C
例4:某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法。
系统
*
例5:采用系统抽样从个体数为83的总体中抽取一个样本容量为10的样本,那么每个个体 人样的可能性为 _________.
c
*
例1、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( ) A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
抽签法 随机数表法 复习
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.
一般地,设一个总体的个体数为N,如果通过逐个不放回地抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
2.1.2 系统抽样
一、学习目标: 1、知识与技能: (1)正确理解系统抽样的概念; (2)掌握系统抽样的一般步骤; (3)正确理解系统抽样与简单随机抽样的关系; 2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法, 3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。 二、重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
*
3、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,若该校取一个容量为n的样本,每个学生被抽到的可能性均为0.2, 则n= 。 4、对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料: