ改编)正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为 3,D为BC中点,则三棱锥AB1DC1的体积为________.解析:由题意可知AD⊥BC,由面面垂直的性质定理可得AD⊥平面DB1C1,又AD=2sin 60°=3,所以V AB1DC1=13AD·S△B1DC1=13×3×12×2×3=1,故选C.答案:112.一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积为________,体积为________.解析:由题意可知该四棱锥为正四棱锥,底面边长为2,高为2,侧面上的斜高为22+12=5,所以S 侧=4×⎝⎛⎭⎫12×2×5=45,V=13×22×2=83.答案:458313.(2021·南昌市第一次模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为________.解析:依据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1. 答案:1∶114.如图是某空间几何体的三视图,则该几何体的体积为________.解析:由三视图可知,该几何体是棱长为2,2,1的长方体挖去一个半径为1的半球,所以长方体的体积为2×2×1=4,半球的体积为12×43π×13=2π3,所以该几何体的体积是4-2π3.答案:4-2π315.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1EDF的体积为________.解析:由于B 1C ∥平面ADD 1A 1,所以F 到平面ADD 1A 1的距离d 为定值1,△D 1DE 的面积为12D 1D ·AD =12,所以V D 1EDF =V F D 1DE =13S △D 1DE ·d =13×12×1=16.答案:16[B 卷]1.一个锥体的正视图和侧视图如图所示,下面选项中,不行能是该锥体的俯视图的是( )解析:选C.依据三视图中“正俯长一样,侧俯宽一样,正侧高一样”的规律,C 选项的侧视图宽为32,不符合题意,故选C.2.(2021·邢台市摸底考试)已知一个几何体的三视图是三个全等的边长为1的正方形,如图所示,则该几何体的体积为( )A.16 B.13 C.23D .56解析:选D.依题意得,题中的几何体是从棱长为1的正方体ABCD -A ′B ′C ′D ′中截去三棱锥A ′ABD 后剩余的部分,因此该几何体的体积等于13-13×⎝⎛⎭⎫12×12×1=56,故选D. 3.(2022·高考湖南卷)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B.由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.4.(2021·高考山东卷)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3 B .4π3 C.5π3D .2π 解析:选C.过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.5.(2021·郑州市第一次质量猜测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy 的最大值为( )A .32B .327C .64D .647解析:选C.依题意,题中的几何体是三棱锥P -ABC (如图所示), 其中底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC , BC =27,P A 2+y 2=102,(27)2+P A 2=x 2,因此xy =x 102-[x 2-(27)2]=x128-x 2≤x 2+(128-x 2)2=64,当且仅当x 2=128-x 2,即x =8时取等号,因此xy 的最大值是64,故选C.6.(2021·山西省第三次四校联考)在半径为10的球面上有A ,B ,C 三点,假如AB =83,∠ACB =60°,则球心O 到平面ABC 的距离为( )A .2B .4C .6D .8解析:选C.设A ,B ,C 三点所在圆的半径为r ,圆心为P .由于∠ACB =60°,所以∠APB =120°.在等腰三角形ABP 中,AP =43sin 60°=8,所以r =8,所以球心O 到平面ABC 的距离为102-82=6,故选C.7.如图是一个几何体的三视图,则该几何体的表面积是( )A .5+ 3B .5+2 3C .4+2 2D .4+2 3解析:选A.该几何体的直观图如图.表面积S =1×1+12×1×1×2+2×12×(1+2)×1+12×6×2=5+3,所以选A.8.在三棱锥P -ABC 中,P A ⊥平面ABC ,AC ⊥BC ,D 为侧棱PC 上的一点,它的正视图和侧视图如图所示,则下列命题正确的是( )A .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为83B .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为83C .AD ⊥平面PBC ,且三棱锥D -ABC 的体积为163D .BD ⊥平面P AC ,且三棱锥D -ABC 的体积为163解析:选C.由正视图可知,P A =AC ,且点D 为线段PC 的中点,所以AD ⊥PC .由侧视图可知,BC =4.由于P A ⊥平面ABC ,所以P A ⊥BC .又由于BC ⊥AC ,且AC ∩P A =A ,所以BC ⊥平面P AC ,所以BC ⊥AD .又由于AD ⊥PC ,且PC ∩BC =C ,所以可得AD ⊥平面PBC ,V D ABC =13×12×P A ×S △ABC =163.9.某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为________.解析:侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为3×2=6.