2014年改版数字信号处理第二章-2-2
- 格式:ppt
- 大小:1.81 MB
- 文档页数:39
第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
( ) 685ππ+n ( ) )8(π-ne j ( )343ππ+n 解 对照正弦型序列的一般公式 ϕω+n ,得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于)5(16516取k k =。
( )对照复指数序列的一般公式 ωσj + 得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
( )对照正弦型序列的一般公式 ϕω+n ,又343ππ+n = -2π343ππ-n = 6143-n π ,得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于 )3(838取k k =在图 中, 和 分别是线性非移变系统的输入和单位取样响应。
计算并列的 和 的线性卷积以得到系统的输出 ,并画出 的图形。
(a)1111(b)(c)111110 0-1-1-1-1-1-1-1-1222222 33333444………nnn nnnx(n)x(n)x(n)h(n)h(n)h(n)21u(n)u(n)u(n)a n ===22解 利用线性卷积公式∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算 的每一个取样值。
≥ δ δδ δ δδ δ δ∑∞-∞=--kkn knuku a)()( ∑∞-∞=-kknaaa n--+111计算线性线性卷积λn解: ∑∞-∞=-kknuku)()(∑∞=-)()(kknuku ≥ 即∑∞-∞=-kk knuku)()(λ∑∞=-)()(kk knukuλ λλ--+111n≥即 λλ--+111n图 所示的是单位取样响应分别为 1 和 2 的两个线性非移变系统的级联,已知1 δ δ2 n 求系统的输出解 ω 1∑∞-∞=k k u )( δ δω 2∑∞-∞=k k k u a )(∑∞-=3n k ka≥已知一个线性非移变系统的单位取样响应为 n- 用直接计算线性卷积的方法,求系统的单位阶跃响应。
第二章 维纳滤波和卡尔曼滤波2.1 引言只考虑加性噪声影响,即观测数据()xn 是信号()s n 和噪声()v n 之和,即()()()x n s n v n =+不含噪声的信号()s n 称为期望信号,乃滤波之目的,亦可用()dy n 表示。
系统实际输出()()ˆy n s n =是对期望信号的估计。
维纳滤波从信号估计的角度讲: 估计过去的信号值()s n N -叫做平滑; 估计当前的信号值()s n 叫做滤波; 估计将来的信号值()sn N +叫做预测。
这些估计都采用相同的准则:误差均方值最小,2n E e ⎡⎤⎢⎥⎣⎦。
2.2 维纳滤波器的时域解(费时费力,更多考虑用Z 域解)设计维纳滤波器实际就是选择系统函数h (n ),使得输出信号x (n )与期望信号d (n )的误差均方值最小。
考虑线性时不变系统,设单位脉冲响应()()()012,,,h n a n jb n n =+=2.2.1 时域求解根据系统输出()()()*y n x n h n =和均方误差函数()()()22E e n E d n y n ⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦令()2Ee n ⎡⎤⎢⎥⎣⎦关于()h j 的导数为0,即()20012,,,,jE e n j h ⎡⎤∂⎢⎥⎣⎦==∂可以推得()()0*E x n j e n ⎡⎤-=⎣⎦结论:正交性原理.....——均方误差值达到最小的充要条件是误差信号...................e .(.n .).与任意输入的待估计信号...........x .(.n .).正交..。
2.2.2 维纳-霍夫方程由上一式子展开可以得到维纳..——..霍夫方程....的形式: ()()()()()012*,,,xd xxxx m r k h m r k m h k r k k +∞==-==∑维纳——霍夫方程表明,输入信号x (n )(待处理信号)与期望信号d (n )的互相关函数等于系统函数(维纳滤波器的时域解)与输入信号的互相关函数r xx (n )卷积。
数字信号处理第2章习题解答2.1 今对三个正弦信号1()cos(2)a x t t π=,2()cos(6)a x t t π=-,3()cos(10)a x t t π=进行理想采样,采样频率为8s πΩ=,求这三个序列输出序列,比较其结果。
画出1()a x t 、2()a x t 、3()a x t 的波形及采样点位置并解释频谱混淆现象。
解:采样周期为2184T ππ== 三个正弦信号采样得到的离散信号分别表示如下:1()cos(2)cos()42a n x n n ππ=⋅=2()cos(6)cos()42a n x n n ππ=-⋅=-3()cos(10)cos()42a n x n n ππ=⋅=输出序列只有一个角频率2π,其中1()a x n 和3()a x n 采样序列完全相同,2()a x n 和1()a x n 、3()a x n 采样序列正好反相。
三个正弦信号波形及采样点位置图示如下:tx a 1(t )tx a 2(t )tx a 3(t )三个正弦信号的频率分别为1Hz 、3Hz 和5Hz ,而采样频率为4Hz ,采样频率大于第一个正弦信号频率的两倍,但是小于后两个正弦信号频率的两倍,因而由第一个信号的采样能够正确恢复模拟信号,而后两个信号的采样不能准确原始的模拟信号,产生频谱混叠现象。
2.3 给定一连续带限信号()a x t 其频谱当f B >时,()a X f 。
求以下信号的最低采样频率。
(1)2()a x t (2)(2)a x t (3)()cos(7)a x t Bt π解:设()a x t 的傅里叶变换为()a X j Ω(1)2()a x t 的傅里叶变换为22()[()]Ba a BX j X j d ππωωω-⋅Ω-⎰因为22,22B B B B πωππωπ-≤≤-≤Ω-≤ 所以44B B ππ-≤Ω≤即2()a x t 带限于2B ,最低采样频率为4B 。
2-1 试求如下序列的傅里叶变换: (1))()(01n n n x -=δ (2))1(21)()1(21)(2--++=n n n n x δδδ (3)),2()(3+=n u a n x n10<<a(4))4()3()(4--+=n u n u n x(5)∑∞=-⎪⎭⎫⎝⎛=05)3(41)(k nk n n x δ(6)()6cos ,14()0,n n x n π⎧-≤≤=⎨⎩其他解: (1) 010()()j n j j nn X e n n ee ωωωδ∞--=-∞=-=∑(2) 2211()()122j j nj j n X e x n e e e ωωωω∞--=-∞==+-∑ωsin 1j +=(3) 2232()(2)1j j nj nn j nj n n a e X e a u n ea eaeωωωωω-∞∞---=-∞=-=+==-∑∑, 10<<a(4) []4()(3)(4)j j nn X e u n u n eωω∞-=-∞=+--∑∑-=-=33n nj e ω∑∑==-+=313n n j n nj e eωω(等比数列求解)ωωωωωj j j j j e e e e e --+--=--111134=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=----ωωωωω21sin 27sin 1137j j j e ee ((1-e^a)提出e^(0.5a))(5) 3350011()(3)44nkj jn j k n k k X e n k e e ωωωδ∞∞+∞--=-∞==⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∞+=--⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=033411141k j kj e e ωω(6) 44336441()cos 32j j j jn jn n n X e nee e e ππωωωπ---=-=-⎛⎫==+ ⎪⎝⎭∑∑994()()4()()3333001122j j n j j n n n e e e e ππππωωωω--++===+∑∑ ()9()9334()4()33()()3311112211j j j j j j e e e e e e ππωωππωωππωω-+-+-+⎡⎤⎡⎤--⎢⎥⎢⎥=+⎢⎥⎢⎥++⎢⎥⎢⎥⎣⎦⎣⎦2-2 设信号}1,2,3,2,1{)(---=n x ,它的傅里叶变换为)(ωj e X ,试计算(1)0()j X e (2)()j X ed πωπω-⎰(3)2()j X e d πωπω-⎰。