数列综合试题
- 格式:doc
- 大小:437.50 KB
- 文档页数:6
高三数学数列综合应用试题答案及解析1.已知数列{an }中,a1=2,an-an-1-2n=0(n≥2,n∈N*).(1)写出a2,a3的值(只写结果),并求出数列{an}的通项公式;(2)设bn=+++…+,若对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,求实数t的取值范围.【答案】(1)a2=6,a3=12. an=n(n+1).(2)实数t的取值范围为(-∞,-2)∪(2,+∞)【解析】解:(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N*),∴a2=6,a3=12.当n≥3时,an -an-1=2n,a n-1-a n-2=2(n-1),又a3-a2=2×3,a2-a1=2×2,∴an -a1=2[n+(n-1)+…+3+2],∴an=2[n+(n-1)+…+3+2+1]=2×=n(n+1).当n=1时,a1=2;当n=2时,a2=6,也满足上式,∴数列{an }的通项公式为an=n(n+1).(2)bn=++…+=++…+=-+-+…+-=-==.令f(x)=2x+(x≥1),则f′(x)=2-,当x≥1时,f′(x)>0恒成立,∴函数f(x)在[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3,即当n=1时,(bn )max=.要使对任意的正整数n,当m∈[-1,1]时,不等式t2-2mt+>bn恒成立,则需t2-2mt+>(bn )max=,即t2-2mt>0对∀m∈[-1,1]恒成立,∴,解得t>2或t<-2,∴实数t的取值范围为(-∞,-2)∪(2,+∞).2.一函数y=f(x)的图象在给定的下列图象中,并且对任意an ∈(0,1),由关系式an+1=f(a n)得到的数列{an }满足an+1>a n(n∈N*),则该函数的图象是()【答案】A【解析】由an+1>a n可知数列{a n}为递增数列,又由a n+1=f(a n)>a n可知,当x∈(0,1)时,y=f(x)的图象在直线y=x的上方,故选A.3.设函数)定义为如下数表,且对任意自然数n均有xn+1=的值为( ) A.1B.2C.4D.5【答案】D【解析】,又根据,所以有,,,, .,所以可知:,,故选D.【考点】数列的周期性4.是点集A到点集B的一个映射,且对任意,有.现对点集A中的点,,均有,点为(0,2),则线段的长度 .【答案】【解析】∵,∴,,,,,,…,根据变化规律可知,∴,,∴.【考点】1.数列的性质;2.两点间距离公式.5.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:(1)b2012是数列{an}中的第项;(2)b2k-1=.(用k表示)【答案】(1)5030(2)【解析】由以上规律可知三角形数1,3,6,10,…的一个通项公式为an=,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…其中能被5整除的为10,15,45,55,105,120,…故b1=a4,b2=a5,b3=a9,b4=a10,b5=a14,b6=a15,….从而由上述规律可猜想:b2k =a5k= (k为正整数),b2k-1=a5k-1==,故b2012=b2×1006=a5×1006=a5030,即b2012是数列{an}中的第5030项.6.已知数列满足,则该数列的通项公式_________.【答案】【解析】∵,∴,∴,∴,,…,,∴,∴,∴.【考点】1.累加法求通项公式;2.裂项相消法求和.7.数列满足,则 .【答案】【解析】这类问题类似于的问题处理方法,在中用代换得(),两式相减得,,又,即,故.【考点】数列的通项公式.8.已知函数,记,若是递减数列,则实数的取值范围是______________.【答案】【解析】是递减数列,从开始是用式子计算,这时只要,即即可,关键是是通过二次式计算,根据二次函数的性质,应该有且,即且,解得,综上取值范围是.【考点】数列的单调性.9.已知数列{}的前n项和为,且,则使不等式成立的n的最大值为.【答案】4【解析】当时,,得,当时,,所以,所以,又因为适合上式,所以,所以,所以数列是以为首项,以4为公比的等比数列,所以,所以,即,易知的最大值为4.【考点】1.等比数列的求和公式;2.数列的通项公式.10.甲、乙两人用农药治虫,由于计算错误,在A、B两个喷雾器中分别配制成12%和6%的药水各10千克,实际要求两个喷雾器中的农药的浓度是一样的,现在只有两个容量为1千克的药瓶,他们从A、B两个喷雾器中分别取1千克的药水,将A中取得的倒入B中,B中取得的倒入A中,这样操作进行了n次后,A喷雾器中药水的浓度为,B喷雾器中药水的浓度为.(1)证明:是一个常数;(2)求与的关系式;(3)求的表达式.【答案】(1)18;(2);(3) .【解析】(1)利用n次操作后A和B的农药的和应与开始时农药的重量和相等建立等量关系,证明是一个常数;(2)借助第一问的结论和第n次后A中10千克的药水中农药的重量具有关系式,求解与的关系式;(3)根据第二问的递推关系,采用构造数列的思想进行求解.试题解析:(1)开始时,A中含有10=1.2千克的农药,B中含有10=0.6千克的农药,,A中含有千克的农药,B中含有千克的农药,它们的和应与开始时农药的重量和相等,从而(常数). 4分(2)第n次操作后,A中10千克的药水中农药的重量具有关系式:由(1)知,代入化简得① 8分(3)令,利用待定系数法可求出λ=—9,所以,可知数列是以为首项,为公比的等比数列.由①,,由等比数列的通项公式知:,所以. 12分【考点】1.数列的递推式;(2)数列的通项公式;(3)实际应用问题.11.等比数列的各项均为正数,且,则【答案】B【解析】等比数列中,所以【考点】等比数列性质及对数运算点评:等比数列中,若则,在对数运算中12.已知数列的首项为,对任意的,定义.(Ⅰ)若,(i)求的值和数列的通项公式;(ii)求数列的前项和;(Ⅱ)若,且,求数列的前项的和.【答案】(1) ,,(2) 当为偶数时,;当为奇数时,【解析】(Ⅰ) 解:(i),,………………2分由得当时,=………4分而适合上式,所以.………………5分(ii)由(i)得:……………6分……………7分…………8分(Ⅱ)解:因为对任意的有,所以数列各项的值重复出现,周期为. …………9分又数列的前6项分别为,且这六个数的和为8. ……………10分设数列的前项和为,则,当时,,……………11分当时,,…………12分当时所以,当为偶数时,;当为奇数时,. ……………13分【考点】数列的通项公式,数列的求和点评:解决的关键是对于数列的递推关系的理解和运用,并能结合裂项法求和,以及分情况讨论求和,属于中档题。