等腰三角形的底边为3,高为3,其面积为12×3×3=32,所以侧视图的面积为6+32=152.答案:15210.(2021·洛阳市高三班级统考)如图是某几何体的三视图,则该几何体的外接球的表面积为( )解析:由三视图知,该几何体可以由一个长方体截去一个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π.答案:50π 11.(2021·绍兴市高三诊断性测试)若某几何体的三视图如图所示,则该几何体的体积为________,最长的侧棱长为________.解析:依据三视图及有关数据还原该几何体,得该几何体是底面为直角梯形的四棱锥P -ABCD ,如图,过点P 作PH ⊥AD 于点H ,连接CH .底面面积S 1=(1+2)×12=32,V =13×32×1=12,最长的侧棱长为PB = 3.答案:12312.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2,若它们的侧面积相等,且S 1S 2=94,则V 1V 2的值是________. 解析:设两个圆柱的底面半径和高分别为r 1,r 2和h 1,h 2,由S 1S 2=94,得πr 21πr 22=94,则r 1r 2=32.由圆柱的侧面积相等,得2πr 1h 1=2πr 2h 2,即r 1h 1=r 2h 2,则h 1h 2=23,所以V 1V 2=πr 21h 1πr 22h 2=32.答案:3213.(2021·洛阳市统考)已知点A ,B ,C ,D 均在球O 上,AB =BC =6,AC =23,若三棱锥D -ABC 体积的最大值为3,则球O 的表面积为________.解析:由题意可得,∠ABC =π2,△ABC 的外接圆半径r =3,当三棱锥的体积最大时,V D ABC =13S △ABC ·h (h为D 到底面ABC 的距离),即3=13×12×6×6h ⇒h =3,即R +R 2-r 2=3(R 为外接球半径),解得R =2,所以球O 的表面积为4π×22=16π.答案:16π 14.(2021·杭州市联谊学校高三其次次联考)一个等腰直角三角形的三个顶点分别在正三棱柱ABC -A 1B 1C 1的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为________.解析:如图,在正三棱柱ABC -A 1B 1C 1中,△ABC 为正三角形,边长为2,△DEF 为等腰直角三角形,DF 为斜边,设DF 的长为x ,则DE =EF =22x ,作DG ⊥BB 1,GH ⊥CC 1,EI ⊥CC 1,垂足分别为G ,H ,I ,则EG =DE 2-DG 2=x 22-4,FI =EF 2-EI 2=x 22-4,FH =FI +HI =FI +EG=2x 22-4.连接DH ,在Rt △DHF 中,DF 2=DH 2+FH 2,即x 2=4+⎝⎛⎭⎫2x 22-42,解得x =23,即该三角形的斜边长为2 3.答案:2 3 15.(2021·浙江省名校新高考联盟第一次联考)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形,则BC =________,四棱锥F-OBED的体积为________.解析:取AO的中点M,连接CM,BM,由△OAB,△OAC是正三角形,OA=1,可知CM⊥AO,BM⊥AO,且BM=CM=32,又平面ABED⊥平面ACFD,所以CM⊥平面ABED,所以CM⊥BM,故BC=62.过点F作FQ⊥OD于点Q,由于平面ABED⊥平面ACFD,所以FQ⊥平面ABED,FQ就是四棱锥F-OBED的高.易知FQ=3,又S△OBE=12×1×2×32=32,S△OED=12×2×2×32=3,所以S四边形OBED=32+3=332,故V四棱锥F-OBED=13×332×3=32.答案:6232。
选修4-4 坐标系与参数方程1.极坐标系(1)极坐标系的建立:在平面上取一个定点O ,叫做________,从O 点引一条射线Ox ,叫做________,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ).(2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标为(ρ,θ),则它们之间的关系为x =______,y =________.另一种关系为ρ2=________,tan θ=________. 2.简单曲线的极坐标方程 (1)直线的极坐标方程θ=α (ρ∈R )表示过极点且与极轴成α角的直线; ρcos θ=a 表示过(a,0)且垂直于极轴的直线; ρsin θ=b 表示过⎝⎛⎭⎫b ,π2且平行于极轴的直线; ρsin(α-θ)=ρ1sin(α-θ1)表示过(ρ1,θ1)且与极轴成α角的直线方程. (2)圆的极坐标方程ρ=2r cos θ表示圆心在(r,0),半径为|r |的圆; ρ=2r sin θ表示圆心在⎝⎛⎭⎫r ,π2,半径为|r |的圆; ρ=r 表示圆心在极点,半径为|r |的圆. 3.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的________________,其中变量t 称为________.4.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为________________(t 为参数). (2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为________________________(θ为参数). (3)椭圆方程x 2a 2+y 2b 2=1(a >b >0)的参数方程为________________(θ为参数).(4)抛物线方程y 2=2px (p >0)的参数方程为________________(t 为参数).1.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为____________________.