7.1平面向量的概念及其线性运算
- 格式:ppt
- 大小:1.24 MB
- 文档页数:43
平面向量的概念及线性运算一、知识要点梳理 知识点一:向量的概念1.向量:既有大小又有方向的量叫做向量. 2.向量的表示方法: (1)字母表示法:如,,,a b c →→→等.(2)几何表示法:用一条有向线段表示向量.如,AB CD →→等. (3)向量的有关概念向量的模:向量的大小叫向量的模(就是用来表示向量的有向线段的长度). 零向量:长度为零的向量叫零向量. 单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量. 相反向量: 长度相等且方向相反的向量.共线向量:方向相同或相反的非零向量,叫共线向量(共线向量又称为平行向量). 规定:0→与任一向量共线. 知识点二:向量的加(减)法运算1.运算法则:三角形法则、平行四边形法则2.运算律:①交换律:a b b a →→→→+=+;②结合律:()()a b c a b c →→→→→→++=++ 知识点三:数乘向量1.实数与向量的积:实数λ与向量a →的积是一个向量,记作:a λ→(1) ||||||a a λλ→→=;(2)①当λ>0时,a λ→的方向与a →的方向相同; ②当λ<0时,a λ→的方向与a →的方向相反; ③当0λ=时,0a λ→→=. 2.运算律 设,λμ为实数结合律:()()a a λμλμ→→=;分配律:(),()a a a a b a b λμλμλλλ→→→→→→→+=++=+ 3.共线向量基本定理非零向量a →与向量b →共线的充要条件是当且仅当有唯一一个非零实数,λ使b a λ→→=. 经典例题类型一:向量的基本概念1.判断下列各命题是否正确: (1)若||||,a b →→=则a b →→=;(2)若,,,A B C D 是不共线的四点,则AB DC →→=是四边形ABCD 为平行四边形的充要条件; (3)若,,a b b c →→→→==,则.a c →→=(4)两向量,a b →→相等的等价条件是||||a b →→=且//a b →→. 类型二:向量的线性运算2.如图所示,ABCD 的两条对角线相交于点,M 且,,AB a AD b →→→→==用,a b →→表示,,,MA MB MC MD →→→→【变式1】如图,ABC ∆中,点M 是BC 的中点,点N 在边AC 上,且2,AN NC AM =与BN 相交于点,P 求:AP PM 的值.【答案】解:(如图)设则和分别共线,∴存在使故,而∴由基本定理得即类型三:共线向量与三点共线问题 3.设两非零向量1e →和2e →不共线,(1)如果121212,28,3(),AB e e BC e e CD e e →→→→→→→→→=+=+=-求证,,A B D 三点共线. (2)试确定实数,k 使12k e e →→+和12e k e →→+共线. 类型四:综合应用4.如图,已知点,,D E F 分别是ABC ∆三边的中点, 求证:0EA FB DC →→→→++=. 测评 基础达标:1.下面的几个命题:①若||||,a b →→=则,a b →→共线;②长度不等且方向相反的两向量不一定是共线向量; ③若,a b →→满足||a →>||,b →且,a b →→同向,则a →>b →; ④由于0→方向不定,故0→不能与任何向量平行;⑤对于任意向量,a b →→必有||||||a b →→-≤||a b →→+≤||||a b →→+. 其中正确命题的序号是:( )A.①②③B.⑤C.③⑤D.①⑤2.在正六边形ABCDEF 中,O 为其中心,则2FA AB BO ED →→→→+++= ( ) A.FE → B. AC → C. DC → D. FC →3.如图所示,,,D E F 分别是ABC ∆的边,,AB BC CD 的中点,则AF DB →→-= ( ) A. FD → B. FC → C. FE → D. BE →4.若,,O E F 是不共线的任意三点,则以下各式中成立的是( ) A.B.C.D.5.已知向量,,a b →→且2,56,72,AB a b BC a b CD a b →→→→→→→→→=+=-+=-则一定共线的三点是( ) A.A 、B 、D B.A 、B 、C C.B 、C 、D D.A 、C 、D 6.下列命题中,真命题的个数为( )①||||||a b a b a →→→→→+=+⇔与b →方向相同 ②||||||a b a b a →→→→→+=-⇔与b →方向相反 ③||||a b a b a →→→→→+=-⇔与b →有相等的模 ④||||||a b a b a →→→→→-=-⇔与b →方向相同 A.0 B.1 C.2D.37.在ABC ∆中,已知D 是AB 边上一点1,2,,3AD DB CD CA CB λ→→→→→==+则λ= ( )A.23B. 13C. 13-D. 23-8.设12,e e →→是两个不共线的向量,则向量12()m e k e k R →→→=-+∈与向量212n e e →→→=-共线的条件是 ( ) A. 0k = B. 1k = C. 2k = D. 12k =9.已知正方形ABCD 边长为1,,,,AB a BC b AC c →→→→→→===则||a b c →→→++=( )A.0B.3C.D.10.如图,在平行四边形ABCD 中,,M N 分别是,DC BC 中点,已知1,,,AM c AN d →→→→==用,c d →→表示=___________,___________.11.若1212,,,OP a OP b PP PP λ→→→→→→===则OP →= (用,a b →→表示) 12.已知在ABC ∆中,,,D E F 分别是,,BC CA AB 的中点,求证:(1)//DE AB →→;(2) 1||||2DE AB →→=; (3)0AD BE CF →→→→++=.13.已知OAB ∆中,点C 是以A 为中心的B 的对称点,D 是将OB →分成2:1的一个内分点,DC 与OA 交于,E 设,OA a OB b →→→→==. (1)用,a b →→表示,OC DE →→; (2)若,OE OA λ→→=求实数λ的值.。
