加氢精制催化剂工艺专业技术
- 格式:doc
- 大小:674.50 KB
- 文档页数:15
加氢的精制工艺流程
《加氢的精制工艺流程》
加氢是炼油行业中常用的一种精制工艺,它通过使用氢气将原油中的不饱和烃、硫化物和氮化物等杂质转化为饱和烃,从而提高油品的质量。
下面我们来详细介绍一下加氢的精制工艺流程。
1. 原料预处理
在加氢前,首先要对原油进行预处理。
这一步主要是将原油中的大分子杂质去除,以保护加氢催化剂的稳定性和活性。
通常采用脱蜡、脱沥青、脱硫等方法进行预处理。
2. 加氢反应
将经过预处理的原油送入加氢反应器中,与高压氢气接触,经过加氢反应器内的催化剂作用,不饱和烃、硫化物和氮化物等杂质被加氢转化为饱和烃以及硫化氢和氨。
这一步是整个加氢工艺的关键步骤,需要控制好反应器的温度、压力和氢气流量,才能获得理想的产品质量。
3. 分离和加工
加氢反应后的产物需要进行分离和加工,通常包括减压分离、氢气回收和产品升温卸催化剂等步骤。
其中,减压分离是将反应产物进行分离,得到干净的产品油和硫化氢等气体。
氢气回收可以将反应产生的氢气进行回收利用,节约能源。
产品升温卸催化剂则是将反应器内的催化剂进行再生,以保持其活性和稳定性。
4. 产品处理
最后得到的产品油需要进行进一步的处理,比如脱硫、脱氮、脱脂等工艺,以获得符合环保标准和市场需求的成品油。
通过上述精制工艺流程,原油中的不饱和烃、硫化物和氮化物等杂质得到有效转化和去除,从而提高了油品的质量和降低了环境污染。
加氢工艺成为了炼油行业中不可或缺的精制工艺之一。
收稿:2006年3月,收修改稿:2006年7月 3国家重点基础研究发展规划(973项目)(N o.2004C B217807)和中国石油重点基础研究项目(N o.04A50502)资助33通讯联系人 e 2mail :liuyq @柴油加氢精制催化剂制备技术3安高军 柳云骐33 柴永明 刘晨光(中国石油大学重质油国家重点实验室C NPC 催化重点实验室 东营257061)摘 要 柴油加氢精制催化剂制备技术的发展大致经历了3个阶段,由此形成了三代柴油加氢催化剂:单层分散的负载型金属硫化物催化剂,多层分散的负载型金属硫化物催化剂和非负载型金属硫化物催化剂。
本文对金属硫化钼基柴油加氢精制催化剂的应用背景、制备思想及催化剂研究开发现状进行了系统的总结,对柴油加氢催化剂的发展方向进行了展望。
关键词 加氢脱硫 加氢脱氮 加氢脱芳 加氢催化剂中图分类号:O643138;O61216 文献标识码:A 文章编号:10052281X (2007)02Π320243207F abricating Technologies of Diesel Oil H ydrotreating C atalystsAn Gaojun Liu Yunqi33 Chai Yongming Liu Chenguang(State K ey Laboratory of Heavy Oil Processing ,K ey Laboratory of Catalysis of C NPC ,China University of Petroleum ,Dongying 257061,China )Abstract The fabricating technologies of diesel oil hydrotreating catalysts are considered to have developed through three stages in general.C onsequently ,three generations of hydrotreating catalysts have been formed ,which are m onolayer 2dispersed and supported metallic sulfide catalysts ,multilayer 2dispersed and supported metallic sulfide catalysts and unsupported metallic sulfide catalysts ,respectively.The