等差数列测试题班级:_____________姓名:_____________得分:___________ 一选择题:(60分=5分×12)1.已知{}n a 为等差数列,135********,99,a a a a a a a ++=++=则等于( ) A. -1 B. 1 C. 3 D. 72.设n S 是等差数列{}n a 的前n 项和,已知23a =,611a =,则7S 等于( ) A .13 B .35 C .49 D . 633.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4, 则公差d 等于 A .1 B. 53C.- 2D. 3 4.已知{}n a 为等差数列,且7a -24a =-1, 3a =0,则公差d =( )A.-2B. 12- C. 12D.25.若等差数列{}n a 的前5项和525S =,且23a =,则7a =( )A.12B.13C.14D.15 6.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是 ( ) A .15 B .30 C .31 D .64 7.已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于( ) A .64 B .100 C .110 D .120 8.记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S =( ) A .16 B .24 C .36 D .489.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63 B .45 C .36 D .27 10.设n S 是等差数列{}n a 的前n 项和,若36612S1,3S S S ==则( ) A.310 B.13 C.18 D.1911、等差数列{}n a 中,39||||,a a =公差d<0,则使前项n 和n S 取得最大值的自然数n 的值是( )A.4和5B.5和6C.6和7D.不存在12、含2n+1项的等差数列,其奇数项的和与偶数项的和之比为( ) A.21n n+ B.1n n + C.1n n - D.12n n +二、填空题(20分=5分×4)13.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= 14. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 15.设等差数列{}n a 的前n 项和为n S ,若535a a =,则95S S = 16.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 三、解答题(70分=10分+5×12分,22,23大题任选一题作答) 17.在等差数列{}n a 中,40.8a =,11 2.2a =,求515280a a a +++.18.已知等差数列{n a }中,374616,0a a a a ⋅=-+=,求{n a }前n 项和n S .19、求数列{}n a 的前n 项和n S ,其中1(1)n a n n =+20、设等差数列{}n a 的前n 项和为n S ,已知312a =,12S >0,13S <0, ①求公差d 的取值范围;②1212,,,S S S 中哪一个值最大?并说明理由.21、设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求: (1)}{n a 的通项公式a n 及前n项的和n S ; (2)12314...a a a a ++++*22、某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元, (Ⅰ)问第几年开始获利?(Ⅱ)若干年后,有两种处理方案:(1)年平均获利最大时,以26万元出售该渔船;(2)总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算.*23.若两个数列的前n 项和之比是(71):(427)n n ++,试求它们的第11项之比,第n 项之比。
数列综合练习题一、选择题1. 数列{}n a 满足a 1=2,*110()n n a a n N +-+=∈,则此数列的通项a n 为 ( )A.3-nB.1-nC.3+nD.1+n2. 在等差数列{}n a 中,前15项之和15S =90,则8a = ( )A .6B 。
