高二数学选修2-1测试题及答案
- 格式:doc
- 大小:604.27 KB
- 文档页数:12
常用逻辑用语一、选择题1.命题“如果x≥a 2+b 2,那么x≥2ab”的逆否命题是( ) A .如果x<a 2+b 2,那么x<2ab B .如果x≥2ab,那么x≥a 2+b 2 C .如果x<2ab,那么x<a 2+b 2 D .如果x≥a 2+b 2,那么x<2ab 2.三角形全等是三角形面积相等的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分又不必要条件 3.下列四个命题中,真命题是( ) A .2是偶数且是无理数 B .8≥10 C .有些梯形内接于圆 D .∀x ∈R,x 2-x+1≠0 4.命题“所有奇数的立方是奇数”的否定是( ) A .所有奇数的立方不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方是偶数 D .不存在一个奇数,它的立方是奇数 二、填空题5.命题“若a=-1,则a 2=-1”的逆否命题是______________________. 6.b=0是函数f(x)=ax 2+bx+c 为偶函数的______________________.7.全称命题“∀a ∈Z,a 有一个正因数”的否定是________________________. 8.特称命题“有些三角形的三条中线相等”的否定是______________________. 9.设p :|5x -1|>4;2210231x x x x ++³-+,则非p 是非q 的______ ___条件.三、解答题10.求证:a+2b=0是直线ax+2y+3=0和直线x+by+2=0互相垂直的充要条件.11.已知集合A={x|x 2-3x+2=0},B={x|x 2-mx+2=0},若A 是B 的必要不充分条件,求实数m 范围.12.给定两个命题,P :对任意实数x 都有012>++ax ax 恒成立;Q :关于x 的方程02=+-a x x 有实数根;如果P 与Q 中有且仅有一个为真命题,求实数a 的取值范围.常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4; q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).常用逻辑用语答案1-4 CACC5.如果a 2≠1,那么a≠-1 6.充分必要条件 7.∃a 0∈Z,a 0没有正因数 8.每个三角形的三条中线不相等 9.即不充分也不必要10.充分性:当b=0时,则a=0,此时两直线分别垂直坐标轴,显然垂直;当b≠0时,两直线的斜率分别是k 1=-a 2,k 2=-1b ,由a+2b=0,k 1⋅k 2=(-a 2-1b)=-1,两直线互相垂直.必要性:如果两直线互相垂直且斜率存在,则k 1⋅k 2=(-a 2)(-1b)=-1,∴a+2b=0;如果两直线中有直线的斜率不存在,且互相垂直,则b=0,且a=0,∴a+2b=0. 11、A={1,2},A 是B 的必要不充分条件,即B ⊂≠A .所以B=Φ、B={1}或{2},当B=φ时,△=m 2-8<0,∴22m 22<<-. 当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解.综上所述22m 22<<-.12.解:P 真:对任意实数x 都有012>++ax ax 恒成立⇔a=0或⎩⎨⎧a>0∆<0⇔0≤a<4;q 真:关于x 的方程02=+-a x x 有实数根⇔1-4a≥0⇔a≤14;如果P 正确,且Q 不正确,有0≤a<4,且a>14,∴14<a<4;如果Q 正确,且P 不正确,有a<0或a≥4,且a≤14,∴a<0.所以a ∈(-∞,0)∪(14,4).圆锥曲线练习题一.选择题1.若椭圆经过原点,且焦点分别为12(1,0),(3,0)F F ,则其离心率为( ) A.34 B.23 C.12 D.142.过抛物线y 2=4x 的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB|等于( )A.10B.8C.6D.43.若双曲线x 24+y2k1的离心率(1,2)e ∈,则k 的取值范围是( )A.(),0-∞B.()3,0-C.()12,0-D.()60,12-- 4.与y 轴相切且和半圆x 2+y 2=4(0≤x ≤2)内切的动圆圆心的轨迹方程是( ) A.()()24101y x x =--<≤ B.()()24101y x x =-<≤C.()()24101y x x =+<≤ D.()()22101yx x =--<≤5.过点M(-2,0)的直线L 与椭圆2222x y +=交于12,P P 两点,设线段12P P 的中点为P ,若直线l 的斜率为11(0)k k ≠,直线OP 的斜率为2k ,则12k k 等于( )A.2-B.2C.12D.-126.如果方程x 2-p +y2q =1表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是( )A.2212xyq pq+=+ B.2212xyq pp+=-+ C.2212xyp qq+=+ D.2212xyp qp+=-+二.填空题7.