application background ,fabrication thoughts and progress in the researches of the m olybdenum sulfide 2based hydrotreating catalysts are reviewed systemically ,and the opinions with respect to the future development trend of diesel oil hydrotreating catalysts are proposed.K ey w ords hydrodesulfurization (H DS );hydrodenitrogenation (H DN );hydrodearomatization (H DAr );hydrotreating catalysts1 引言柴油中的含硫、含氮化合物燃烧后,排放出S O x 、NO x ,这是城市大气污染的重要来源。
可编辑修改精选全文完整版加氢精制催化剂及工艺技术▪加氢精制技术应用概况▪加氢精制主要反应及模型化合物加氢反应历程主要反应模型化合物加氢反应历程典型工艺流程▪加氢精制工艺技术重整原料预加氢催化剂及工艺二次加工汽油加氢精制催化剂及工艺煤油加氢精制催化剂及工艺劣质二次加工柴油加氢精制催化剂及工艺进口高硫柴油加氢精制催化剂及工艺焦化全馏分油加氢精制催化剂及工艺石蜡加氢精制催化剂及技术▪加氢精制催化剂加氢精制技术应用概况抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。
几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。
FRIPP加氢精制技术开发的经历:•1950s 页岩油加氢技术•1960s 重整原料预精制技术•1970s 汽、煤、柴油加氢精制技术•1980s 石油蜡类加氢精制技术•1990s 重质馏分油加氢精制技术、渣油加氢处理技术FRIPP加氢精制系列催化剂:•轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98•重质馏分油 3926、3936、CH-20、3996•柴油临氢降凝 FDW-1•石油蜡类 481-2、481-2B、FV-1•渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列FRIPP加氢精制催化剂工业应用统计(1999年):加氢精制主要反应及模型化合物加氢反应历程加氢精制主要反应加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。
其典型反应如下:1、加氢脱硫2、加氢脱氮3、加氢脱氧4、烯烃加氢饱和5、芳烃加氢饱和6、加氢脱金属(1)沥青胶束的金属桥的断裂(详见图3)式中 R,R'--芳烃;M--金属钒。
加氢精制催化剂加氢精制催化剂是一种常用的催化剂,广泛应用于石油炼制和化工生产中,具有重要的作用和应用价值。
本文将从催化剂的定义、催化剂的种类、加氢精制催化剂的特点及应用等方面进行详细介绍。
催化剂是一种能够加速化学反应速率的物质,它能够在反应中降低活化能,提高反应速率,但本身并不参与其中。
催化剂的种类繁多,根据其所催化的反应类型可以分为酸催化剂、碱催化剂、金属催化剂等。
其中,加氢精制催化剂是一类重要的金属催化剂。
加氢精制催化剂主要用于石油加工过程中的加氢反应。
石油加氢是一种通过向石油中加氢气来去除其中的杂质和不饱和化合物的过程,以提高石油产品的质量和性能。
在石油加氢过程中,加氢精制催化剂扮演着至关重要的角色。
加氢精制催化剂的特点主要体现在以下几个方面。
首先,它具有高催化活性和选择性,能够在较低的温度和压力条件下实现高效的反应转化。
其次,加氢精制催化剂具有较好的抗毒性和抗烧结性能,能够在长时间的使用过程中保持较高的催化活性。
此外,加氢精制催化剂还具有较大的比表面积和孔隙结构,可以提高反应物质的吸附和扩散能力,进一步提高催化反应速率。
加氢精制催化剂在石油加工中具有广泛的应用。