454 C.12 D. 4523.实数12345,,,,a a a a a 依次成等比数列,其中a 1=2,a 5=8,则a 3的值为 ( )A.-4B.4C.±4D.54. 等差数列{a n }中,a 1>0 , d ≠0, 311S S =,则n S 中的最大值为 ( )A. 7S 和8SB.14SC.7SD.无最大值5. 数列{a n }满足*212()n n n a a a n N +++=∈,则此数列的通项可表示为 ( )A.121(1)()n a a n a a =+--B.121()n a a n a a =+-C.1211()n n a a a a -= D.211()n n aa a a = 6.等比数列{}n a 中,已知112733n a a q ===,,,则n 为 ( )A .3B .4C .5D .67.已知等差数列{}n a 中15,652==a a ,若n n a b 2=,则数列{}n b 的前5项和等于( )A .186B .90C .45D .30 8.等比数列{n a }中,n a =2×31-n ,由此数列偶数项所组成的新数列的前n 项和n S =( )A.3n-1 B .3(3n-1) C.419-n 4n9.数列 ,1614,813,412,211前n 项的和为 ( ).A 22112n n n ++- .B 2212n n n ++-.C 22121n n n -+-+ .D 2212nn n ++10.已知数列{}n a 的前n 项和为n S ,且21()n n S a n *=-∈N ,则5a =( ) A .16-B .16C .31D .3211.一个等比数列的首项为1,公比为2,则2222123...n a a a a ++++= ( )A .2(21)n -B .1(21)3n - C .41n - D .1(41)3n -12.等差数列}{n a 中,3,121==a a ,数列}1{1+n n a a 的前n 项和为3115,则n 的值为( )A .15B .16C .17D .1813.在等比数列{}n a 中,201020078a a = ,则公比q 的值为( )A. 2B. 3C. 4D. 814.公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = ( )(A ) 1 (B )2 (C ) 4 (D )815.{a n }是等比数列,0>n a 且,187465=+a a a a 则=+⋅⋅⋅++1032313log log log a a a ( )A .12B .10C .8D .2+5log 3 16.数列{}n a 的通项公式是11++=n n a n ,若前n 项和为10,则项数=n( )A.11B.99C.120D.12117.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,,则n S = ( ) A.12-n B.1)23(-n C.1)32(-n D.121-n二、填空题18、等比数列{a n }中,已知a 1+a 2+a 3=7,a 1a 2a 3=8,且{a n }为递增数列,则a 4= . 19、 已知{a n }是等差数列,且有a 2+a 3+a 10+a 11=48, 则a 6+a 7=_____________.20、 一个等差数列共2n+1项,其中奇数项之和为305,偶数项之和为300,则第n+1项为______21、已知{a n }为等差数列,S n 为其前n 项和,若211=a ,S 2=a 3,则a 2=______,S n =_______。
数列测试题及答案数列测试题及答案 数列测试题及答案: ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分. 1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为( ) A.6 B.7 C.8 D.9 解析:∵a1+a2+a12+a13=4a7=24,∴a7=6. 答案:A 2.若等差数列{an}的前n项和为Sn,且满⾜S33-S22=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3 解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代⼊S33-S22=1,得d=2,故选C. 答案:C 3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N*),则a2 011等于( ) A.1 B.-4 C.4 D.5 解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,… 故{an}是以6为周期的数列, ∴a2 011=a6×335+1=a1=1. 答案:A 4.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是( ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最⼤值 解析:∵S5<S6,∴a6>0.S6=S7,∴a7=0. ⼜S7>S8,∴a8<0. 假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0. ∵a7=0,a8<0,∴a7+a8<0.假设不成⽴,故S9<S5.∴C错误. 答案:C 5.设数列{an}是等⽐数列,其前n项和为Sn,若S3=3a3,则公⽐q的值为( ) A.-12 B.12 C.1或-12 D.-2或12[ 解析:设⾸项为a1,公⽐为q, 则当q=1时,S3=3a1=3a3,适合题意. 当q≠1时,a1(1-q3)1-q=3a1q2, ∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0, 解得q=1(舍去),或q=-12. 综上,q=1,或q=-12. 答案:C 6.若数列{an}的通项公式an=5 252n-2-425n-1,数列{an}的最⼤项为第x项,最⼩项为第y 项,则x+y等于( ) A.3 B.4 C.5 D.6 解析:an=5252n-2-425n-1=525n-1-252-45, ∴n=2时,an最⼩;n=1时,an最⼤. 此时x=1,y=2,∴x+y=3. 答案:A 7.数列{an}中,a1 =15,3an+1= 3an-2(n∈N *),则该数列中相邻两项的乘积是负数的是( ) A.a21a22 B.a22a23 C.a23a24 D.a24a25 解析:∵3an+1=3an-2, ∴an+1-an=-23,即公差d=-23. ∴an=a1+(n-1)d=15-23(n-1). 