同济大学神经生物学复习教学文案
- 格式:pdf
- 大小:171.12 KB
- 文档页数:14
《神经生物学》教学大纲供临床医学专业七/八年制学生培养用复旦大学上海医学院神经生物学系神经生物学Neurobiology学分数 3 周学时 3 总学时 54课程性质:七/八年制医学专业基础课程教学要求:通过本课程的教学,学生应理解神经系统内分子水平、细胞水平和系统水平的变化及整合过程,脑的结构与功能和神经系统疾病的生物学基础。
掌握神经元、受体与信号传导、神经发育与再生、神经递质、神经肽和神经甾体等方面的基本知识和某些研究进展,深入学习和理解神经系统常见的脑疾病的诊治基础和相关研究进展,拓展学生的书本知识。
希望通过学习能为今后学习神经病学打下必要的理论基础,为开展相应疾病的研究提供必要的基础知识和技术理论。
教学方式:基本理论知识、实验实践和最新进展的讲解,结合课堂讨论和期末闭卷考试教学用书: 2008年以后采用孙凤艳主编《医学神经生物学》,上海市科技出版社,2008年2月出版;2008年以前采用许绍芬主编《神经生物学》,上海医科大学出版社,1999年8月第二版教学主要参考书:韩济生主编《神经科学纲要》,北京医科大学出版社,1999年9月第二版Zigmond等主编Fundamental Neuroscience,Academic Press, 1999年版第一章神经元和神经胶质教学内容一、神经元1. 神经元的一般结构神经元的概念;神经元细胞体和突起的特点2.神经元骨架与骨架蛋白神经元骨架的构成;神经元骨架蛋白的种类和特点3.神经元胞浆转运神经元胞浆转运基本特征和生理意义;神经元转运机制与转运蛋白二、神经胶质细胞1.神经胶质细胞一般特征神经胶质细胞的分类、形态特点、电生理特性和受体2.神经胶质细胞的功能支持作用;隔离与绝缘作用;引导发育神经元迁移;屏障作用;修复与再生作用;免疫应答;调节神经元的功能;神经胶质细胞与神经系统疾病教学要求1. 掌握神经元的概念和神经原细胞体和突起的特点;了解神经元骨架的构成和神经元骨架蛋白的种类;掌握神经元骨架蛋白的特点;了解神经元胞浆转运基本特征和生理意义;神经元转运机制与转运蛋白2. 掌握神经胶质细胞的分类,形态特点,电生理特性;了解胶质细胞的受体;了解神经胶质细胞的支持作用,隔离与绝缘作用,引导发育神经元迁移作用,屏障作用;修复与再生作用,免疫应答作用,调节神经元功能作用及与神经系统疾病的关系专业英文词汇neuron 神经元cell body 细胞体dendrite 树突spine 树突脊axon 轴突microtubule 微管microfilament 微丝neurofilament 神经丝microtuble associated proteins 微管关连蛋白glial cell 胶质细胞macroglia 大胶质细胞astrocyte 星形胶质细胞oligodendrocyte 少突胶质细胞第二章 神经元的电活动和神经元间信息的传递教学内容一、神经元的电活动1.膜电位膜电位的类型;静息电位的形成原理和意义;电紧张电位和局部反应的概念;动作电位的特征和形成机制2.离子通道离子通道的共同特征;离子通道的分类;钠通道、钙通道、钾通道的结构、亚型和功能二、神经元间信息的传递1.化学突触化学突触的超微结构、类型和传递过程2.电突触电突触的超微结构和传递过程教学要求1. 了解膜电位的类型;熟悉静息电位的形成原理和意义;理解电紧张电位和局部反应的概念;掌握动作电位的特征和形成机制;熟悉离子通道的共同特征;掌握离子通道的分类;掌握钠通道、钙通道、钾通道的结构、亚型和功能2. 