第一节平面向量的概念及线性运算课标解读考向预测1.理解平面向量的意义、几何表示及向量相等的含义.2.掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.3.了解向量线性运算的性质及其几何意义.预计2025年高考对本节内容的考查会以线性运算、共线向量定理为主,主要以选择题、填空题的形式出现,难度属中、低档.必备知识——强基础1.向量的有关概念名称定义表示向量在平面中,既有大小又有方向的量用a ,b ,c ,…或AB →,BC →,…表示向量的模向量a 的大小,也就是表示向量a 的有向线段AB →的长度(或称模)|a |或|AB →|零向量长度为0的向量用0表示单位向量长度等于1个单位的向量用e 表示,|e |=1平行向量方向相同或相反的非零向量(或称共线向量)a ∥b 相等向量长度相等且方向相同的向量a =b相反向量长度相等,方向相反的向量向量a 的相反向量是-a说明:零向量的方向是不确定的、任意的.规定:零向量与任一向量平行.2.向量的线性运算向量运算法则(或几何意义)运算律加法交换律:a +b =01b +a ;结合律:(a +b)+c =02a+(b +c )减法a -b =03a +(-b )数乘|λa |=|λ||a |,当λ>0时,λa 的方向与a 的方向04相同;当λ<0时,λa 的方向与a 的方向05相反;当λ=0时,λa =060λ(μa )=07(λμ)a ;(λ+μ)a =08λa +μa ;λ(a +b )=09λa +λb3.向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使得b =λa .提醒:当a ≠0时,定理中的实数λ才唯一.1.一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →.特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若F 为线段AB 的中点,O 为平面内任意一点,则OF →=12OA →+OB →).3.若A ,B ,C 是平面内不共线的三点,则PA →+PB →+PC →=0⇔P 为△ABC 的重心,AP →=13(AB→+AC →).4.若OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.5.对于任意两个向量a ,b ,都有||a |-|b ||≤|a ±b |≤|a |+|b |.1.概念辨析(正确的打“√”,错误的打“×”)(1)|a |与|b |是否相等,与a ,b 的方向无关.()(2)若向量a 与b 同向,且|a |>|b |,则a >b .()(3)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.()(4)起点不同,但方向相同且模相等的向量是相等向量.()答案(1)√(2)×(3)×(4)√2.小题热身(1)如图,D ,E ,F 分别是△ABC 各边的中点,则下列结论错误的是()A .EF →=CD →B .AB →与DE →共线C .BD →与CD →是相反向量D .AE →=12|AC →|答案D解析AE →=12AC →,故D 错误.故选D.(2)(人教B 必修第二册6.2.1例3改编)设向量a ,b 不共线,向量λa +b 与a +2b 共线,则实数λ=________.答案12解析∵λa +b 与a +2b 共线,∴存在实数μ使得λa +b =μ(a +2b )=μ,=2μ,=12,=12.(3)(人教A 必修第二册6.2例6改编)已知▱ABCD 的对角线AC 和BD 交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)答案b -a -a -b解析如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .(4)(人教A 必修第二册习题6.2T10改编)若a ,b 满足|a |=3,|b |=5,则|a +b |的最大值为________,最小值为________.答案82解析|a +b |≤|a |+|b |=3+5=8,当且仅当a ,b 同向时取等号,所以|a +b |max =8.又|a +b |≥||a |-|b ||=|3-5|=2,当且仅当a ,b 反向时取等号,所以|a +b |min =2.考点探究——提素养考点一平面向量的有关概念例1(多选)下列命题中的真命题是()A .若|a |=|b |,则a =bB .若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件C .若a =b ,b =c ,则a =cD .a =b 的充要条件是|a |=|b |且a ∥b 答案BC解析A 是假命题,两个向量的长度相等,但它们的方向不一定相同;B 是真命题,∵AB →=DC →,∴|AB →|=|DC →|且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则|AB →|=|DC →|,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →;C 是真命题,∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c ;D 是假命题,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.故选BC.【通性通法】平面向量有关概念的四个关注点关注点一非零向量的平行具有传递性关注点二共线向量即为平行向量,它们均与起点无关关注点三向量可以平移,平移后的向量与原向量是相等向量关注点四a|a |是与a 同方向的单位向量【巩固迁移】1.(多选)下列命题正确的是()A .零向量是唯一没有方向的向量B .零向量的长度等于0C .若a ,b 都为非零向量,则使a |a |+b|b |=0成立的条件是a 与b 反向共线D .若a ∥b ,b ∥c ,则a ∥c 答案BC解析零向量是有方向的,其方向是任意的,故A 错误;由零向量的定义知,零向量的长度为0,故B 正确;因为a |a |与b |b |都是单位向量,所以只有当a |a |与b|b |是相反向量,即a 与b 反向共线时才成立,故C 正确;若b =0,则不共线的a ,c 也有a ∥0,c ∥0,故D 错误.考点二平面向量的线性运算(多考向探究)考向1平面向量加、减运算的几何意义例2设P 为▱ABCD 对角线的交点,O 为平面ABCD 内的任意一点,则OA →+OB →+OC →+OD →=()A .OP →B .2OP →C .3OP →D .4OP→答案D解析由题意知,P 为AC ,BD 的中点,所以在△OAC 中,OP →=12(OA →+OC →),即OA →+OC →=2OP →,在△OBD 中,OP →=12(OB →+OD →),即OB →+OD →=2OP →,所以OA →+OB →+OC →+OD →=4OP →.故选D.【通性通法】1.平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来.2.