令an>0,即15-23(n-1)>0,解得n<23.5. ⼜n∈N*,∴n≤23,∴a23>0,⽽a24<0,∴a23a24<0. 答案:C 8.某⼯⼚去年产值为a,计划今后5年内每年⽐上年产值增加10%,则从今年起到第5年,这个⼚的总产值为( ) A.1.14a B.1.15a C.11×(1.15-1)a D.10×(1.16-1)a 解析:由已知,得每年产值构成等⽐数列a1=a,w an=a(1+10%)n-1(1≤n≤6). ∴总产值为S6-a1=11×(1.15-1)a. 答案:C 9.已知正数组成的等差数列{an}的前20项的和为100,那么a7a14的最⼤值为( ) A.25 B.50 C.1 00 D.不存在 解析:由S20=100,得a1+a20=10. ∴a7+a14=10. ⼜a7>0,a14>0,∴a7a14≤a7+a1422=25. 答案:A 10.设数列{an}是⾸项为m,公⽐为q(q≠0)的等⽐数列,Sn是它的前n项和,对任意的n∈N*,点an,S2nSn( ) A.在直线mx+qy-q=0上 B.在直线qx-my+m=0上 C.在直线qx+my-q=0上 D.不⼀定在⼀条直线上 解析:an=mqn-1=x,①S2nSn=m(1-q2n)1-qm(1-qn)1-q=1+qn=y,② 由②得qn=y-1,代⼊①得x=mq(y-1),即qx-my+m=0. 答案:B 11.将以2为⾸项的偶数数列,按下列⽅法分组:(2),(4,6),(8,10,12),…,第n组有n个数,则第n组的⾸项为( ) A.n2-n B.n2+n+2 C.n2+n D.n2-n+2 解析:因为前n-1组占⽤了数列2,4,6,…的前1+2+3+…+(n-1)=(n-1)n2项,所以第n组的⾸项为数列2,4,6,…的第(n-1)n2+1项,等于2+(n-1)n2+1-12=n2-n+2. 答案:D 12.设m∈N*,log2m的整数部分⽤F(m)表⽰,则F(1)+F(2)+…+F(1 024)的值是( ) A.8 204 B.8 192 C.9 218 D.以上都不对 解析:依题意,F(1)=0, F(2)=F(3)=1,有2 个 F(4)=F(5)=F(6)=F(7)=2,有22个. F(8)=…=F(15)=3,有23个. F(16)=…=F(31)=4,有24个. … F(512)=…=F(1 023)=9,有29个. F(1 024)=10,有1个. 故F(1)+F(2)+…+F(1 024)=0+1×2+2×22+3×23+…+9×29+10. 令T=1×2+2×22+3×23+…+9×29,① 则2T=1×22+2×23+…+8×29+9×210.② ①-②,得-T=2+22+23+…+29-9×210 = 2(1-29)1-2-9×210=210-2-9×210=-8×210-2, ∴T=8×210+2=8 194, m] ∴F(1)+F(2)+…+F(1 024)=8 194+10=8 204. 答案:A 第Ⅱ卷 (⾮选择共90分) ⼆、填空题:本⼤题共4个⼩题,每⼩题5分,共20分. 13.若数列{an} 满⾜关系a1=2,an+1=3an+2,该数列的通项公式为__________. 解析:∵an+1=3an+2两边加上1得,an+1+1=3(an+1), ∴{an+1}是以a1+1=3为⾸项,以3为公⽐的等⽐数列, ∴an+1=33n-1=3n,∴an=3n-1. 答案:an=3n-1 14.已知公差不为零的等差数列{an}中,M=anan+3,N=an+1an+2,则M与N的⼤⼩关系是__________. 解析:设{an}的公差为d,则d≠0. M-N=an(an+3d)-[(an+d)(an+2d)] =an2+3dan-an2-3dan-2d2=-2d2<0,∴M<N. 答案:M<N 15.在数列{an}中,a1=6,且对任意⼤于1的正整数n,点(an,an-1)在直线x-y=6上,则数列{ann3(n+1)}的前n项和Sn=__________. 解析:∵点(an,an-1)在直线x-y=6上, ∴an-an-1=6,即数列{an}为等差数列. ∴an=a1+6(n-1)=6+6(n-1)=6n, ∴an=6n2. ∴ann3(n+1)=6n2n3(n+1)=6n(n+1)=61n-1n+1 ∴Sn=61-12+12-13+…+1n-1n+1.=61-1n+1=6nn+1. 答案:6nn+1 16.观察下表: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 … 则第__________⾏的各数之和等于2 0092. 解析:设第n⾏的各数之和等于2 0092, 则此⾏是⼀个⾸项a1=n,项数为2n-1,公差为1的等差数列. 故S=n×(2n-1)+(2n-1)(2n-2)2=2 0092,解得n=1 005. 答案:1 005 三、解答题:本⼤题共6⼩题,共70分. 17.(10分)已知数列{an}中,a1=12,an+1=12an+1(n∈N*),令bn=an-2. (1)求证:{bn}是等⽐数列,并求bn; (2)求通项an并求{an}的前n项和Sn. 解析:(1)∵bn+1bn=an+1-2an-2=12an+1-2an-2=12an-1an-2=12, ∴{bn}是等⽐数列. ∵b1=a1-2=-32, ∴bn=b1qn-1=-32×12n-1=-32n. (2)an=bn+2=-32n+2, Sn=a1+a2+…+an =-32+2+-322+2+-323+2+…+-32n+2 =-3×12+122+…+12n+2n=-3×12×1-12n1-12+2n=32n+2n-3. 18.(12分)若数列{an}的`前n项和Sn=2n. (1)求{an}的通项公式; (2)若数列{bn}满⾜b1=-1,bn+1=bn+(2n-1),且cn=anbnn,求数列{cn}的通项公式及其前n 项和Tn. 