首先,它常用于加氢裂化过程中,将重质石油馏分转化为轻质石油产品,提高石油产品的产率和质量。
其次,加氢精制催化剂也用于石油脱硫和脱氮过程中,去除石油中的硫和氮杂质,减少环境污染和燃烧产物的有害物质。
此外,加氢精制催化剂还可用于合成氨、合成乙烯等重要的化工过程中。
在实际应用中,选择合适的加氢精制催化剂对于提高反应效率和产品质量至关重要。
催化剂的选择应考虑催化活性、选择性、稳定性等因素,同时还需考虑成本和可持续性等方面的因素。
此外,催化剂的制备方法和工艺条件也对催化剂的性能和应用效果有着重要的影响。
加氢精制催化剂作为一种重要的催化剂在石油加工和化工生产中具有广泛的应用。
它具有高催化活性和选择性,能够在石油加氢过程中实现高效的反应转化。
在实际应用中,合理选择催化剂和优化催化剂的制备方法和工艺条件对于提高反应效率和产品质量具有重要意义。
加氢的精制工艺流程加氢是一种常用的精制工艺,在石油和石化行业中起着很重要的作用。
加氢工艺可以将高硫、高氮和高金属含量的原油转化为低硫、低氮、低金属含量的产品,提高产品的质量和降低环境污染。
下面将介绍关于加氢的精制工艺流程。
加氢的精制工艺主要包括加氢裂化、加氢脱硫和加氢裂化等环节。
加氢裂化是一种将重油在高温和高压下裂解为较轻质的燃料油和裂解气体的过程。
首先,将重油和催化剂一起送入加氢裂化炉,炉内压力一般为30-40MPa,温度为450-500℃。
在高温和高压的条件下,重油中的长链分子会被分解成较小的分子。
同时,催化剂中的金属成分和硫化物会催化分子裂解反应的进行。
裂解产物中主要含有轻质燃料油和裂解气体。
然后,通过冷凝和分离装置,将燃料油和裂解气体分离出来。
最后,燃料油可以作为燃料使用,而裂解气体可以进一步处理和利用。
加氢脱硫是一种将原油中的硫化物转化为氢硫化气体,降低硫含量的过程。
首先,将含有硫化物的原油和催化剂一起送入加氢脱硫反应器,炉内压力一般为10-20MPa,温度为300-400℃。
在催化剂的作用下,硫化物会和氢气反应生成氢硫化气体。
然后,通过冷凝和分离装置,将氢硫化气体和油水分离出来。
最后,氢硫化气体可以进一步处理,而脱硫后的原油可以用于提炼高品质的燃料油和润滑油。
加氢裂化是一种将重油中的长链烷烃分子裂解为较轻质的烃类和裂解气体的过程。
首先,将重油和催化剂一起送入加氢裂化反应器,压力一般为10-30MPa,温度为350-450℃。
在反应器中,大分子烴类和催化剂会发生裂解反应,生成较小的烃类分子。
同时,催化剂中的金属成分和硫化物会催化裂解反应的进行。
然后,通过冷凝和分离装置,将轻质烃类和裂解气体分离出来。
最后,轻质烃类可以进一步提炼和利用,而裂解气体可以用于加热和提供燃料。
通过以上加氢的精制工艺流程,可以将高硫、高氮和高金属含量的原油转化为低硫、低氮、低金属含量的产品,提高产品的质量和降低环境污染。
加氢的精制工艺流程
《加氢的精制工艺流程》
加氢是石油精制工艺中的重要步骤,它可以将重质烃分子中的不饱和键和硫、氮、氧等杂质去除,从而生产出更干净、更高品质的产品。
下面将介绍加氢的精制工艺流程。
首先,原油经过蒸馏分馏后得到的馏分进入加氢装置。
加氢装置主要由加氢反应器、加氢气制备装置和加氢气净化装置组成。
在加氢反应器中,原油馏分与加氢气混合后,通过催化剂的作用,不饱和键和杂质被加氢还原,生成饱和烃和去除杂质。
加氢气制备装置主要是将天然气或其他氢源经过净化制备成纯净的加氢气体。
而加氢气净化装置则是对生成的尾气和反应器排出的废气进行处理,保证排放环境友好。
其次,加氢后的产品进入脱气装置,通过脱气,去除其中的氢气和轻质烃物质。
然后经过冷凝器,将其中的轻质烃和氢气冷凝成液态,得到液态产品。
最后,通过分馏装置对液态产品进行分馏,得到不同馏分。
这些馏分经过进一步加工处理,可以生产出各种高品质的产品,例如汽油、柴油、润滑油等。
以上就是加氢的精制工艺流程,它通过加氢反应、脱气、冷凝和分馏等步骤,使得原油中的不饱和键和杂质得到有效去除,生产出更高品质的产品,为能源行业做出了重要贡献。
加氢精制催化剂加氢精制催化剂是一种常见的催化剂,广泛应用于石油化工行业中的催化加氢过程。