熟悉化学突触的超微结构和类型;掌握化学突触传递的过程;理解电突触的超微结构和传递特点;了解电突触传递的意义专业英文词汇resting membrane potential 静息膜电位action potential 动作电位threshold 阈值after-potential 后电位after-hyperpolarization 负后电位after-depolarization 正后电位ion channels 离子通道non-gating channels 非门控离子通道gating channels 门控离子通道patch clamp 膜片钳sodium channels 钠通道calcium channels 钙通道potassium channels 钾通道synapse 突触quantal release 量子释放EPSP 兴奋性突触后电位IPSP 抑制性突触后电位gap junction 缝隙连接第三章 G蛋白介导的跨膜信息传递教学内容一、细胞信号转导的概念二、细胞外信息向细胞内传递的四种方式及代表物质三、三类受体(受体门控离子通道、G蛋白偶联受体、受体酪氨酸激酶)的结构、特征、跨膜信号转导机制及其代表受体四、G蛋白(G protein)的结构、特征、分类、调节机制及其参与调节的跨膜信息转导体系1.对腺苷酸环化酶(AC)活性2.对视网膜cGMP磷酸二酯酶活性3.对磷脂酶C活性及其对受体门控离子通道的调节五、G蛋白超家族的概念;Ras蛋白的结构、特征及其调节机制六、G蛋白βγ亚单位的结构和功能教学要求1.掌握细胞信号转导的概念;了解细胞外信息向细胞内传递的方式;了解三类受体跨膜信号转导机制2.掌握受体门控离子通道的概念;掌握G蛋白偶联受体的结构、特征、信号转导机制及其代表受体;掌握G蛋白的结构、特征、分类、调节机制及其参与调节的跨膜信息转导体系3.了解G蛋白超家族的概念;掌握Ras蛋白的概念;了解G蛋白βγ亚单位专业英文词汇signal transduction 信号转导ligand-gated ion channels 配体门控离子通道G-protein-coupled receptors G蛋白偶联受体desensitization (受体)失敏第四章 跨膜传递的分子机制教学内容一、受体酪氨酸激酶的结构、特征及其活性的调控机制二、SH domain (Src homobox 2,3)的概念和分类三、受体酪氨酸激酶跨膜信号传导网络,包括PI-PLCγ通路、PI3K通路和Grb2-Sos-RAS途径四、区别磷脂酶PLCβ和PLCγ在跨膜信号传导中被调节机制的差异五、磷酸化与脱磷酸化的概念六、蛋白激酶的特征、分类、功能及一些重要的蛋白激酶七、蛋白磷酸酶的分类和一些重要蛋白磷酸酶八、被磷酸化调节的神经蛋白九、受体酪氨酸激酶与癌基因十、Src样激酶与癌基因十一、信息转导体系之间的相互调节,包括G蛋白介导的跨膜信息体系之间的交联(crosstalk)及受体酪氨酸激酶体系与G蛋白介导的跨膜信息体系之间的交联教学要求1. 掌握受体酪氨酸激酶的结构、特征及其活性的调控机制;掌握SH domain的概念;了解受体酪氨酸激酶跨膜信号传导网络2. 掌握磷酸化、脱磷酸化、蛋白激酶、蛋白磷酸酶的概念;了解被磷酸化调节的神经蛋白3. 掌握Src样激酶的概念;了解信息转导体系之间的相互调节专业英文词汇receptor tyrosine kinase 受体酪氨酸激酶autophosphorylation 自身磷酸化internalization (受体)内化downregulation (受体)下调SH domain Src 同源区phosphorylation 磷酸化dephosphorylation 脱磷酸化protein kinase 蛋白激酶protein phosphatases 蛋白磷酸酶oncogenes 癌基因第五章神经元的钙信号转导教学内容一、信号转导、钙内流(Ca2+ transients)、钙波(Ca2+ waves)、钙震荡(Ca2+ oscillation)的概念二、Ca2+进入神经元的方式1.电压敏感性Ca2+通道2.递质门控性Ca2+通道3.IP3受体通道和Rya受体通道三、Ca2+缓冲(Ca2+ buffering)1.钙结合蛋白2.含钙细胞器四、Ca2+外排1.Ca2+-ATPase(Ca2+泵)2.Na+/Ca2+交换转运体五、钙敏感信使1.钙调蛋白(CaM)2.钙调蛋白依赖性蛋白激酶(CaMK)3.钙调蛋白依赖性蛋白磷酸酶和钙调蛋白依赖性腺苷酸环化酶(AC)六、钙信号向胞核传播1.Ca2+激活核内CaMK2.Ca2+激活Ras信号通路七、钙调节即早基因和延迟反应基因表达;以调节c-fos为例,说明钙如何调节即早基因表达教学要求1. 