解析:(1)由题意Sn=2n, 得Sn-1=2n-1(n≥2), 两式相减,得an=2n-2n-1=2n-1(n≥2). 当n=1时,21-1=1≠S1=a1=2. ∴an=2 (n=1),2n-1 (n≥2). (2)∵bn+1=bn+(2n-1), ∴b2-b1=1, b3-b2=3, b4-b3=5, … bn-bn-1=2n-3. 以上各式相加,得 bn-b1=1+3+5+…+(2n-3) =(n-1)(1+2n-3)2=(n-1)2. ∵b1=-1,∴bn=n2-2n, ∴cn=-2 (n=1),(n-2)×2n-1 (n≥2), ∴Tn=-2+0×21+1×22+2×23+…+(n-2)×2n-1, ∴2Tn=-4+0×22+1×23+2×24+…+(n-2)×2n. ∴-Tn=2+22+23+…+2n-1-(n-2)×2n =2(1-2n-1)1-2-(n-2)×2n =2n-2-(n-2)×2n =-2-(n-3)×2n. ∴Tn=2+(n-3)×2n. 19.(12分)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等⽐数列. (1)求数列{an}的通项公式; (2)若从数列{an}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成⼀个新数列{bn},记该数列的前n项和为Tn,求Tn的表达式. 解析:(1)依题意,得 3a1+3×22d+5a1+5×42d=50,(a1+3d)2=a1(a1+12d),解得a1=3,d=2. ∴an=a1+(n-1)d=3+2(n-1)=2n+1, 即an=2n+1. (2)由已知,得bn=a2n=2×2n+1=2n+1+1, ∴Tn=b1+b2+…+bn =(22+1)+(23+1)+…+(2n+1+1) =4(1-2n)1-2+n=2n+2-4+n. 20.(12分)设数列{an}的前n项和为Sn,且ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n2n-1}是等⽐数列; (2)求通项an. 新课标第⼀⽹ 解析:由题意知,a1=2,且ban-2n=(b-1)Sn, ban+1-2n+1=(b-1)Sn+1, 两式相减,得b(an+1-an)-2n=(b-1)an+1, 即an+1=ban+2n.① (1)当b=2时,由①知,an+1=2an+2n. 于是an+1-(n+1)2n=2an+2n-(n+1)2n =2an-n2n-1. ⼜a1- 120=1≠0, ∴{an-n2n-1}是⾸项为1,公⽐为2的等⽐数列. (2)当b=2时, 由(1)知,an-n2n-1=2n-1,即an=(n+1)2n-1 当b≠2时,由①得 an +1-12-b2n+1=ban+2n-12-b2n+1=ban-b2-b2n =ban-12-b2n, 因此an+1-12-b2n+1=ban-12-b2n=2(1-b)2-bbn. 得an=2, n=1,12-b[2n+(2-2b)bn-1], n≥2. 21.(12分)某地在抗洪抢险中接到预报,24⼩时后⼜⼀个超历史最⾼⽔位的洪峰到达,为保证万⽆⼀失,抗洪指挥部决定在24⼩时内另筑起⼀道堤作为第⼆道防线.经计算,如果有 20辆⼤型翻⽃车同时作业25⼩时,可以筑起第⼆道防线,但是除了现有的⼀辆车可以⽴即投⼊作业外,其余车辆需从各处紧急抽调,每隔20分钟就有⼀辆车到达并投⼊⼯作.问指挥部⾄少还需组织多少辆车这样陆续⼯作,才能保证24⼩时内完成第⼆道防线,请说明理由. 解析:设从现有这辆车投⼊⼯作算起,各车的⼯作时间依次组成数列{an},则an-an-1=-13. 所以各车的⼯作时间构成⾸项为24,公差为-13的等差数列,由题知,24⼩时内最多可抽调72辆车. 设还需组织(n-1)辆车,则 a1+a2+…+an=24n+n(n-1)2×-13≥20×25. 所以n2-145n+3 000≤0, 解得25≤n≤120,且n≤73. 所以nmin=25,n-1=24. 故⾄少还需组织24辆车陆续⼯作,才能保证在24⼩时内完成第⼆道防线. 22.(12分)已知点集L={(x,y)|y=mn},其中m=(2x-2b,1),n=(1,1+2b),点列Pn(an,bn)在点集L中,P1为L的轨迹与y轴的交点,已知数列{an}为等差数列,且公差为1,n∈N*. (1)求数列{an},{bn}的通项公式; (3)设cn=5nan|PnPn+1|(n≥2),求c2+c3+c4+…+cn的值. 解析:(1)由y=mn,m=(2x-2b,1),n=(1,1+2b), 得y=2x+1,即L:y=2x+1. ∵P1为L的轨迹与y轴的交点, ∴P1(0,1),则a1=0,b1=1. ∵数列{an}为等差数列,且公差为1, ∴an=n-1(n∈N*) . 代⼊y=2x+1,得bn=2n-1(n∈N*). (2)∵Pn(n-1,2n-1),∴Pn+1(n,2n+1). =5n2-n-1=5n-1102-2120. ∵n∈N*, (3)当n≥2时,Pn(n-1,2n-1), ∴c2+c3+…+cn =1-12+12-13+…+1n-1-1n=1-1n.。
数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