三种运算法则的要点(1)加法的三角形法则要求“首尾连”,平行四边形法则要求“共起点”.(2)减法的三角形法则要求“共起点,连终点,指被减”.(3)数乘运算的结果仍是一个向量,运算过程可类比实数运算.【巩固迁移】2.(2024·山东青岛二中月考)若|AB →|=|AC →|=|AB →-AC →|=2,则|AB →+AC →|=________.答案23解析因为|AB →|=|AC →|=|AB →-AC →|=2,所以△ABC 是边长为2的正三角形,所以|AB →+AC →|为△ABC 的边BC 上的高的2倍,所以|AB →+AC →|=23.考向2平面向量的线性运算例3(2022·新高考Ⅰ卷)在△ABC 中,点D 在边AB 上,BD =2DA ,记CA →=m ,CD →=n ,则CB →=()A .3m -2nB .-2m +3nC .3m +2nD .2m +3n答案B解析CD →=23CA →+13CB →,即CB →=-2CA →+3CD →=-2m +3n .故选B.【通性通法】平面向量的线性运算的求解策略【巩固迁移】3.(2023·江苏南通二模)在平行四边形ABCD 中,BE →=12BC →,AF →=13AE →.若AB →=mDF →+nAE →,则m +n =()A .12B .34C .56D .43答案D解析由题意可得AB →=AE →+EB →=AE →+12DA →=AE →+12(DF →+FA →)=AE→+12(DF →-13AE →)=12DF →+56AE →,所以m =12,n =56,所以m +n =43.故选D.考点三向量共线定理的应用(多考向探究)考向1判定向量共线、三点共线例4设两个非零向量a 与b 不共线.若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线.证明∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线.【通性通法】共线向量定理的三个应用【巩固迁移】4.已知P 是△ABC 所在平面内的一点,若CB →=λPA →+PB →,其中λ∈R ,则点P 一定在()A .△ABC 的内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上答案B解析由CB →=λPA →+PB →,得CB →-PB →=λPA →,CP →=λPA →,则CP →,PA →为共线向量,又CP →,PA →有一个公共点P ,所以C ,P ,A 三点共线,即点P 在AC 边所在直线上.故选B.考向2利用向量共线定理求参数例5若a ,b 是两个不共线的向量,已知MN →=a -2b ,PN →=2a +k b ,PQ →=3a -b ,若M ,N ,Q 三点共线,则k =()A .-1B .1C .32D .2答案B解析由题意知,NQ →=PQ →-PN →=a -(k +1)b ,因为M ,N ,Q 三点共线,所以存在实数λ,使得MN →=λNQ →,即a -2b =λ[a -(k +1)b ],解得λ=1,k =1.【通性通法】一般通过构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程(组)即可求得相关参数的值.【巩固迁移】5.如图,在△ABC 中,AD →=λDC →,E 是BD 上一点,若AE →=1116→+14AC →,则实数λ的值为()A .3B .4C .5D .6答案B解析由AD →=λDC →,得AC →=λ+1λAD →,因为AE →=1116AB →+14AC →,所以AE →=1116AB →+14·λ+1λAD →,因为E ,B ,D 三点共线,所以1116+λ+14λ=1,解得λ=4.故选B.课时作业一、单项选择题1.若a ,b 为非零向量,则“a |a |=b|b |”是“a ,b 共线”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件答案B解析a |a |,b |b |分别表示与a ,b 同方向的单位向量,a |a |=b|b |,则有a ,b 共线,而a ,b 共线,则a |a |,b |b |是相等向量或相反向量,所以“a |a |=b|b |”是“a ,b 共线”的充分不必要条件.故选B.2.设a =(AB →+CD →)+(BC →+DA →),b 是一个非零向量,则下列结论不正确的是()A .a ∥bB .a +b =aC .a +b =bD .|a +b |=|a |+|b |答案B解析由题意得,a =(AB →+CD →)+(BC →+DA →)=AC →+CA →=0,且b 是一个非零向量,所以a ∥b成立,所以A 正确;因为a +b =b ,所以B 不正确,C 正确;因为|a +b |=|b |,|a |+|b |=|b |,所以|a +b |=|a |+|b |,所以D 正确.故选B.3.已知AB →=a +5b ,BC →=-3a +6b ,CD →=4a -b ,则()A .A ,B ,D 三点共线B .A ,B ,C 三点共线C .B ,C ,D 三点共线D .A ,C ,D 三点共线答案A解析由题意得BD →=BC →+CD →=a +5b =AB →,又BD →,AB →有公共点B ,所以A ,B ,D 三点共线.故选A.4.(2024·安徽铜陵三模)在平行四边形ABCD 中,M 是CD 边上的中点,则2AM →=()A .AC →-2AB →B .AC →+2AB →C .2AC →-AB →D .2AC →+AB→答案C解析因为M 是平行四边形ABCD 的CD 边上的中点,所以CM →=-12AB →,所以AM →=AC →+CM→=AC →-12AB →,所以2AM →=2AC →-AB →.故选C.5.已知向量a 和b 不共线,向量AB →=a +m b ,BC →=5a +3b ,CD →=-3a +3b ,若A ,B ,D 三点共线,则m =()A .3B .2C .1D .-2答案A解析因为A ,B ,D 三点共线,所以存在实数λ,使得BD →=λAB →,BD →=BC →+CD →=2a +6b ,所以2a +6b =λa +mλb ,=λ,=mλ,解得m =3.故选A.6.矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=()A .58B .14C .1D .516答案A解析DE →=AE →-AD →=14AC →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →,∴λ=14,μ=-34.