掌握钙信号转导的概念;了解Ca2+进入神经元、Ca2+缓冲和Ca2+外排的途径;了解Ca2+进入胞质后通过钙敏感信使介导生化效应2. 了解钙信号向胞核传播和调节基因表达;掌握钙对即早基因表达的调节机制专业英文词汇calcium signaling 钙信号转导Ca2+ transients 钙内流Ca2+ waves 钙波Ca2+ oscillation 钙震荡voltage-sensitive Ca2+ channels 电压敏感性Ca2+通道calmodulin (CaM) 钙调蛋白CaM-dependent protein kinase (CaMK) 钙调蛋白依赖性蛋白激酶Ca2+ buffering 钙缓冲immediate-early genes (IEGs) 即早基因delayed response genes (DRGs) 延迟反应基因第六章神经系统发育教学内容一、神经板发育为神经系统的演变,包括神经板发育为神经嵴、神经沟、神经管,最后发育为完整神经系统的形态学演变规律二、神经诱导1.诱导外胚层向神经性外胚层分化的机制2.组织原的概念,组织原在神经诱导中的作用三、神经轴前后关系的形成1.神经轴的概念2.水平信号和垂直信号在神经轴前后关系的形成中的作用3.原节相对独立发育的特性及机制四、神经管的背腹特性的分化1.脊索及其表达的SHH蛋白对神经管腹侧分化的作用2.神经板外侧的上皮性外胚层及其表达的BMP对神经管背侧分化的诱导作用五、神经元的发生,神经元发生的旁抑制信号机制六、轴突生长机制1.生长锥的概念2.生长锥前伸运动的机制3.诱导生长锥定向生长的物质及其作用机制七、神经元迁移1.神经元迁移的基本步骤神经元迁移的主要模式,神经元迁移调控的机制教学要求1.掌握诱导上皮性外胚层向神经性外胚层分化的主要机制;诱导神经轴前后关系形成和背腹侧分化的主要机制, 生长锥的概念,神经元迁移的主要模式2.了解神经板发育演变成神经系统过程中的一些基本结构名称;神经元发生中的旁抑制信号机制;生长锥前伸运动的机制,引导轴突生长的物质及其作用机制;神经元迁移的机制专业英文词汇neural plate 神经板neural crest 神经嵴neural groove 神经沟neural tube 神经管neural induction 神经诱导organizer 组织原neuraxis 神经轴ventricular zone 脑室层marginal zone 缘层intermediate zone , mantle zone 中间层或套层growth cone 生长锥neuronal migration 神经元迁移neuronophilic migration 亲神经性迁移gliophilic migration 亲胶质性迁移第七章神经再生教学内容一、变性1.神经元对轴突损伤的变性反应轴突损伤后影响神经元存活的因素,轴突损伤后神经元形态、生化和功能的变化,分子转运的变化2.轴突变性反应华氏变性,逆行性变性, 跨神经元溃变的概念;外周神经系统与中枢神经系统轴突变性的差异二、神经轴突再生包括完整有效的神经再生的概念1.外周神经系统再生的基本过程雪旺氏细胞对神经再生的影响,终端再生和侧枝发芽,再生髓鞘的特点2.中枢神经系统再生的基本状况中枢神经系统再生的基本状况,中枢神经系统与外周神经系统的胶质细胞类型和胶质反应也有很大差异。
《神经生物学》教学大纲一、课程基本信息课程名称:神经生物学课程类别:专业必修课课程学分:_____课程总学时:_____授课对象:_____二、课程性质与教学目标(一)课程性质神经生物学是一门研究神经系统的结构、功能、发育、进化以及神经疾病发生机制和治疗方法的综合性学科。
它融合了生物学、生理学、解剖学、遗传学、药理学等多个学科的知识,旨在揭示神经系统的奥秘,为人类健康和疾病治疗提供理论基础。
(二)教学目标1、知识目标使学生系统地掌握神经生物学的基本概念、基本理论和基本实验方法,了解神经系统的细胞组成、神经信号传递、神经发育、神经可塑性、神经退行性疾病等方面的知识。
2、能力目标培养学生的科学思维能力、实验设计能力和解决实际问题的能力,能够运用所学知识分析和解释神经生物学相关的现象和问题。