数列等差数列综合练习一.选择题5.设S n是等差数列{a n}的前n项和,若=()二.填空题8.设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=_________.9.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=_________.10.已知{a n}为等差数列,a3+a8=22,a6=7,则a5=_________.11.在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=_________.12.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=_________.13.已知等差数列{a n}前17项和S17=51,则a7+a11=_________.三.解答题14.已知数列{a n}的前n项和S n,求通项公式a n:(1)S n=5n2+3n;(2)S n=3n﹣2.15.已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.16.已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.17.已知数列{a n}的前n项和为S n,满足a n+S n=2n.(Ⅰ)证明:数列{a n﹣2}为等比数列,并求出a n;(Ⅱ)设b n=(2﹣n)(a n﹣2),求{b n}的最大项.数列等差数列综合练习参考答案与试题解析一.选择题(共7小题)=,即=5.(2004•福建)设S n是等差数列{a n}的前n项和,若=()===60==390和这两二.填空题(共9小题)8.(2012•江西)设数列{a n},{b n}都是等差数列,若a1+b1=7,a3+b3=21,则a5+b5=35.9.(2011•重庆)在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=74.10.(2008•海南)已知{a n}为等差数列,a3+a8=22,a6=7,则a5=15.11.(2003•上海)在等差数列{a n}中,a5=3,a6=﹣2,则a4+a5+…+a10=﹣49.﹣=12.已知等差数列{a n}中,a2=5,a4=11,则前10项和S10=155.10+13.已知等差数列{a n}前17项和S17=51,则a7+a11=6.14.设等差数列{a n}的前n项和为S n,若m>1,且a m﹣1+a m+1﹣a m2﹣1=0,S2m﹣1=39,则m=20.15.在等差数列{a n} 中,S n是它的前n项的和,若a1>0,S16>0,S17<0,则当n=8时,S n最大.16.若两等差数列{a n}、{b n}的前n项和分别为s n,s n′,且,则的值为.,把=====.三.解答题(共4小题)17.(2012•湛江)已知数列{a n}的前n项和S n,求通项公式a n:(1)S n=5n2+3n;(2)S n=3n﹣2.18.(2012•重庆)已知{a n}为等差数列,且a1+a3=8,a2+a4=12.(Ⅰ)求{a n}的通项公式(Ⅱ)记{a n}的前n项和为S n,若a1,a k,S k+2成等比数列,求正整数k的值.,解得,再由=a,则由题意可得,解得成等比数列,∴19.(2012•湖北)已知等差数列{a n}前三项的和为﹣3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.,由题意可得,7|=或=综上可得20.84已知数列{a n}的前n项和为S n,满足a n+S n=2n.(Ⅰ)证明:数列{a n﹣2}为等比数列,并求出a n;(Ⅱ)设b n=(2﹣n)(a n﹣2),求{b n}的最大项.2=,公比为﹣.初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。
高一数学数列综合应用试题答案及解析1.数列1,-3,5,-7,9,的一个通项公式为()A.B.C.D.【答案】B【解析】由数列中1,-3,5,-7,9,可以看出:符号正负相间,通项的绝对值为1,3,5,7,9 为等差数列,其通项公式.【考点】本题考查了等差数列的通项公式,属于基础题2.数列满足,则 .【答案】.【解析】当时,,;当时,由于,,两式相减得,不满足.【考点】由得.3.数列中,=2,,则=().A.2+ln n B.2+ (n-1) ln n C.2+ n ln n D.1+n+ln n【答案】A【解析】所以得.故选A.【考点】迭加消元求和.4.已知数列{an }的通项公式an=,若前n项和为6,则n=_________.【答案】48【解析】试题分析:,;令,解得.【考点】数列的前项和.5.数列的前n项和记为,点(n,)在曲线()上(1)求数列的通项公式;(2)设,求数列的前n项和的值.【答案】(1);(2).【解析】(1)由与满足的关系式,由可求得的通项公式;(2)由一个等差数列和一个等比数列的乘积采用错位相减法求和的方法求数列的和.试题解析:(1)由条件得()当当也适合所以通项公式为:.(2)、2两式相减得,解得【考点】(1)由的表达式求数列的通项公式;(2)错位相减求和.6.若数列中,则其前项和取最大值时,__________.【答案】或【解析】令,则,又∵,∴当时,,,当时,,∴当取最大值时,或.【考点】数列的性质.7.已知数列的前n项和满足(1)写出数列的前3项、、;(2)求数列的通项公式;(3)证明对于任意的整数有【答案】(1)、、;(2);(3)见解析.【解析】(1)是考查已知递推公式求前几项,属于基础题,需注意的是S1=a1,需要先求出a1才能求出a2,这是递推公式的特点;(2)解答需要利用公式进行代换,要注意n=1和n≥2的讨论,在得到,可以利用叠加法求解;(3)解答需要在代换后,适当的变形,利用不等式放缩法进行放缩.试题解析:(1)由,得,由,得,由,得;(2)当时,,,……,经验证:也满足上式,所以,;(3)证明:由通项知当,且n 为奇数时当且m为偶数时,当且m为奇数时∴对任意有【考点】1、递推数列;2、放缩法.8.给定函数的图像如下列图中,经过原点和(1,1),且对任意,由关系式得到数列{},满足,则该函数的图像为()【答案】A【解析】由题意,知:,即在图中应该是满足的所有点,只有A选项正确.【考点】数列的基本概念.9.已知数列的前n项和为,,且(),数列满足,,对任意,都有。