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则PF =________.4.直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t cos 40°(t 为参数)的倾斜角为________. 5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 极坐标与直角坐标的互化例1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.思维升华 直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值.题型二 参数方程与普通方程的互化例2 已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),求它们的交点坐标.思维升华 (1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等.对于与角θ有关的参数方程,经常用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.将下列参数方程化为普通方程.(1)⎩⎪⎨⎪⎧x =2t 21+t 2,y =4-2t21+t2(t 为参数);(2)⎩⎪⎨⎪⎧x =2-4cos 2θ,y =-1+sin 2θ(θ为参数).题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32t ,y =12t(t 为参数),M ,N 分别为曲线C 、直线l 上的动点,求MN 的最小值.思维升华 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.转化后可使问题变得更加直观,它体现了化归思想的具体运用.(2013·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值.参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求AB .易错分析 不明确直线的参数方程中的几何意义导致错误. 规范解答解 (1)直线的参数方程可以化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]根据直线参数方程的意义,直线l 经过点(0,22), 倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分] ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]所以圆心(22,22)到直线l 的距离d =64. 所以AB =102.[10分] 温馨提醒 对于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来说,要注意t 是参数,而α则是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有特别的几何意义,它表示离心角.方法与技巧1.曲线的极坐标方程与直角坐标系的互化思路:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.3.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法. 失误与防范1.极径ρ是一个距离,所以ρ≥0,但有时ρ可以小于零.极角θ规定逆时针方向为正,极坐标与平面直角坐标不同,极坐标与P 点之间不是一一对应的,所以我们又规定ρ≥0,0≤θ<2π,来使平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.2.在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A 组 专项基础训练1.(2013·江苏)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =2tan 2θ,y =2tan θ(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.2.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2.(1)将曲线C 的参数方程化为普通方程; (2)曲线C 与曲线D 有无公共点?试说明理由.3.(2013·福建)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知点A 的极坐标为(2,π4),直线l 的极坐标方程为ρcos(θ-π4)=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.4.在极坐标系中,P 是曲线ρ=12sin θ上的动点,Q 是曲线ρ=12cos ⎝⎛⎭⎫θ-π6上的动点,试求PQ 的最大值.5.在极坐标系中,已知三点M ⎝⎛⎭⎫2,-π3、N (2,0)、P ⎝⎛⎭⎫23,π6. (1)将M 、N 、P 三点的极坐标化为直角坐标; (2)判断M 、N 、P 三点是否在一条直线上.6.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=12x ,y ′=13y后,曲线C :x 2+y 2=36变为何种曲线,并求曲线的焦点坐标.B 组 专项能力提升1.在极坐标系中,已知圆O :ρ=cos θ+sin θ和直线l :ρsin(θ-π4)=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的极坐标.2.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.3.