151,2,3,5伽利略变换关系牛顿力学相对性原理遇到困难
- 格式:ppt
- 大小:755.50 KB
- 文档页数:3
百科知识 2019.07 C伽利略变换和伽利略相对性原理李姊擎在托勒密天文学的时代,人们一度认为地球是宇宙的中心,所有的天体都是围绕地球运动;哥白尼提出日心假说,将太阳放到了宇宙的中心,包括地球在内的其他天体,都是围绕太阳运动;而现代天文学的观测表明,宇宙似乎并没有所谓的中心,宇宙的每个部分从宏观上来看都是等价的,每一个物体的运动,从本质上讲并没有地位上的差别,无法找到一个特殊的参考系来定义绝对的运动和静止的标准,也就是说运动和静止是相对的。
这一点早在牛顿时代人们就已经有了模糊的认识,那么,既然没有绝对运动的标准,不同的参考系本质上应该是等价的,那么他们对同一运动状态的描述应该具有怎样的变换关系,所谓的“等价”是在何种意义上的等价?牛顿力学对这些问题给出的答案就是,不同参考系对同一运动的时空坐标的描述,借由伽利略变换相联系;而参考系之间的“等价”,在于基本的力学规律在不同的惯性系中具有相同的数学形式,也就是伽利略相对性原理。
一、伽利略变换伽利略变换是用于描述不同参考系对同一事件的时空坐标描述的变换关系,告诉我们如果对于K观测者而言是(x, y, z, t)的事件,在另一个观测者K′来看是(x′, y′, z′, t′),那么二者具有怎样的关系。
考虑这样一个一维的模型:观测者K的参考系中,存在一个质点,可以用(x, y, z, t)来描述其时间和空间位置的变化,此时有另外一个观测者K′,和K之间有一个沿着x轴正方向的速度v,那么其坐标的变换关系满足:x′=x - vt ;y′ = y;z′=z;t′ = t这个变换关系就是伽利略变化。
只要知道两个参考系之间的相对运动,就可以根据其中一个参考系的观测结果来获得另外一个参考系的观测结果。
比如对于K参考系,质点在t=0的时刻处于坐标轴的原点(0,0,0),在相对K沿着x轴正方向的速度v的参考系看来,这个原点在任意时间t的位置是(-vt,0,0),这个变换关系在处理坐标变换的时候有重要的作用。
伽利略变换公式范文
设想有两个相对静止的参考系S和S',其中S'以速度v相对于S运动,两个参考系的坐标原点重合。
1.从S到S'的伽利略变换公式:
设一个在S系中以速度u运动的物体,在S'系中的速度为u',则有如下关系:
u'=u-v
其中,u'表示物体在S'系中的速度,u表示物体在S系中的速度,v 表示S'系相对于S系的速度。
2.从S'到S的伽利略变换公式:
设一个在S'系中以速度u'运动的物体,在S系中的速度为u,则有如下关系:
u=u'+v
其中,u表示物体在S系中的速度,u'表示物体在S'系中的速度,v 表示S'系相对于S系的速度。
伽利略变换公式是经典力学中描述参考系之间运动变换的重要工具。
它在解决具有区分静止参考系和运动参考系的力学问题时,提供了便利和简化。
但是在高速运动和极端条件下,相对论效应会对运动的描述产生影响,此时就需要使用相对论中的洛伦兹变换。
总结起来,伽利略变换公式是描述在牛顿力学下,相对参考系之间运动变换的公式。
它适用于低速运动的物体,对于高速运动的物体需要考虑
相对论效应。
伽利略变换公式提供了简便的方法来描述参考系之间的运动关系。