高二数学数列综合应用试题答案及解析1.()A.3B.-3C.6D.-6【答案】A【解析】经计算验证可得:数列是以6为周期的一个数列,所以.【考点】数列的递推公式.2..如果{an }为递增数列,则{an}的通项公式可以为( ).A.an =-2n+3 B.an=-n2-3n+1 C.an= an=1+log2n【答案】D【解析】A选项是n的一次函数,一次系数为-1∴为递减数列B选项是n的二次函数,且对称轴为n=∴第一,二项相同.C是n的指数函数,且底数为,是递减数列D是n的对数函数,且底数为2,是递增函数.故选D【考点】数列的函数特性.3. Sn 是数列{an}的前n项和,,则,,,,由此可以归纳出()A.B.C.D.【答案】C.【解析】直接根据数列的通项公式及,,,,利用归纳法推理可得.【考点】归纳推理.4.已知数列满足,归纳出的一个通项公式为()A.B.C.D.【答案】A【解析】由递推公式,可得,,,故可猜测的一个通项公式为.【考点】归纳推理.5.在数列中,,且前n项的算术平均数等于第n项的倍().(1)写出此数列的前5项;(2)归纳猜想的通项公式,并用数学归纳法证明.【答案】(1);(2),证明过程详见解析.【解析】(1)根据条件中描述前项的算术平均数等于第项的倍,可以得到相应其数学表达式为,结合,分别取,得,;(2)根据(1)中所求,可以猜测,利用数学归纳法,假设当时,结论成立,则当时,根据(1)中得到的式子,令,可以求得,即当时,猜想也成立,从而得证.(1)由已知,分别取,得,;∴数列的前5项是: 6分;(2)由(1)中的分析可以猜想 8分,下面用数学归纳法证明:①当时,猜想显然成立 9分,②假设当时猜想成立,即 10分,那么由已知,得,即.∴,即,又由归纳假设,得,∴,即当时,猜想也成立.综上①和②知,对一切,都有成立 13分.【考点】1.数列的通项公式;2.数学归纳法.6.下列命题中,真命题的序号是 .①中,②数列{}的前n项和,则数列{}是等差数列.③锐角三角形的三边长分别为3,4,,则的取值范围是.④等差数列{}前n项和为。
3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
1.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是 .2.求555555555n n S =++++个3.求2323n n S a a a na =++++4.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对所有自然数n ,n a 与2的等差中项等于n S 与2的等比中项,(1)写出数列{}n a 的前三项;(2)求数列{}n a 的通项公式(写出推证过程);(3)令111()2n n n n n aa b a a ++=+()n N ∈,求123n b b b b n ++++- .6.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n m S +.7.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k =+++ *()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.8.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区森林木材的存量, (1)求n a 的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a ,如果1972a b =,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg 20.3=)9.对数列{}n a ,规定{}n a 为数列{}n a 的一阶差分数列,其中1(*)n n n a a a n N +=-∈ .对正整数k ,规定{}k n a 为{}n a 的k 阶差分数列, 其中1111()k k k k n n n n a a a a ---+=-= .(规定0n n a a = )(Ⅰ)已知数列{}n a 的通项公式2(*)n a n n n N =+∈,是判断{}n a 是否为等差或等比数列,并说明理由;(Ⅱ)若数列{}n a 首项11a =,且满足212n n n n a a a +-+=- (*)n N ∈,求数列{}n a 的通项公式10.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.12.594,1.313.796==)1.设{}n a 是正数组成的数列,其前n 项和为n S ,并且对所有自然数n ,n a 与2的等差中项等于n S 与2的等比中项,(1)写出数列{}n a 的前三项;(2)求数列{}n a 的通项公式(写出推证过程);(3)令111()2n n n n n aa b a a ++=+()n N ∈,求123n b b b b n ++++- .解:(1)由题意:22n a +=0n a >,令1n =,122a +=解得12a =令2n =,222a +=, 解得26a = 令3n =,322a += 解得310a = ∴该数列的前三项为2,6,10.(2)∵22n a +=21(2)8n n S a =+,由此2111(2)8n n S a ++=+,∴221111[(2)(2)]8n n n n n a S S a a +++=-=+-+,整理得:11()(4)0n n n n a a a a +++--=由题意:1()0n n a a ++≠,∴140n n a a +--=,即14n n a a +-=, ∴数列{}n a 为等差数列,其中12,a =公差4d =,∴1(1)n a a n d =+-=42n -(3)14242122()(11)2424222121n n n b n n n n +-=+=++--+-+1112121n n =+--+ 121111113352121n b b b n n n +++=+-+-++--+ n -1121n -+. 2.若数列{}n a 成等差数列,且,()m n S n S m m n ==≠,求n m S +. 