催化加氢是指利用催化剂将原料中的不饱和化合物加氢反应,将其转化为饱和化合物的过程。
加氢精制催化剂在石油加工中起到至关重要的作用,能够提高产品质量、降低能源消耗、减少环境污染。
加氢精制催化剂通常由载体和活性组分两部分组成。
载体是一种稳定的材料,常用的有氧化铝、硅胶、硅铝酸盐等。
活性组分则是指催化剂中的金属或金属氧化物,常用的有镍、钼、钴等。
这些活性组分能够与原料中的不饱和化合物发生反应,将其加氢转化为饱和化合物。
加氢精制催化剂的作用机理主要包括吸附、解离和表面反应三个步骤。
首先,原料中的不饱和化合物被催化剂表面吸附,形成吸附态物质。
然后,这些吸附态物质通过解离反应,将不饱和化合物分子解离成各种碳氢键。
最后,这些碳氢键与氢气发生表面反应,生成饱和化合物。
加氢精制催化剂的性能主要取决于其载体和活性组分的选择。
载体的选择应具有一定的孔结构,以便提供足够的活性表面积和催化反应的通道。
活性组分的选择应具有良好的催化活性和稳定性,以保证催化剂在长时间使用过程中不失去活性。
在石油化工行业中,加氢精制催化剂广泛应用于石油加氢、煤化工、化工合成等领域。
在石油加氢中,加氢精制催化剂能够将原油中的硫化物、氮化物和芳香烃等杂质加氢去除,提高石油产品的质量。
在煤化工中,加氢精制催化剂能够将煤中的不饱和化合物加氢转化为饱和化合物,提高煤制品的质量。
在化工合成中,加氢精制催化剂能够催化有机物的加氢反应,提高合成产物的纯度和收率。
除了在石油化工行业中的应用,加氢精制催化剂还被广泛应用于环保领域。
催化加氢是一种相对环保的反应过程,能够有效降低有害气体的排放。
加氢精制催化剂在汽车尾气净化、废水处理、废气治理等方面都有重要的应用。
催化加氢能够将有害气体转化为无害物质,减少对环境的污染。
加氢精制催化剂在石油化工行业中起到不可替代的作用。
它能够提高产品质量、降低能源消耗、减少环境污染,对于石油加工和环保都具有重要意义。
加氢精制催化剂及工艺技术▪加氢精制技术应用概况▪加氢精制主要反应及模型化合物加氢反应历程主要反应模型化合物加氢反应历程典型工艺流程▪加氢精制工艺技术重整原料预加氢催化剂及工艺二次加工汽油加氢精制催化剂及工艺煤油加氢精制催化剂及工艺劣质二次加工柴油加氢精制催化剂及工艺进口高硫柴油加氢精制催化剂及工艺焦化全馏分油加氢精制催化剂及工艺石蜡加氢精制催化剂及技术▪加氢精制催化剂加氢精制技术应用概况抚顺石油化工研究院(FRIPP)是国内最早从事石油产品临氢催化技术开发的科研机构。
几十年来,FRIPP在轻质馏分油加氢精制、重质馏分油加氢处理、石油蜡类加氢精制、渣油加氢处理和临氢降凝等领域已开发成功5大类共30个品牌的商业催化剂,先后在国内45个厂家共115套加氢精制/加氢处理工业装置上应用,累计加工能力超过4000万吨/年。
FRIPP加氢精制技术开发的经历:∙1950s 页岩油加氢技术∙1960s 重整原料预精制技术∙1970s 汽、煤、柴油加氢精制技术∙1980s 石油蜡类加氢精制技术∙1990s 重质馏分油加氢精制技术、渣油加氢处理技术FRIPP加氢精制系列催化剂:∙轻质馏分油 481、481-3、FH-5、FH-5A、FDS-4、FDS-4A、FH-98∙重质馏分油 3926、3936、CH-20、3996∙柴油临氢降凝 FDW-1∙石油蜡类 481-2、481-2B、FV-1∙渣油 FZC-10系列、FZC-20系列、FZC-30系列、FZC-40系列、FZC-100系列、 FZC-200系列、FZC-300系列FRIPP加氢精制催化剂工业应用统计(1999年):加氢精制主要反应及模型化合物加氢反应历程加氢精制主要反应加氢精制主要反应为加氢脱硫、加氢脱氮、加氢脱氧、烯烃与芳烃的饱和加氢,以及加氢脱金属。
其典型反应如下:1、加氢脱硫2、加氢脱氮3、加氢脱氧4、烯烃加氢饱和5、芳烃加氢饱和6、加氢脱金属(1)沥青胶束的金属桥的断裂(详见图3)式中 R,R'--芳烃;M--金属钒。
(2)卟啉金属镍的氢解加氢精制主要反应及模型化合物加氢反应历程模型化合物加氢反应历程石油馏分中硫、氮化合物的氢解属于双分子吸附反应机理,随着分子结构的不同,反应历程有很大差别,现扼要介绍如下:1、模型硫化物加氢脱硫反应历程硫化物加氢脱硫反应活性,随着分子结构不同而异,一般烷基硫化物大于环状硫化物,环状硫化物又随着环上取代基的增加而下降。