(2013·课标全国Ⅰ)已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程; (2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).4.(2012·辽宁)在直角坐标系xOy中,圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(2)求圆C1与C2的公共弦的参数方程.答案要点梳理1.(1)极点 极轴 极径(2)ρcos θ ρsin θ x 2+y 2 y x3.参数方程 参数4.(1)⎩⎪⎨⎪⎧ x =x 0+t cos αy =y 0+t sin α (2)⎩⎪⎨⎪⎧ x =a +r cos θy =b +r sin θ (3)⎩⎪⎨⎪⎧ x =a cos θy =b sin θ (4)⎩⎪⎨⎪⎧ x =2pt 2y =2pt 夯基释疑1.43 2.x 2+y 2-2x -y =0 3.4 4.50° 5.M 1 题型分类·深度剖析例1 解 (1)由ρcos(θ-π3)=1 得ρ(12cos θ+32sin θ)=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2. 当θ=0时,ρ=2,所以M (2,0).当θ=π2时,ρ=233,所以N (233,π2). (2)M 点的直角坐标为(2,0).N 点的直角坐标为(0,233). 所以P 点的直角坐标为(1,33). 则P 点的极坐标为(233,π6), 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 跟踪训练1 解 将极坐标方程化为直角坐标方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0.由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a |32+42=1,解得a =-8或a =2. 故a 的值为-8或2.例2 解 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎫1,255. 跟踪训练2 解 (1)∵x =2t 21+t2, ∴y =4-2t 21+t 2=4(1+t 2)-6t 21+t 2=4-3×2t 21+t 2=4-3x . 又x =2t 21+t 2=2(1+t 2)-21+t 2=2-21+t 2∈[0,2). ∴x ∈[0,2).∴所求的普通方程为3x +y -4=0(x ∈[0,2)).(2)∵4cos 2θ=2-x,4sin 2θ=4(y +1).∴4cos 2θ+4sin 2θ=2-x +4y +4.∴4y -x +2=0.∵0≤4cos 2θ≤4,∴0≤2-x ≤4,∴-2≤x ≤2.∴所求的普通方程为x -4y -2=0(x ∈[-2,2]).例3 解 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎨⎧ x =-3+32t ,y =12t(t 为参数)为普通方程x -3y +3=0. 圆心到直线l 的距离d =|2+3|1+3=52, 此时,直线与圆相离, 所以MN 的最小值为52-2=12.跟踪训练3 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1, 所以⎩⎨⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.练出高分A 组 1.解 因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t +1,y =2t(t 为参数), 由x =t +1得t =x -1,代入y =2t ,得到直线l 的普通方程为2x -y -2=0.同理得到曲线C 的普通方程为y 2=2x . 联立方程组⎩⎪⎨⎪⎧y =2(x -1),y 2=2x , 解得公共点的坐标为(2,2),⎝⎛⎭⎫12,-1. 2.解 (1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得 x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为 x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0. 解得x =1±132∉[-1,1], 故曲线C 与曲线D 无公共点.3.解 (1)由点A (2,π4)在直线ρcos(θ-π4)=a 上,可得a = 2. 所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.4.解 ∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos ⎝⎛⎭⎫θ-π6, ∴ρ2=12ρ⎝⎛⎭⎫cos θcos π6+sin θsin π6, ∴x 2+y 2-63x -6y =0, ∴(x -33)2+(y -3)2=36,∴PQ max =6+6+(33)2+32=18. 5.解 (1)由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得M 的直角坐标为(1,-3); N 的直角坐标为(2,0);P 的直角坐标为(3,3).(2)∵k MN =32-1=3,k NP =3-03-2= 3. ∴k MN =k NP ,∴M 、N 、P 三点在一条直线上.6.解 圆x 2+y 2=36上任一点为P (x ,y ),伸缩变换后对应的点的坐标为P ′(x ′,y ′),则⎩⎪⎨⎪⎧x =2x ′,y =3y ′, ∴4x ′2+9y ′2=36,即x ′29+y ′24=1. ∴曲线C 在伸缩变换后得椭圆x 29+y 24=1,其焦点坐标为(±5,0). B 组1.解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O 的直角坐标方程为x 2+y 2=x +y ,即x 2+y 2-x -y =0,直线l :ρsin(θ-π4)=22,即ρsin θ-ρcos θ=1, 则直线l 的直角坐标方程为y -x =1,即x -y +1=0.