3、素质目标激发学生对神经生物学的兴趣,培养学生的创新意识和探索精神,提高学生的科学素养和综合素质。
三、教学内容与教学要求(一)神经系统的细胞基础1、神经元(1)神经元的结构与功能(2)神经元的分类(3)神经元的电生理特性2、神经胶质细胞(1)神经胶质细胞的类型与功能(2)神经胶质细胞与神经元的相互作用(二)神经信号传递1、突触传递(1)化学突触传递的机制(2)电突触传递的特点(3)突触可塑性2、神经递质与受体(1)常见神经递质的种类与功能(2)神经递质受体的类型与作用机制(三)神经系统的发育1、神经诱导与神经胚形成(1)神经诱导的过程与机制(2)神经胚的形成与分化2、神经元的发生与迁移(1)神经元的起源与增殖(2)神经元的迁移路径与机制3、神经突触的形成与发育(1)突触形成的过程与影响因素(2)突触发育的调控机制(四)神经可塑性1、学习与记忆(1)学习与记忆的神经机制(2)长时程增强与长时程抑制2、神经损伤与修复(1)神经损伤的类型与机制(2)神经修复的策略与方法(五)神经退行性疾病1、阿尔茨海默病(1)阿尔茨海默病的病理特征与临床表现(2)阿尔茨海默病的发病机制与治疗进展2、帕金森病(1)帕金森病的病理改变与临床症状(2)帕金森病的病因与治疗方法3、亨廷顿舞蹈病(1)亨廷顿舞蹈病的遗传基础与神经病理(2)亨廷顿舞蹈病的诊断与治疗(六)神经生物学研究方法1、形态学研究方法(1)组织切片技术(2)免疫组织化学技术2、电生理研究方法(1)膜片钳技术(2)脑电图与脑磁图技术3、分子生物学研究方法(1)基因克隆与表达技术(2)蛋白质组学技术四、教学方法与教学手段(一)教学方法1、讲授法通过课堂讲授,系统地传授神经生物学的基本概念、理论和知识体系。
神经⽣物学复习神经⽣物学神经系统总论1.神经元的结构①细胞膜:为可兴奋膜,在接受刺激,传播神经冲动和信息处理等⽅⾯起重要作⽤,其上有离⼦通道,受体等。
通道有的是电位门控通道,有的是化学门控通道,有的通道是经常开放的。
②胞体:LM下,核位胞体中央,⼤⽽圆;核异染⾊质少,着⾊浅,有性染⾊质;核仁⼤⽽明显;核周质主要有尼⽒体、神经原纤维等。
EM下可见,RER、核糖体、微管、微丝、 Golgi复合体、脂褐⾊素、多泡体等;某些分泌性神经元还有分泌颗粒。
③树突:结构与胞体中核周质基本相似,有的树突上有树突棘(spine),EM 下可见树突棘中有的有棘器(spine apparatus)。
④轴突:⼀般由胞体发出,也有从树突⼲的基部发出的,发起处呈圆锥形,为轴丘(axon hillock),此处⽆尼⽒体。
轴突表⾯的细胞膜称轴膜(axolemma),胞质为轴质(axoplasm)。
轴质内有⼤量的微管和神经丝、微丝,在其内构成⽹架结构。
细胞器主要有SER及⼩泡等,⽆RER及Golgi复合体。
轴膜可传导神经冲动。
2.神经元功能①信息传递②营养细胞③分泌激素④免疫3.神经系统组成神经系统由脑和脊髓及由它们发出的神经组成。
脊髓(spinal cord)中枢神经系统神经系统脑(brain)脑神经:12对,有感觉与运动之分周围神经系统脊神经:31对⾃主神经内(脏神经的传出部分⼜称为⾃主神经系统或植物神经系统,分为交感和副交感神经。
)4.常⽤术语灰质:在中枢神经系统中,神经元胞体和树突的聚集部位,此部分因富含⾎管⽽在新鲜标本中呈现灰⾊。
⽩质:中枢神经系统内的神经纤维聚集⽽成,髓鞘⾊泽⽩亮。
⽪质:⼤脑和⼩脑表层的灰质。
髓质:⼤脑和⼩脑的⽩质被⽪质包绕,位于深⽅,称为髓质。
神经核:在中枢神经系统,形态功能相近的神经元胞体聚集⽽成的灰质团块。
神经节:在周围神经系统,形态功能相近的神经元胞体聚集⽽成的灰质团块。
纤维束:中枢神经内⾏程与功能相同的神经纤维聚集成束,称纤维束。
引言概述:神经生物学是生物学中的一个重要分支,主要研究神经系统的结构、功能和功能障碍等方面。
本文将对《神经生物学》教学大纲进行详细介绍。
该教学大纲旨在帮助学生全面了解神经生物学的基本知识和理论,并有助于培养学生的科学思维和研究能力。
正文内容:一、神经元的结构与功能1.神经元的基本构成:细胞体、树突、轴突等组织结构。
2.神经冲动传导机制:动作电位的产生与传递。