解:(法一)基本量法(略);(法二)设2n S An Bn =+,则22(1)(2)An Bn m Am Bm n⎧+=⎪⎨+=⎪⎩ (1)(2)-得:22()()n m A n m B m n -+-=-,m n ≠ , ∴()1m n A B ++=-,∴2()()()n m S n m A n m B n m +=+++=-+.3.设n S 和n T 分别为两个等差数列的前n 项和,若对任意*n N ∈,都有71427n n S n T n +=+ ,则第一个数列的第11项与第二个数列的第11项的比是43. 说明:2121n n n n a S b T --=. 4.2323nn S a a a na =++++ ,当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,2323n S a a a =+++…nna + ,23423n aS a a a =+++…1n na ++,两式相减得 23(1)n a S a a a -=+++ (1)1(1)1n nn n a a a nana a++-+-=--,∴212(1)(1)n n n na n a aS a ++-++=-.6.555555555n n S =++++ 个5(999999999)9n =++++个235[(101)(101)(101)(101)]9n =-+-+-++- 235505[10101010](101)9819n n n n =++++-=-- .7.数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()k N ∈,(1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410n n a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n nS b b b n n n -+'=+++==-+ 当7n >时,12n nS b b b b b b '=+++---- 27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩8.某地区森林原有木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设n a 为n 年后该地区森林木材的存量, (1)求n a 的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a ,如果1972ab =,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg 20.3=) 解:(1)设第一年的森林的木材存量为1a ,第n 年后的森林的木材存量为n a ,则115(1)44a a b a b =+-=-,221555()(1)444a a b a b =-=-+,32325555()[()1]4444a ab a b =-=-++,………12*55555()[()()1]()4[()1]()44444n n n n n n a a a b n N --=-+++=--∈ .(2)当1972b a =时,有79n a a <得55197()4[()1]44729n n a a a --⨯<即5()54n >, 所以,lg51lg 27.2lg52lg 213lg 2n ->=≈--.答:经过8年后该地区就开始水土流失.9.(安徽两地●2010届高三联考)(本小题满分12分)对数列{}n a ,规定{}n a 为数列{}n a 的一阶差分数列,其中1(*)n n n a a a n N +=-∈ .对正整数k ,规定{}kn a 为{}n a 的k 阶差分数列,其中1111()k k k k n n n n a a a a ---+=-= .(规定0n n a a = )(Ⅰ)已知数列{}n a 的通项公式2(*)n a n n n N =+∈,是判断{}n a 是否为等差或等比数列,并说明理由;(Ⅱ)若数列{}n a 首项11a =,且满足212n n n n a a a +-+=- (*)n N ∈,求数列{}n a 的通项公式解:(Ⅰ)221(1)(1)()n n n a a a n n n n +∆=-=+++-+22n =+ (2分)所以{}n a ∆是首项为4,公差为2的等差数列。
(2分)(Ⅱ)212n n n n a a a +∆-∆+=-,即 (1分) 112n n n n n a a a a ++∆-∆-∆+=- (1分) 所以122n n n a a +=+ (1分)因为11a =,所以1223422,1232,a a ==⨯==⨯343242a ==⨯ ``` ```(1分)猜想:12n n a n -=⋅ (1分)证明:①当1n =时,01112a ==⨯,符合猜想; (1分) ②假设*()n k k N =∈时,12k k a k -=⋅ 当1n k =+时,1222k k k k k a a a k +=+=⋅+ (1)1(1)2k k +-=+⋅ (2分)由①②可知,12n n a n -=⋅10.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==)解:甲方案10年获利润是每年利润数组成的数列的前10项的和:10291.311(130%)(130%)(130%)42.621.31-+++++++==- (万元)到期时银行的本息和为1010(110%)10 2.59425.94⨯+=⨯=(万元) ∴甲方案扣除本息后的净获利为:42.6225.9416.7-≈(万元)乙方案:逐年获利成等差数列,前10年共获利:10(1 5.5)1(10.5)(120.5)(190.5)32.502+++++⨯+++⨯== (万元) 贷款的本利和为:1091.111.1[1(110%)(110%)] 1.117.531.11-+++++=⨯=- (万元)∴乙方案扣除本息后的净获利为:32.5017.5315.0-=(万元)所以,甲方案的获利较多.。