(2)由⎩⎪⎨⎪⎧ x 2+y 2-x -y =0,x -y +1=0得⎩⎪⎨⎪⎧x =0,y =1, 故直线l 与圆O 公共点的极坐标为(1,π2). 2.解 (1)由ρ=2知ρ2=4,所以x 2+y 2=4;因为ρ2-22ρcos(θ-π4)=2, 所以ρ2-22ρ(cos θcos π4+sin θsin π4)=2, 所以x 2+y 2-2x -2y -2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x +y =1.化为极坐标方程为ρcos θ+ρsin θ=1,即ρsin(θ+π4)=22. 3.解 (1)∵C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos ty =5+5sin t .∴⎩⎪⎨⎪⎧ 5cos t =x -45sin t =y -5. ∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25,即C 1的直角坐标方程为(x -4)2+(y -5)2=25,把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25,化简得:ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的直角坐标方程为x 2+y 2=2y ,解方程组⎩⎪⎨⎪⎧(x -4)2+(y -5)2=25x 2+y 2=2y 得⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =0y =2. ∴C 1与C 2交点的直角坐标为(1,1),(0,2).∴C 1与C 2交点的极坐标为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2. 4.解 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ. 解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一. (2)方法一 由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ 得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3). 故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧ x =1,y =t ,-3≤t ≤ 3. ⎝ ⎛⎭⎪⎪⎫或参数方程写成⎩⎪⎨⎪⎧x =1,y =y ,-3≤y ≤3方法二 将x =1代入⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ 得ρcos θ=1,从而ρ=1cos θ.于是圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =tan θ,-π3 ≤θ≤π3.。
文科物理会考复习学案(4)平抛运动、匀速圆周运动、万有引力定律编稿教师:李志强1. 能将平抛运动分解为水平和竖直方向的分运动,并能写出水平方向、竖直方向的分速度、分位移的表达式。
2. 知道匀速圆周运动的加速度、线速度之间的关系。
3. 记住匀速圆周运动的向心加速度、向心力的表达式,并能解决基本的匀速圆周运动动力学问题。
4. 记住万有引力定律的表达式,知道其适用范围。
水平: tvx=,vvx=竖直:221gty=,gtvy=2. 匀速圆周运动各个物理量之间的关系:v rω=,22rTvππω==,3. 匀速圆周运动的向心加速度:22224va r rr Tπω===向心力:22224vF m r m m rr Tπω===4. 万有引力定律:122m mF Gr=5. 质量为m的卫星绕质量为M的星球做匀速圆周运动,万有引力提供向心力:222224Mm vG m m r m rr r Tπω===【例1】以10m/s的速度从10m高的塔上水平抛出一个石子。
不计空气阻力,取g=10m/s2,石子落地时的速度大小是()A. B.C. 20m/sD. 30m/s【例2】如图所示,在探究平抛运动规律的实验中,用小锤打击弹性金属片,金属片把P球沿水平方向抛出,同时Q球被松开而自由下落,P、Q两球同时开始运动.此后,可以观察到小球P与小球Q (选填“同时”或“不同时”)落到水平地面上;若小球Q在空中运动的时间为t,小球P、Q落地点间的距离为x,在小球P被弹出时的水平初速度为。
【练习】从同一高度以不同的初速度水平抛出两个小球,小球都做平抛运动,最后落到同一水平地面上,两个小球在空中运动的时间(选填“相等”或“不相等”),落地时的速度(选填“相同”或“不相同”)。
【例3】若将平抛运动沿水平和竖直两个方向进行分解,则下列说法中正确的是()A. 水平方向的分运动是匀速直线运动B. 水平方向的分运动是匀加速直线运动C. 竖直方向的分运动是匀速直线运动D. 竖直方向的分运动是自由落体运动【例4】物体在做匀速圆周运动的过程中,下列物理量中变化的是()A. 周期B. 动能C. 线速度D. 角速度【例5】两个质量为m1、m2的质点相距为r时,它们之间的万有引力大小为F,若将它们的距离增大为2r,则它们之间的万有引力大小为()A. 2FB. F/2C. 4FD. F/4【例6】质量相同的人造卫星,如果在不同轨道上绕地球做匀速圆周运动,那么,下列判断中正确的是()A. 轨道半径大的卫星所受向心力大B. 轨道半径大的卫星所受向心力小C. 轨道半径大的卫星运行速度大D. 轨道半径大的卫星运行速度小【例7】在如图所示的皮带传动装置中,A是大轮边缘上的一点,B是小轮边缘上的一点。
文科训练(4)
一、选择题:本大题共12个小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目的要求的.