3.神经递质的作用机制:兴奋性与抑制性神经递质的功能及相互作用。
4.突触传递过程:突触前后膜的相互作用和突触后电位的。
二、神经系统的组织与功能1.中枢神经系统的结构:大脑、小脑、脑干和脊髓的解剖结构。
2.神经系统的功能分区:感觉神经系统、运动神经系统和自主神经系统。
3.感觉与运动的组织与调节:感觉器官的结构和感觉传递机制,运动控制的中枢和外周结构。
三、神经发育与可塑性1.神经发育的基本过程:神经管形成与神经元、迁移、成熟的过程。
2.神经发育的调控机制:遗传因素和环境因素对神经细胞命运的影响。
3.神经可塑性的机制:学习与记忆的生理基础以及大脑可塑性的分子机制。
四、神经系统与行为1.大脑与认知功能:大脑皮层的结构和功能,记忆、学习、思维的神经基础。
2.情感与情绪的神经机制:情感的形成、调节和表达的神经过程。
3.神经系统与意识:意识的生理基础和相关疾病的神经机制。
五、神经系统的疾病与治疗1.神经退行性疾病:阿尔茨海默病、帕金森病等疾病的病因与治疗方法。
2.神经精神疾病:抑郁症、精神分裂症的神经机制和治疗方法。
3.神经系统的损伤与康复:脑卒中、脊髓损伤的神经修复和康复治疗方法。
总结:通过学习《神经生物学》教学大纲,学生可以全面了解神经系统的结构、功能和相关疾病。
理解神经元的结构与功能、神经系统的组织与功能、神经发育与可塑性、神经系统与行为以及神经系统的疾病与治疗等内容,将有助于培养学生的科学思维和研究能力,为进一步的神经生物学研究和神经科学应用提供基础。
神经生物学:研究人和动物神经系统结构与功能及其相互关系。
在分子水平、细胞水平、神经回路和网络水平乃至系统和整体水平上阐明神经系统(特别是大脑)的基本活动规律的科学。
还研究各种神经和精神疾患的产生机理和预防、诊治方法。
神经元迁移:较早分化的较大神经元先迁移并形成最内层,依次顺序向外;而较晚分化的较小神经元则通过已形成的层次迁移并形成其外侧新的层次;故不论皮质的什么区域,其最内层总是最早分化,而最外层则最后分化。
神经肌肉接头是运动神经元轴突末梢在骨骼肌肌纤维上的接触点。
位于脊髓前角和脑干一些神经核内的运动神经元,向被它们支配的肌肉各发出一根很长的轴突,即神经纤维。
这些神经纤维在接近肌细胞,即肌纤维处,各自分出数十或百根以上的分支。
一根分支通常只终止于一根肌纤维上,形成1对1的神经肌肉接头。
从神经纤维传来的信号即通过接头传给肌纤维。
神经肌肉接头是一种特化的化学突触,其递质是乙酰胆碱(ACh)。
无脊椎动物如螯虾的神经肌肉接头的递质是谷氨酸(兴奋性纤维的递质)或γ-氨基丁酸(抑制性纤维的递质)。
电突触经由缝隙连接(gap junction)实现信号传递化学突触经由化学递质(neurotransmitter)实现信号传递化学突触传递:即经典突触传递,突触前神经元产生的兴奋性电信号(动作电位)诱发突触前膜释放神经递质,跨过突触间隙而作用于突触后膜,进而改变突触后神经元的电活动。
K+的平衡电位:由K+扩散到膜外造成的外正内负的电位差,将成为阻止K+外移的力量,而随着K+外移的增加,阻止K+外移的电位差也增大。
当促使K+外移的浓度差和阻止K+外移的电位差这两种力量达到平衡时,经膜的K+净通量为零,即K+外流和内流的量相等。
此时,膜两侧的电位差就稳定于某一数值不变,此电位差称为K+的平衡电位。
视皮层功能柱:具有相似视功能的细胞在厚度约为2,mm的视皮层内部以垂直于视皮层表面的方式呈柱状(或片状)分布。
其包括:方位功能柱、眼优势柱、颜色功能柱、空间频率柱等。
神经营养因子1、神经营养因子NTF是一类由神经所支配的组织(如肌肉)和星形胶质细胞产生的且为神经元生长与存活所必需的蛋白质分子。
神经营养因子通常在神经末梢以受体介导式入胞的方式进入神经末梢,再经逆向轴浆运输抵达胞体,促进胞体合成有关的蛋白质,从而发挥其支持神经元生长、发育和功能完整性的作用。
近年来,也发现有些NT 由神经元产生,经顺向轴浆运输到达神经末梢,对突触后神经元的形态和功能完整性起支持作用。
2、分类一神经营养素家族NTs:又称为NGF 家族,氨基酸序列的同源性大于50%。