如硫芴的反应活性较噻吩约低一至二个数量级,硫化物的一般反应活性顺序如下:通常以噻吩或硫芴代表硫化物进行加氢脱硫反应历程的研究,图1是在Co-Mo/Al2O3催化剂上18MPa、300℃时硫芴的加氢脱硫反应历程。
硫芴加氢脱硫反应存在二条平行路线,(1) C-S键直接氢解,生成H2S和联苯;(2)其中一个苯环先加氢,然后C-S键断裂生成H2S和环己基苯。
第一条反应速度常数约比第二条高一个数量级,是主导路线。
图1 硫芴加氢反应历程图2、模型氮化物的加氢脱氮反应历程氮化物的加氢脱氮反应活性,同样也随着分子结构不同而有很大差别,其一般顺序为:其中五元及六元氮杂环化物最难加氢脱氮。
图2为在Ni-Mo/Al2O3催化剂上,3.4MPa、342℃时喹啉加氢脱氮的反应网络图。
图2 喹啉加氢脱氮的反应网络图氮杂环加氢脱氮反应必须经过C=N键加氢成C-N键后断裂。
如图2,喹啉加氢脱氮反应首先是环加氢。
加氢在苯环和氮杂环上同时进行,而以氮杂环为主。
由于反应[Ⅰ]处于热力学平衡,故在反应温度较低时,脱氮反应步骤按[Ⅰ]→[Ⅶ]→[Ⅵ]进行,随着反应温度逐渐升高,或压力降低时,平衡移向左边,则反应步骤愈来愈明显转变为[Ⅳ]→[Ⅴ]→[Ⅵ]。
因受邻近苯核共振能的影响,苯胺的C-N键很难断裂,因此反应[Ⅲ]速度很慢,实际上很少发生。
3、芳烃加氢反应历程一般馏分油的芳烃加氢主要指萘系或蒽(菲)系稠环芳烃的加氢。
其反应历程如下。
萘加氢:菲(蒽)加氢:从反应历程可见,稠环芳烃加氢有两个特点:( 1 )每个环加氢脱氢都处于平衡状态;( 2 )加氢逐环依次进行。
从稠环芳烃的分子结构考虑,当稠环芳烃中一个环引进一个分子氢以后,其苯核共振能的稳定化作用便受到破坏,因而生成的环烯比较容易加氢生成环己烷,例如具有三个苯环的蒽,其第9及第10位置就比萘第7、8位置不稳定,容易与氢反应,而萘比苯又更具有烯烃性质,因此比苯又容易加氢生成四氢萘。
但当萘一旦加上二个分子的氢,或蒽加上一个分子氢以后,则相对地变得更加稳定,继续加氢就需要苛刻的加氢条件。
稠环芳烃加氢深度受到热力学平衡的限制,一些稠环芳烃加氢平衡常数如下表。
一些稠环芳烃加氢的平衡常数显然,随着反应温度升高,加氢平衡常数呈数量级下降,因此芳烃深度饱和加氢必须在较低温度下进行。
4、加氢脱金属反应加氢脱金属是渣油加氢精制的主要反攻反应。
由于在渣油中,金属及硫、氮一般共同存在于沥青质胶束中,因此,从渣油中加氢脱金属和加氢脱硫、脱氮与沥青质的转化是分不开的。
沥青质胶束的裂解是通过反应″a″与反应″b″连续反应过程,反应″a″是首先通过金属(M)桥的断裂,以及金属(V或Ni)从卟啉结构中脱除,然后经反应″b″,通过杂原子(S、N)的脱除,进一步降低分子量,而形成稠环芳烃和烷烃桥合的沥青质碎片。
一般认为沥青质裂解属于热裂解反应,而渣油加氢精制过程一般要求较高的氢分压,主要在于抑止催化剂表面积炭的形成。
典型工艺流程加氢精制典型工艺流程图:循环氢脱H2S典型工艺流程图:加氢精制工艺技术重整原料预加氢催化剂及工艺FRIPP开发的重整原料预加氢催化剂主要有481-3催化剂及FDS-4A催化剂。
481-3催化剂活性达到了国外同类催化剂S-12、HR-306水平,已经在国内25个厂家30套工业装置上应用;FDS-4A催化剂是近期开发的新一代加氢精制催化剂,其活性明显高于国际市场上的同类主流催化剂,是481-3催化剂的换代产品,目前已有8套工业装置使用。
481-3催化剂用于国内重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速2.0~12.0h-1、工艺条件下进行;用于进口高硫重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速2.0~5.0h-1工艺条件下进行。
FDS-4A催化剂活性更高,用于进口高硫重整原料预加氢时,可在氢压1.0~2.0MPa、反应温度270~320℃、体积空速6.0~10.0h-1工艺条件下进行。