1.设集合U ={1,2,3,4,5}, A ={1,2,3}, B ={2},则集合A
(C U B )等于( ). A .{1, 2, 3, 4, 5} B .{1, 3} C .{1, 2, 3}
D .{4, 5} 2.不等式5 | x +2 | > 3x +14的解集为( ).
A .(-3, 2)
B .(-∞,-3)∪(2,+∞)
C .(-2, 0)
D .(0, 2) 3.已知函数1ax f (x )x b
+=+的对称中心为(1, 1),则该函数的图像上没有点( ). A .(1, 2)
B (2, 3)
C (0, -1)
D (-1,0) 4.数列22n n ⎧⎫⎨⎬+⎩⎭
的前n 项和S n 为( ). A .11n + B .21n + C .21n n + D .1
n n + 5.若将函数y =x 2+4x +6的图像按向量a 经过一次平移后,得到的图像对应的函数为y =x 2+1, 则向量a 等于( ).
A .(2, 1)
B .(-2,-1)
C .(-2, 1)
D .(2, -1)
6.如果x ,y ∈R ,那么“xy ≥0”是“| x +y |=| x |+| y |”的( ).
A. 充要要条件
B. 必要不充分条件
C. 充分不必条件
D. 既不充分也不必要的条件 7.已知
sin 3cos 5,2sin 5cos αααα-=-+则tan α的值为( ). A .2811 B .-2 C .2 D .229
- 8.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各一台,则不同的取法共有( )种.
A .140
B .84
C .70
D .35
9.已知S n 是等差数列{a n }的前n 项和,若a 7=10,则S 13的值为( ).
A .20
B .65
C .130
D .260
10.若函数y =f (x )+ cos x 在3,44ππ⎡⎤-⎢⎥⎣⎦
内单调递减,则f (x )可以是( ). A .1 B .cos x C .sin x D .-sin x
11.已知定义在实数集R 上的奇函数f (x )的最小正周期为2,且f (x 0)=1,则f (4-x 0)的值是
( ).
A .1
B .3
C .5
D .-1
12.设O 是平面上一定点,A 、B 、C 是平面上不共线的三点,满足()()0OP OA OB OC --=,则P 点的轨迹一定过△ABC 的( ).
A .垂心
B .内心
C .重心
D .外心
二、填空题:本大题共四个小题,每小题4分,共16分.把答案填在题目中的横线上.
13.已知
n
⎫的展开式的第二项和第三项的系数比为2:11,则n = . 14.设,a b 是任意的平面向量,给出命题:0a b a b ⋅=⇔⊥.① 这是真命题还是假命题?你的判断是___________,判断依据为_______________________________________ .
15.若函数()()22lg 1211y a x a x ⎡⎤=++++⎣⎦的定义域为R ,则实数a 的取值范围是
.
16.若关于x 32
ax +的解集为{}4x x b <<,则实数a 的值是 . 三。
解答题:
17.已知函数f (x )=x 2+ax +a ( a ∈R ),解不等式:f (x )>-x .
一.选择题:每小题5分,共12个小题,满分60分.
1-5. BBACD ;6-10. ABCCD ;11-12. DA.
二.填空题:每小题4分,共4个小题,满分16分.
13.12;14.假命题,当,a b 之一为零向量时,结论不成立;15.(-∞, 0);16.8
1. 三.解答题:
17.
由题意,有 x 2+(a +1)x +a >0,即(x +a )(x +1)>0. 故 ····························· 3分 当a <1时,由-a >-1,知 x <-1或x >-a ; ··································· 7分 当a =1时,由-a =-1,知x ≠-1 ;
当a >1时,由-a <-1,知x <-a 或x >-1. ······································· 10分 综上,当a <1时,原不等式的解集为{x |x >-a 或x <-1};
当a =1时,原不等式的解集为{x | x R 且x ≠-1} ;
当a >1时,原不等式的解集为{x | x <-a 或x >-1}. ······························· 12分。