∴λ2+μ2=116+916=58.故选A.7.正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,则AF →=()A .13AB →+23AD→B .34AB →+14AD→C .14AB →+34AD→D .13AD →+AB→答案C解析如图,∵在正方形ABCD 中,E 在CD 上且有CE →=2ED →,AE 与对角线BD 交于F ,∴DE =13AB ,且DE ∥AB ,∴△DEF ∽△BAF ,可得EF AF =13,可得AF =34AE ,∴AF →=34AE →=34(AD→+DE →)+13AB =14AB →+34AD →.故选C.8.(2023·滁州模拟)已知P 为△ABC 所在平面内一点,AB →+PB →+PC →=0,|AB →|=|PB →|=|PC →|=2,则△ABC 的面积为()A .3B .23C .33D .43答案B解析设BC 的中点为D ,AC 的中点为M ,连接PD ,MD ,BM ,如图所示,则有PB →+PC →=2PD →.由AB →+PB →+PC →=0,得AB →=-2PD →,又D 为BC 的中点,M 为AC 的中点,所以AB →=-2DM →,则PD →=DM →,则P ,D ,M 三点共线且D 为PM 的中点,又D 为BC 的中点,所以四边形CPBM 为平行四边形.又|AB →|=|PB →|=|PC →|=2,所以|MC →|=|BP →|=2,则|AC →|=4,且|BM →|=|PC →|=2,所以△AMB 为等边三角形,∠BAC =60°,则S △ABC =12×2×4×32=2 3.故选B.二、多项选择题9.下列式子中,结果为零向量的是()A .AB →+BC →+CA →B .AB →+MB →+BO →+OM →C .OA →+OB →+BO →+CO →D .AB →-AC →+BD →-CD →答案AD解析利用向量运算,易知A ,D 中的式子结果为零向量.故选AD.10.点P 是△ABC 所在平面内一点,且满足|PB →-PC →|-|PB →+PC →-2PA →|=0,则△ABC 不可能是()A .钝角三角形B .直角三角形C .等腰三角形D .等边三角形答案AD解析因为点P 是△ABC 所在平面内一点,且|PB →-PC →|-|PB →+PC →-2PA →|=0,所以|CB →|-|(PB→-PA →)+(PC →-PA →)|=0,即|CB →|=|AB →+AC →|,所以|AB →-AC →|=|AC →+AB →|,等式两边平方并化简得AC →·AB →=0,所以AC →⊥AB →,∠BAC =90°,则△ABC 一定是直角三角形,也有可能是等腰直角三角形,不可能是钝角三角形和等边三角形.故选AD.11.(2023·安徽合肥期末)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,点G 为△ABC 的重心,则下列结论中正确的是()A .AB →-BC →=CA →B .AG →=13(AB →+AC →)C .AF →+BD →+CE →=0D .GA →+GB →+GC →=0答案BCD解析如图,对于A ,AB →-BC →=AB →+CB →=2EB →≠CA →,故A 错误;对于B ,点G 为△ABC 的重心,则AG →=23→=23×12(AB →+AC →)=13(AB →+AC →),故B 正确;对于C ,AF →+BD →+CE →=12(AB →+BC →+CA →)=0,故C 正确;对于D ,GA →=-2GD →=-2×12(GB →+GC →),故GA →+GB →+GC →=0,故D 正确.故选BCD.三、填空题12.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.答案12解析∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,=μ,=2μ,解得λ=μ=12.13.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的命题是________.答案②③④解析BC →=a ,CA →=b ,AD →=12AB →+12AC →=12(AC →+CB →)+12AC →=12CB →+AC →=-12a -b ,故①错误;BE →=BC →+12CA →=a +12b ,故②正确;CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,故③正确;AD→+BE →+CF →=-b -12a +a +12b +12b -12a =0,故④正确.14.(2024·丽江模拟)在△ABC 中,点D 在线段AC 上,且满足|AD →|=13|AC →|,点Q 为线段BD上任意一点,若实数x ,y 满足AQ →=xAB →+yAC →,则1x +1y 的最小值为________.答案4+23解析由题意知,点D 满足AD →=13AC →,故AQ →=xAB →+yAC →=xAB →+3yAD →,由Q ,B ,D 三点共线,可得x +3y =1,x >0,y >0,则1x +1y=x +3y )=4+3y x +x y ≥4+23,当且仅当3yx =x y ,即x =3-12,y =3-36时等号成立.所以1x +1y 的最小值为4+2 3.15.如图,在平行四边形ABCD 中,AB →=2AE →,AF →=FD →,点G 为CE 与BF 的交点,则AG →=()A .25AB →+15AC→B .15AB →+25AC→C .15AB →+415AC→D .310AB →+25AC→答案A解析由AB →=2AE →,AF →=FD →,知E ,F 分别为AB ,AD 的中点.如图,设AC 与BF 的交点为P ,易得△APF ∽△CPB ,所以AP CP =AF CB =AF AD =12,所以AP →=13AC →.因为E 是AB 的中点,所以AE →=12AB →.由P ,G ,B 三点共线知,存在m ∈R ,满足AG →=mAP →+(1-m )AB →=13mAC →+(1-m )AB →.由C ,G ,E 三点共线知,存在n ∈R ,满足AG →=nAE →+(1-n )AC →=12nAB →+(1-n )AC →,所以13mAC →+(1-m )AB →=12nAB →+(1-n )AC →.又因为AC →,AB →为不共线的非零向量,所以m =12n ,=1-n ,=35,=45,所以AG →=25AB →+15AC →.16.