包括nerve growth factor, NGF, Brain-derived neurotrophic factor , BDNF,NT-3、NT-4/5, NT-6二其它NTF:主要包括GDNF,是TGF-β超家族成员之一CNTF,属于成血细胞因子超家族①神经营养素(neurotrophins)家族:NGF、BDNF、NT-3、NT-4/5等;②细胞因子家族:睫状神经营养因子(CNTF)、白细胞抑制因子(LIF)、白细胞介素6(interleukin-6) ;③成纤维细胞生长因子家族:碱性成纤维细胞生长因子(bFGF);酸性成纤维生长因子(aFGF);④胶质细胞源性神经营养因子(GDNF);⑤细胞外基质分子,如N-CAM,L1。
3、神经营养因子的生物学效应←NT-3: 是本体感觉神经元存活所必需←BDNF: 胆碱能、多巴胺能神经元。
AD与PD←NGF:前脑基底节胆碱能神经元—海马、皮质,构成胆碱能通路,与学习、记忆有关。
与AD←GDNF: 多巴胺能、运动神经元强效营养作用。
AD 与PD。
促进运动神经元的生长与分化,是目前已知的效应最强的胆碱能运动神经元营养因子。
基因修饰嗅鞘细胞能促进损伤区神经纤维再生。
神经营养因子作用:神经元存活阻止神经元死亡神经生长刺激轴突和树突的延长神经再生发芽刺激成人神经元轴突和树突发芽合成代谢作用增加神经元胞体大小分化诱导神经元表型蛋白的合成调节传输增加神经递质、神经肽以及它们的合成酶的合成电性质改变离子通道的活性和水平掌握神经营养因子的生物学效应神经系统发育期(1)促进神经元存活、生长、分化成熟(2)对神经递质的选择作用:神经元迁移中的环境影响(3)诱导神经纤维定向生长成年1)神经元对NT的依赖减少,只有部分神经元需一定水平的NT 维持其正常功能。
神经营养因子1、神经营养因子NTF是一类由神经所支配的组织(如肌肉)和星形胶质细胞产生的且为神经元生长与存活所必需的蛋白质分子。
神经营养因子通常在神经末梢以受体介导式入胞的方式进入神经末梢,再经逆向轴浆运输抵达胞体,促进胞体合成有关的蛋白质,从而发挥其支持神经元生长、发育和功能完整性的作用。
近年来,也发现有些NT 由神经元产生,经顺向轴浆运输到达神经末梢,对突触后神经元的形态和功能完整性起支持作用。
2、分类一神经营养素家族NTs:又称为NGF 家族,氨基酸序列的同源性大于50%。
包括nerve growth factor, NGF, Brain-derived neurotrophic factor , BDNF,NT-3、NT-4/5, NT-6二其它NTF:主要包括GDNF,是TGF-β超家族成员之一CNTF,属于成血细胞因子超家族①神经营养素(neurotrophins)家族:NGF、BDNF、NT-3、NT-4/5等;②细胞因子家族:睫状神经营养因子(CNTF)、白细胞抑制因子(LIF)、白细胞介素6(interleukin-6) ;③成纤维细胞生长因子家族:碱性成纤维细胞生长因子(bFGF);酸性成纤维生长因子(aFGF);④胶质细胞源性神经营养因子(GDNF);⑤细胞外基质分子,如N-CAM,L1。
3、神经营养因子的生物学效应NT-3: 是本体感觉神经元存活所必需BDNF: 胆碱能、多巴胺能神经元。
AD与PDNGF:前脑基底节胆碱能神经元—海马、皮质,构成胆碱能通路,与学习、记忆有关。
与ADGDNF: 多巴胺能、运动神经元强效营养作用。
AD 与PD。
促进运动神经元的生长与分化,是目前已知的效应最强的胆碱能运动神经元营养因子。
基因修饰嗅鞘细胞能促进损伤区神经纤维再生。
神经营养因子作用:神经元存活阻止神经元死亡神经生长刺激轴突和树突的延长神经再生发芽刺激成人神经元轴突和树突发芽合成代谢作用增加神经元胞体大小分化诱导神经元表型蛋白的合成调节传输增加神经递质、神经肽以及它们的合成酶的合成电性质改变离子通道的活性和水平掌握神经营养因子的生物学效应神经系统发育期(1)促进神经元存活、生长、分化成熟(2)对神经递质的选择作用:神经元迁移中的环境影响(3)诱导神经纤维定向生长成年1)神经元对NT的依赖减少,只有部分神经元需一定水平的NT 维持其正常功能。
2)维持神经元的可塑性(plasticity) ,在一定程度上保留有再生修复的能力。