481-3催化剂、FDS-4A催化剂高空速试验典型结果二次加工汽油加氢精制催化剂及工艺随着我国炼油工业的迅速发展,焦化、催化及热裂化加工能力不断增加,为改善这些二次加工汽油的质量,FRIPP开发了特别适合这类油料加氢精制的481-3、FH-5、FH-98催化剂。
FH-98催化剂是近期开发的新型加氢精制催化剂,已经在多套焦化汽油加氢装置上工业应用。
二次加工汽油加氢可根据原料油性质及产品要求,调整工艺参数达到不同的加氢深度。
目前,全国已有13套工业装置应用FRIPP技术。
焦化汽油加氢生产石脑油典型工业运转结果煤油加氢精制催化剂及工艺煤油加氢精制分两种,一种是煤油深度加氢精制,为烷基苯提供进料;另一种为航煤浅度加氢精制脱硫醇。
FRIPP开发的煤油加氢精制催化剂主要有481-3、FDS-4A催化剂,用于煤油深度加氢精制的工艺条件为:氢压4.0~5.0MPa、反应温度280~320℃、体积空速1.0~2.0h-1;用于煤油浅度加氢精制的工艺条件为:氢压0.5~1.6MPa、反应温度190~290℃、体积空速2.5~4.0h-1。
481-3催化剂已经在煤油深度加氢精制装置上应用,FDS-4A催化剂在煤油浅度加氢精制装置上工业应用。
481-3催化剂、FDS-4A催化剂工业应用典型结果劣质二次加工柴油加氢精制催化剂及工艺随着原油的重质化及对轻油需要量的增加,二次加工柴油的量越来越多,油品质量越来越差,需要加氢精制才能出厂。
FRIPP开发的劣质二次加工柴油加氢精制催化剂有FH-5、FH-98催化剂。
FH-98催化剂是FRIPP在总结已有成功经验的基础上开发的新一代劣质二次加工油品加氢精制催化剂,是FH-5催化剂的换代产品。
通过活性组分的优化组合、改善金属组分在载体上的分散性能、添加助剂、调变载体的微孔结构、调整催化剂外形及颗粒度等方面的试验工作,使FH-98催化剂具有了优异的加氢精制性能和使用性能。
FH-98催化剂是以含硅氧化铝为载体,担载钨、钼、镍、钴活性组分的三叶草形催化剂。
该催化剂具有活性组分匹配合理、活性金属高度分散、加氢脱硫和加氢脱氮活性高、装填密度低等特点。
FH-98催化剂已经分别在中国石化和中国石油天然气集团公司系统内六套工业装置上应用。
FH-98催化剂用于大庆柴油加氢典型结果进口高硫柴油加氢精制催化剂及工艺随着国内高硫原油进口量的逐年增加,必须加速发展加工高硫原油的成套技术,FRIPP针对进口高硫原油柴油的性质,开发了FDS-4、FH-5A催化剂,可用于从高硫原料生产优质低硫柴油。
FDS-4催化剂主要以脱硫为主;FH-5A催化剂是FH-5催化剂的改进型,选用与FH-5催化剂相同的载体,Mo-Ni-Co为活性组分,采用新的制备技术,该催化剂活性金属高度分散,表面结构合理。
由于FH-5A催化剂具有脱硫、脱氮活性兼顾的特点,因而对原料具有较强的适应性。
工艺研究表明:FH-5A催化剂在缓和的工艺条件下对中东高硫原油的直馏柴油、二次加工柴油及其混合油进行加氢精制,可生产低硫、安定的优质柴油。
FH-5A催化剂于1999年11月已经在160×104t/a加氢精制装置上工业应用。
该装置原设计进料为中东直馏柴油掺30%重油催柴。
在实际应用中, 炼油厂为平衡全厂原料, 需增炼焦化柴油, 即掺入30%重催柴油和15%焦化柴油,进料硫含量高达0.8~1.9w%,增加了该装置加氢精制难度。
在反应压力4.0MPa、体积空速2.0 h-1条件下, 可从高硫原料(硫:1.46%)生产优质低硫柴油,脱硫率达96.7%、脱氮率80.4%。
该催化剂的应用成功, 对于石化企业加工进口含硫原油, 生产低硫柴油(硫含量低于0.05w%)具有十分重要的意义。
FH-5、FH-5A催化剂典型的试验结果FH-5A催化剂用于柴油加氢装置典型结果焦化全馏分油加氢精制催化剂及工艺焦化馏出油的油品性质较差,需要加氢精制才能满足汽油、柴油及蜡油产品的要求。
FRIPP开发的FH-5、FH-98加氢精制催化剂可适合这类油品的加氢精制。
FH-5催化剂已经在炼油厂焦化全馏分油加氢精制装置上工业应用。
FH-98催化剂是FH-5催化剂的换代产品,其脱氮活性明显优于FH-5催化剂。