(多选)(2024·武汉模拟)瑞士数学家欧拉在1765年发表的《三角形的几何学》一书中有这样一个定理:三角形的外心、垂心和重心都在同一直线上,而且外心和重心间的距离是垂心和重心间的距离之半.这个定理就是著名的欧拉线定理.设△ABC 中,点O ,H ,G 分别是其外心、垂心、重心,BC 边的中点为D ,则下列结论中正确的是()A .GH →=2OG →B .OD ∥AHC .AH →=3OD →D .OA →=OB →=OC→答案AB解析由题意作图,如图所示,易知BC 的中点D 与A ,G 共线.对于A ,由题意,得AG →=2GD →,OD ⊥BC ,AH ⊥BC ,所以OD ∥AH ,所以GH →=2OG →,所以A ,B 正确;对于C ,由题意,知AG =2GD ,又GH =2OG ,∠AGH =∠DGO ,所以△AGH ∽△DGO ,所以AH →=2OD →,所以C 错误;对于D ,向量OA →,OB →,OC →的模相等,方向不同,所以D 错误.故选AB.17.如图,已知正六边形ABCDEF ,M ,N 分别是对角线AC ,CE 上的点,使得AM AC =CNCE=r ,则B ,M ,N 三点共线时,r 的值为________.答案33解析连接AD ,交EC 于点G ,设正六边形的边长为a ,由正六边形的性质知,AD ⊥CE ,AD ∥CB ,G 为EC 的中点,且AG =32a ,则CA →=CG →+GA →=12CE →+32CB →,又AM AC =CNCE =r (r >0),则CA →=CM →1-r ,CE →=CN →r ,故CM →1-r =CN →2r +32CB →,即CM →=1-r 2r CN →+3(1-r )2CB →,若B ,M ,N三点共线,则1-r 2r +3(1-r )2=1,解得r =33或r =-33(舍去).18.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m >0,n >0,则m +n 的最小值为________.答案43解析设OA →=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →+13b ,由P ,G ,Q 三点共线,得存在实数λ,使得PQ →=λPG →,即n b -m a =+13λb ,m ==13λ,消去λ,得1n +1m =3.于是m +nm +n )+n m +≥13×(2+2)=43,当且仅当m =n =23时,m +n 取得最小值,为43.。
《平面向量的概念及其线性运算》教学设计一、教材分析:本节课对平面向量的概念及其线性运算的复习,是对学生所学知识的融通和运用,也是学生对学习平面向量的总结和探索。
正确理解和熟练掌握平面向量的概念及其线性运算是之后学好空间向量的关键。
二、学情分析:本节课是在学习平面向量的概念及其线性运算,继续深入学习,是一节复习课。
学生已经掌握了平面向量的概念及其线性运算的基础知识,,这为本节课的学习提供了一定的知识保障,在此基础上,本节课将继续加深学生对基础知识的理解,加强平面向量的线性运算,这也是为后面学习空间向量内容做好知识储备的课.为了让学生能更加直观、形象地理解平面向量的概念及其线性运算,将采用多媒体课件进行演示,以提高学生的学习兴趣,使之能达到良好的教学效果。
三、教学目标:1、了解向量的实际背景;2、理解平面向量的概念,理解两个向量相等的含义;3、理解向量的几何表示;4、掌握向量加法、减法的运算,并理解其几何意义;5、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;6、了解向量线性运算的性质及其几何意义;四、教学重点和教学难点:(一)教学重点:1、理解平面向量的概念,理解两个向量相等的含义;2、理解向量的几何表示;3、掌握向量加法、减法的运算,并理解其几何意义;4、掌握向量数乘的运算及其儿几何意义,理解两个向量共线的含义;5、了解向量线性运算的性质及其几何意义;(二)教学难点:平面向量的线性运算以及共线定理的应用五、教学工具:多媒体、粉笔等。
六、教学过程:向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba+=+;(2)结合律:cbacba++=++)()(减法求a与b的相反向量-b的和的运算)(baba-+=-相等向量长度且方向的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量的相反向量为0教师展示表格,布置任务学生加深学生对新知识的理解共线.其中错误说法的序号是________. 考点二 平面向量的线性运算(基础之翼练牢固)[题组练通]1.在△ABC 中,D 为AB 的中点,点E 满足EC EB 4=,则ED = ( ) A. AD AB 3465- B. AD AB 6534- C. AD AB 3465+ D. AD AB 6534+2.在四边形ABCD 中,AB ∥CD ,AB =3DC ,E 为BC 的中点,则AE 等于 ( )A.AD AB 2132+ B.AD AB 3221+ C.AD AB 3165+ D.AD AB 6531+ 3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若BC AB AO μλ+=,其中λ,μ∈R ,则λ+μ等于 ( )教师板书讲题过程教师提出问题学生自主完成,并回答问题培养学生语音表达能力,激发学生七、板书设计:平面向量的概念及其线性运算一、知识梳理二、典例分析1、向量的有关概念考点一:2、向量的线性运算考点二:3、共线向量定理考点三:八、教学反思:总体情况良好,基本满意,大多数学生可以换换掌握!九、作业反馈:分析作业中存在的问题,查找原因,并进行总结和反馈。