3)NTF 对神经元具有神经保护作用。
4)NGF:前脑基底节胆碱能神经元—海马、皮质,构成胆碱能通路,与学习、记忆有关。
与AD5)BDNF: 胆碱能、多巴胺能神经元。
6)GDNF: 多巴胺能、运动神经元强效营养作用。
7)NT-3: 是本体感觉神经元存活所必需4.神经营养因子受体及其信号转导NT通过与两种类型细胞表面受体,即Trk酪氨酸激酶和p75NR受体1 TrkTrk receptor : 由原肌球蛋白和酪氨酸蛋白激酶(protein tyrosine kinase, PTK)融合产生, 催化自身或底物tyr 磷酸化。
为跨膜糖蛋白,胞外区富含亮氨酸(LRM, leucine rich motif), 决定了与配体结合的特异,胞内区酪氨酸激酶区。
(Trf受体/配基)TrkA/NGF, TrkB/BDNF, TrkC/NT-3经Ras 诱导的信号转导Trk receptor : 酪氨酸蛋白激酶(PTK), 催化自身或底物tyr 磷酸化。
为跨膜糖蛋白,胞外区富含亮氨酸, 决定了与配体结合的特异,胞内区酪氨酸激酶区。
TrkA/NGF,TrkB/BDNF, TrkC/NT-3;经Ras 诱导的信号转导TRK→Ras→Raf1→MEK→MAPK(轴突生长、突触可塑性)→CREB→BCL-2→促神经元存活?NTs /Trk 激活RasRaf-1(MAPKKK)MEK(MAPKK)MAPK……..轴突的生长突触可塑性CREBBCL-2促进神经元的存活1 RAS-MEK/MAP Kinase2 RAS-PI-3K/Akt(PKB)– cell survival kinasePKB:丝氨酸/苏氨酸激酶(Ser/Thr),又名Akt.使凋亡蛋白磷酸化,BAD、caspase-9、forkhead 蛋白磷酸化,抑制凋亡。
转录因子CREB 磷酸化BCL-2基因的表达促存活3 RTK can also activate PLCγ.2、p75NTR结构特点:跨膜受体(TNF),胞外含有4个富含半胱氨酸的结构域,与配体的结合有关。
胞内不含配体诱导的酶激活域,含有一个死亡结构域(death domain, DD). 与NT 结合无选择性。
生物学效应:1 促存活与促凋亡二p75NTR(75kDa neurotrophinreceptor)?结构特点:跨膜受体(TNF),胞外含有4个富含半胱氨酸的结构域,与配体的结合有关。
胞内不含配体诱导的酶激活域,含有一个死亡结构域(death domain, DD ). 与NT 结合无选择性。
?生物学效应:1 促存活与促凋亡(1)NT/p75NTRNF-kBbcl-2, bcl-xl促细胞存活BCL-XS促凋亡(2)NT/p75NTR JNK-p53-BAX凋亡(3)NT/p75NTR 神经营养因子受体相互作用因子(neurotrophinreceptorinteracting factor, NRIF) 凋亡2 通过影响Trk, 抑制神经元生长:(1)抑制raf-MEK-MAPK 这一通路;(2)神经酰胺增加——抑制AKT 和Raf 活性,抑制神经元的存活与生长;(3) 激活生长调节蛋白Rho 抑制神经元的生长。
神经营养因子作用模式ppt熟悉NTF 与神经疾病的关系脊髓遭受机械外伤后瞬间引起局部一定范围内的出血、水肿、坏死,直接导致损伤部位神经元死亡和神经纤维中断,局部脊髓功能丧失,称为原发性脊髓损伤。
瞬间发生神经元死亡神经纤维中断原发性脊髓损伤后,由于一系列病理因素变化包括局部炎症反应及有害物质的蓄积,如钙离子超载、自由基和兴奋性氨基酸的蓄积等,导致脊髓组织进行性、自毁性破坏过程,包括损伤面积扩大、更多的神经元死亡,以及神经纤维变性、脱髓鞘等,统称为继发性脊髓损伤进行性损伤范围扩大传导深部感觉:薄束和楔束传导浅表感觉:脊髓丘脑束中枢神经可塑性是指在受到损伤或内、外环境发生变化的情况下,中枢具有使其结构和功能随之发生相应变化的能力。
干细胞基础1、什么是神经干细胞?神经干细胞(neural stem cells,NSCs )是指分布于神经系统的,具有自我更新能力和分化潜能的干细胞。