第一节平面向量的概念及线性运算考试要求1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.[知识排查·微点淘金]知识点1平面向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或模)平面向量是自由向量零向量长度为0的向量零向量记作0,其方向是任意的单位向量长度等于1个单位长度的向量单位向量记作a0,a0=±a|a|平行向量(共线向量)方向相同或相反的非零向量0与任意向量共线相等向量长度相等且方向相同的向量相等向量一定是平行向量,平行向量不一定是相等向量相反向量长度相等且方向相反的两个向量若a,b为相反向量,则a=-b(1)注意0与0的区别,0是一个实数,0是一个向量,且|0|=0.(2)单位向量有无数个,它们的模相等,但方向不一定相同.(3)零向量和单位向量是两个特殊的向量,它们的模是确定的,但是方向不确定,因此在解题时要注意它们的特殊性.(4)任一组平行向量都可以平移到同一直线上.知识点2平面向量的线性运算向量 运算定义 法则(或几何意义) 运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a +b =b +a ; (2)结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫作a 与b 的差三角形法则 (3)a -b =a +(-b )数乘求实数λ与向量a 的积的运算(4)|λa |=|λ||a |. (5)当λ>0时,λa 与a的方向相同; 当λ<0时,λa 与a 的方向相反; 当λ=0时,λa =0(6)结合律:λ(μ a )=(λμ)_a =μ(λa );(7)第一分配律:(λ+μ)a =λa +μ_a ;(8)第二分配律:λ(a +b )=λa +λb[微提醒] 向量线性运算的3点提醒 (1)两个向量的和仍然是一个向量.(2)利用三角形法则时,两向量要首尾相连;利用平行四边形法则时,两向量要有相同的起点.(3)当两个向量共线时,三角形法则仍然适用,而平行四边形法则不适用. [微拓展]对于任意两个向量a ,b ,都有:①||a |-|b ||≤|a ±b |≤|a |+|b |;②|a +b |2+|a -b |2=2(|a |2+|b |2).当a ,b 不共线时:①的几何意义是三角形中的任意一边的长小于其他两边长的和且大于其他两边长的差的绝对值;②的几何意义是平行四边形中两邻边的长与两对角线的长之间的关系.常用结论向量线性运算的常用结论(1)在△ABC 中,若D 是BC 的中点,则AD →=12(AC →+AB →);(2)O 为△ABC 的重心的充要条件是OA →+OB →+OC →=0;(3)四边形ABCD 中,若E 为AD 的中点,F 为BC 的中点,则AB →+DC →=2EF →. 知识点3 共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . [微思考]共线向量定理中为什么限定a ≠0?提示:共线向量定理中限定a ≠0,这是因为如果a =0,则λa =0, 当b ≠0时,定理中的λ不存在; 当b =0时,定理中的λ不唯一.因此限定a ≠0的目的是保证实数λ的存在性和唯一性. [微拓展]1.a ∥b ⇔存在不全为零的x ,y ∈R ,使x a +y b =0.2.A ,B ,C 三点共线,O 为A ,B ,C 所在直线外任意一点,则OA →=λOB →+μOC →且 λ+μ=1.[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段表示向量.(×) (2)AB →+BC →+CD →=AD →.(√)(3)若两个向量共线,则其方向必定相同或相反.(×)(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.(×) (5)若a ∥b ,b ∥c ,则a ∥c .(×)(6)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.(√)2.(共线向量定理掌握不准确)对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案:A3.(向量加减法则用错)点D 是△ABC 的边AB 上的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D .BC →+12BA →答案:A4.(链接教材必修4 P 86例4)已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示)解析:如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b .答案:b -a -a -b5.(链接教材必修4 P 108B 组T 5)在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________.解析:如图所示,因为AB →+AD →=AC →,AB →-AD →=DB →,所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,四边形ABCD 是矩形.答案:矩形一、基础探究点——向量的有关概念(题组练透)1.下列命题正确的是( ) A .若|a |=|b |,则a =b B .若|a |>|b |,则a >b C .若a =b ,则a ∥b D .若|a |=0,则a =0解析:选C 对于A ,当|a |=|b |,即向量a ,b 的模相等时,方向不一定相同,则a =b 不一定成立,故A 不正确;对于B ,向量的模可以比较大小,但向量不可以比较大小,故B 不正确;C 显然正确;对于D ,若|a |=0,则a =0,故D 不正确,故选C.2.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零;③λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( ) A .0 B .1 C .2D .3解析:选D ①错误,两向量共线要看其方向而不是起点或终点;②错误,当a =0时,不论λ为何值,λa =0;③错误,当λ=μ=0时,λa =μb =0,此时a 与b 可以是任意向量,故错误的命题有3个,故选D.3.给出下列命题:①若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;②若两个向量相等,则它们的起点相同,终点相同;③a =b 的充要条件是|a |=|b |,且a ∥b .其中真命题的序号是________.解析:①正确.∵AB →=DC →,∴|AB →|=|DC →|,且AB →∥DC →. 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则AB →与DC →的方向相同,且|AB →|=|DC →|,因此AB →=DC →;②不正确.相等向量的起点和终点可以都不同;③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b . 综上所述,真命题的序号是①. 答案:①向量有关概念的关键点(1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等.(4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线.二、综合探究点——平面向量的线性运算(多向思维)[典例剖析]思维点1 向量的线性运算[例1] (1)如图所示,AB 是圆O 的一条直径,C ,D 是半圆弧的两个三等分点,则AB →=( )A.AC →-AD →B .2AC →-2AD → C.AD →-AC →D .2AD →-2AC →解析:连接CD (图略),因为C ,D 是半圆弧的两个三等分点,所以CD ∥AB ,且AB =2CD ,所以AB →=2CD →=2(AD →-AC →)=2AD →-2AC →,故选D.答案:D(2)[一题多解]已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,则( ) A.OA →=12AB →+3AC → B.OA →=12AB →-3AC → C.OA →=-12AB →+3AC → D.OA →=-12AB →-3AC →解析:解法一:对于A ,OA →=12AB →+3AC →=12(OB →-OA →)+3(OC →-OA →)=12OB →+3OC →-15OA →,整理,可得16OA →-12OB →-3OC →=0,这与题干中条件相符合,故选A.解法二:已知A ,B ,C 三点不共线,且点O 满足16OA →-12OB →-3OC →=0,所以OA →+12(OA →-OB →)+3(OA →-OC →)=0,即OA →+12BA →+3CA →=0,所以OA →=12AB →+3AC →,故选A.答案:A向量线性运算的解题策略常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.思维点2 根据向量线性运算求参数[例2] 如图所示,在平行四边形ABCD 中E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.解析:由题图可设CG →=x CE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.答案:12与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[学会用活]1.(2021·福建高三质检)庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系:在如图所示的正五角星中,以A ,B ,C ,D ,E 为顶点的多边形为正五边形,且PTAT =5-12.下列关系中正确的是( )A .BP →-TS →=5+12RS →B .CQ →+TP →=5+12TS →C .ES →-AP →=5-12BQ →D .AT →+BQ →=5-12CR →解析:选A 由题意得,BP →-TS →=TE →-TS →=SE →=RS →5-12=5+12RS →,所以A 正确;CQ→+TP →=P A →+TP →=TA →=5+12ST →,所以B 错误;ES →-AP →=RC →-QC →=RQ →=5-12QB →,所以C错误;AT →+BQ →=SD →+RD →,5-12CR →=RS →=RD →-SD →,若AT →+BQ →=5-12CR →,则SD →=0,不合题意,所以D 错误.故选A .2.已知圆心为O ,半径为1的圆上有不同的三个点A ,B ,C ,其中OA →·OB →=0,存在实数λ,μ满足OC →+λOA →+μOB →=0,则实数λ,μ的关系为( )A .λ2+μ2=1B .1λ+1μ=1C .λμ=1D .λ+μ=1解析:选A 解法一:取特殊点,取C 为优弧AB 的中点,此时由平面向量基本定理易得λ=μ=22,只有选项A 符合.故选A . 解法二:依题意得|OA →|=|OB →|=|OC →|=1,-OC →=λOA →+μOB →,两边同时平方,得1=λ2+μ2.故选A .三、应用探究点——共线向量定理及应用(思维拓展)[典例剖析][例3] 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.解:(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →, ∴AB →,BD →共线,又他们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)B .又a ,b 是两个不共线的非零向量,∴⎩⎪⎨⎪⎧k -λ=0,λk -1=0.∴k 2-1=0.∴k =±1. [拓展变式]1.[变条件]若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m =________时,A ,B ,D 三点共线.解析:BD →=BC →+CD →=(a +m b )+3(a -b )=4a +(m -3)b ,若A ,B ,D 三点共线,则存在实数λ,使BD →=λAB →.即4a +(m -3)b =λ(a +b ),∴4a +(m -3)b =λa +λb ,∴⎩⎪⎨⎪⎧4=λ,m -3=λ,解得m =7. 故当m =7时,A ,B ,D 三点共线. 答案:72.[变结论]若将本例(2)中的“共线”改为“反向共线”,则k 的值为________. 解析:因为k a +b 与a +k b 反向共线, 所以存在实数λ,使k a +b =λ(a +k b )(λ<0).所以⎩⎪⎨⎪⎧k =λ,k λ=1,所以k =±1.又λ<0,k =λ,所以k =-1. 故当k =-1时,两向量反向共线. 答案:-1利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔AB →,AC →共线.[学会用活]3.(2021·河北六校第一次联考)已知点O 是△ABC 内一点,且满足OA →+2OB →+mOC →=0,S △AOB S △ABC =47,则实数m 的值为( ) A .-4 B .-2 C .2D .4解析:选D 由OA →+2OB →=-mOC →得,13OA →+23OB →=-m 3OC →,如图所示,设-m 3OC →=OD →,则13OA →+23OB →=OD →,∴A ,B ,D 三点共线,∴OC →与OD →反向共线,m >0, ∴|OD →||OC →|=m 3,∴|OD →||CD →|=m3m 3+1=m m +3,∴S △AOB S △ABC =|OD →||CD →| =m m +3=47,解得m =4.故选D . 限时规范训练 基础夯实练1.