主要位于海马齿状回颗粒下区(SGZ)和侧脑室管膜下区(SVZ)。
2、如果进行自体细胞移植可能有几种途径:胚胎干细胞诱导多能干细胞:多能干细胞——神经外胚层细胞——神经前体细胞——神经元和胶质细胞直接转分化:成纤维——神经元、生殖干细胞——神经元、神经干细胞进行神经系统细胞移植治疗的可能细胞来源?胚胎干细胞:?iPS细胞:?生殖细胞来源的多能干细胞:?成年神经干细胞:?其他来源:例如直接转分化3、干细胞(stem cells, SC)是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。
信号转导1、乙酰胆碱受体:AchR?Ach:乙酰辅酶A和胆碱在ChAT的催化下合成;VAChT;AChE?毒蕈碱受体M-AChR和烟碱受体N-AChR;M1/3/5-Gq;M2/4-Gi/o;外周N1/2;中枢α-BGT敏感和不敏感受体?突触前和突触后?基底前脑、交感副交感节前、脊髓前角运动神经元5-HT1R: Gi 偶联5-HT2R: Gq偶联5-HT3R: 离子通道5-HT4R、5-HT6R、5-HT7R:Gs偶联5-HT3受体:?由5个亚单位组成?2个配体结合、慢?分布:脑干、孤束核、脊髓、节前节后纤维?Na+、K+,去极化?4个跨膜螺旋+胞外N+胞外 C?5-HT3A和3B最重要?功能:疼痛、情绪精神活动、胃肠道等谷氨酸受体?Glu:谷氨酰胺循环:神经元和胶质细胞;谷氨酰胺酶和谷氨酰胺合成酶?促代谢型谷氨酸受体:mGluRs?Group 1 (Gq):mGluR1和5?Group 2 (Gi):mGluR2和3?Group 3 (Gi):mGluR4、6、7、8?离子型谷氨酸受体:?NMDAR?AMPAR?KARNMDAR4个亚单位围绕通道TM1、2、3、4NR1是必需亚单位,NR2起调节作用;一般式2个NR1和2个NR2NMDA受体具有独特的电压依赖性,其受体通道被Mg2+堵塞,去极化将Mg2+逐出而打开NMDA受体通道。
受配体和膜电位的双重调节。
Na+、K+和Ca2+慢时程EPSP一般和AMPAR共存在AMPAR和KARAMPAR:GluR1,2,3,4;KAR: GluR5,6,7&KA1,2Na+、K+通透,Ca2+基本不通透对膜电位不敏感,受配体直接调制2、受体的分类及各类受体介导信号的特点G蛋白偶联受体、受体酪氨酸激酶、离子通道受体、核受体GPCR (7-TM):Gs、Gi、Gq、G12/13;α、βγ;AC-cAMP、PLCβ-IP3&DAG;PKA、PKC、CaMK、小G蛋白、PDE;调控转录因子或关键酶或离子通道等。
RTK (1-TM):酪氨酸磷酸化,提供SH2蛋白结构域结合位点,形成蛋白复合物,传递信号,例如PI3K-AKT、MAPK.通道:配体门控或电压门控;通道开放或关闭;Na+、K+、Ca2+、Cl-;EPSC或IPSC。
核受体:和配体结合调控靶基因的表达。
3、G蛋白偶联受体信号转导的基本通路比如乙酰胆碱五羟色胺谷氨酸,受体分为哪几类配体激活这些受体时信号传导的途径一cAMP信号途径(G蛋白偶联受体信号转导途径)配体(H)+细胞膜上的受体(R)→H-R复合体→膜上的AC被活化,催化ATP产生cAMP→活化蛋白激酶→引起细胞生物学效应(在ATP存在下)cAMP信号途径分两类:①刺激型信号途径:Rs-Gs-AC cAMP↑途径刺激型信号作用刺激性受体(Rs)和刺激性G蛋白(Gs),Gs刺激AC活化,使AC分解ATP,产生cAMP产生效应。
②抑制型信号途径:Ri-Gi-AC途径cAMP↓抑制型信号与细胞表面抑制型受体Ri结合,受体活化、构象改变、结合并活化抑制型G蛋白(Gi),Gi激活以后的过程与刺激型过程正好相反,AC被抑制,ATP分解被抑制, cAMP浓度下降,其生物学效应即受到抑制.结论:刺激型途径:刺激型配体+Rs+Gs→AC激活→cAMP↑抑制型途径: 抑制型配体+Ri+Gi→AC抑制→cAMP↓cAMP信号转导的基本过程1、第一信使产生并与靶C靠近2、配体与受体结合,激活AC系统3、在Mg2+存在下,激活的AC催化ATP生成cAMP4、cAMP浓度的变化可调节细胞所特有的代谢活动发生变化,并表现出各种生理效应。