(2021·山东烟台期中)若M 为△ABC 的边AB 上一点,且AB →=3AM →,则CB →=( ) A .3CM →-2CA →B .3CA →-2CM →C .3CM →+2CA →D .3CA →+2CM →解析:选A 根据题意作出图形,如图,所以CM →=CB →+BM →=CB →+23BA →=CB →+23(CA →-CB →)=13CB →+23CA →,所以CB →=3CM →-2CA →.故选A .2.已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0.若a ∥b ,则mn 等于( )A .-12B .12C .-2D .2解析:选C ∵a ∥b ,∴a =λb ,即m e 1+2e 2=λ(n e 1-e 2),则⎩⎪⎨⎪⎧λn =m ,-λ=2,故mn=-2.3.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,其中λ,μ∈R ,则λ+μ等于( )A .1B .12C .13D .23解析:选D 由题意易得AD →=AB →+BD →=AB →+13BC →,则2AO →=AB →+13BC →,即AO →=12AB →+16BC →.所以λ=12,μ=16,故λ+μ=12+16=23.4.(2021·云南曲靖一中月考)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=( )A .13a +512bB .13a -1312bC .-13a -512bD .-13a +1312b解析:选C DE →=DC →+CE →=13BC →+34CA →=13(AC →-AB →)-34AC →=-13AB →-512AC →=-13a -512B .5.(2021·潍坊模拟)若M 是△ABC 内一点,且满足BA →+BC →=4BM →,则△ABM 与△ACM 的面积之比为( )A .12B .13C .14D .2解析:选A 设AC 的中点为D ,则BA →+BC →=2BD →,于是2BD →=4BM →,从而BD →=2BM →,即M 为BD 的中点,于是S △ABM S △ACM =S △ABM 2S △AMD=BM 2MD =12.6.在△ABC 中,AD →=2DB →,CD →=13CA →+λCB →,则λ=________.解析:由题意可得A ,D ,B 共线,∴13+λ=1,∴λ=23.答案:23综合提升练7.(2021·广西名校联考)在△ABC 中,D 是AB 边的中点,点E 在BC 边上,且BE =2EC ,则ED →=( )A .16AB →-23AC →B .16AB →+23AC →C .-16AB →+13AC →D .-16AB →+23AC →解析:选A ED →=BD →-BE →=-12AB →-23BC →=-12AB →-23(AC →-AB →)=16AB →-23AC →,故选A .8.(2021·湖北省黄冈、华师附中等八校联考)已知O 是正方形ABCD 的中心.若DO →=λAB →+μAC →,其中λ,μ∈R ,则λμ=( )A .-2B .-12C .- 2D . 2解析:选A DO →=DA →+AO →=CB →+AO →=AB →-AC →+12AC →=AB →-12AC →,∴λ=1,μ=-12,∴λμ=-2. 9.如图所示,在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,若AB →+AC →=4AP →,则( )A .点P 与图中的点D 重合B .点P 与图中的点E 重合C .点P 与图中的点F 重合D .点P 与图中的点G 重合解析:选C ∵在△ABC 中,D 为线段BC 的中点,E ,F ,G 依次为线段AD 从上至下的3个四等分点,∴AB →+AC →=2AD →,AD →=2AF →,∴AB →+AC →=4AF →,∴点P 与图中的点F 重合.故选C .10.已知向量a ,b 是两个不共线的向量,若向量m =4a +b 与n =a -λb 共线,则实数λ的值为( )A .-4B .-14C .14D .4解析:选B 因为向量a ,b 是两个不共线的向量,向量m =4a +b 与n =a -λb 共线,所以存在实数μ,使得4a +b =μ(a -λb ),即⎩⎪⎨⎪⎧4=μ,1=-λμ,解得λ=-14,故选B .11.在△ABC 中,点D 是线段BC (不包括端点)上的动点.若AB →=xAC →+yAD →,则( ) A .x >1 B .y >1 C .x +y >1D .xy >1解析:选B 设BD →=λBC →(0<λ<1),所以AD →-AB →=λAC →-λAB →,所以(1-λ)AB →=AD →-λAC →,所以AB →=11-λAD →-λ1-λAC →,所以x =-λ1-λ<0,y =11-λ=1-λ+λ1-λ=1+λ1-λ>1,又x +y =1-λ1-λ=1,xy =-λ(1-λ)2<0,故选B . 12.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.解析:由题意可求得AD =1,CD =3,所以AB →=2DC →. ∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12 创新应用练13.(2021·山东省师大附中模拟)设a ,b 是非零向量,则a =2b 是a |a |=b|b |成立的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 由a =2b 可知,a ,b 方向相同,a |a |,b|b |表示a ,b 方向上的单位向量,所以a |a |=b|b |成立;反之则不成立,故选B . 14.在△ABC 中有如下结论:“若点M 为△ABC 的重心,则MA →+MB →+MC →=0.”设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,点M 为△ABC 的重心.若aMA →+bMB →+33cMC→=0,则内角A 的大小为________,当a =3时,△ABC 的面积为________.解析:由aMA →+bMB →+33cMC →=aMA →+bMB →+33c (-MA →-MB →)=⎝⎛⎭⎫a -33c MA →+⎝⎛⎭⎫b -33c MB →=0,且MA →与MB →不共线,∴a -33c =b -33c =0,∴a =b =33C .△ABC 中,由余弦定理可求得cos A =32,∴A =π6.若a =3,则b =3,c =33,S △ABC =12bc sin A =12×3×33×12=934.答案:π6 934。