椭圆x 212+y 23=1的焦点分别是12F ,F ,点P 在椭圆上,如果线段1P F 的中点在y 轴上,那么1PF 是2PF 的 倍.8.椭圆x 245+y 220=1的焦点分别是12F ,F ,过原点O 做直线与椭圆交于A ,B 两点,若∆ABF 2的面积是20,则直线AB 的方程是 .9.与双曲线2244x y -=有共同的渐近线,并且经过点(2的双曲线方程是10.已知直线y=kx+2与双曲线x 2-y 2=6的右支相交于不同的两点,则k 的取值范围是 .三.解答题11.抛物线y=-12x 2与过点M(0,-1)的直线L 相交于A ,B 两点,O 为原点,若OA 和OB 的斜率之和为1,求直线L 的方程.12.已知中心在原点,一焦点为F(0,50)的椭圆被直线:32l y x =-截得的弦的中点横坐标为12,求此椭圆的方程.13.21,F F 是椭圆x 29+y27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45︒,求∆12AF F 的面积.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题11. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.12. 解:设所求的椭圆为x 2a 2+y2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.圆锥曲线练习题答案一.选择题:CBCADD 二.填空题:7. 7倍 8.y=±43x 9. y 24x 216=1 10.-153<k<-1三.解答题13. 解:斜率不存在不合题意,设直线1y kx =-代入抛物线得2220x kx +-=2480k =+> 有k ∈R 设点1122(,),(,)A x y B x y 则y 1x 1+y 2x 2=1,由根与系数关系,解得直线方程1y x =-.14. 解:设所求的椭圆为x 2a 2+y 2b2=1,则222c a b =-=50椭圆与直线联立有()222222(9)1240a b x b x b a +-+-=,由已知x 1+x 22=12,根与系数关系带入得223a b =解得a 2=75,b 2=25.所以所求椭圆方程为y 225+x 275=1.13.解:1212216,6F F AF AF AF AF =+==-222022112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+2211117(6)48,,2A F A F A F A F -=-+=1772222S =⨯⨯=.空间向量练习题一.选择题1.直棱柱ABC -A 1B 1C 1中,若CA →=a →,CB →=b →,CC 1→=c →,则A 1B →=( )A .a →+b →-c →B .a →-b →+c →C .-a →+b →+c →D .-a →+b →-c →2.已知A ,B ,C 三点不共线,对平面ABC 外的任意一点O ,下列条件中能确定点M 与A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → C .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13→D .OM →=13OA →+13OB →+13OC →3.若向量m →同时垂直向量a →和b →,向量n →=λa →+μb →(λ,μ∈R, λ,μ≠0),则( )A .m →∥n →B .m →⊥n → C.m →与n →不平行也不垂直 D .以上均有可能 4.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间一个基底,则{a →+b →,b →+c →,c →+a →}构成空间的另一个基底 C .|(a →⋅b →)c →|=|a →|⋅|b →|⋅|c →|D .∆ABC 为直角三角形的充要条件是AB →⋅AC →=05.已知a →=(λ+1,0,2λ),b →=(6,2μ-1,2),a →∥b →,则λ和μ的值分别为( ) A .15,12B .5,2C .-15,-12D .-5,-2二.填空题6.若a →=(2,-3,1),b →=(2,0,3),c →=(0,2,2),则a →⋅(b →+c →)=________.7.已知G 是∆ABC 的重心,O 是空间任一点,若OA →+OB →+OC →=λOG →,则λ的值为_______. 8.已知|a →|=1,|b →|=2,<a →,b →>=60︒,则|a →-25(a →+2b →)|=________.三.解答题9.若向量(a →+3b →)⊥(7a →-5b →),(a →-4b →)⊥(7a →-2b →),求a →与b →的夹角.10.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试求实数λμν,,,使4123a a a a λμν=++成立.11.正三棱柱111-ABC A B C 的底面边长为a ,求1AC 与侧面11ABB A 所成的角. 12.在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x ,1,2).依题意πcos 422=⇒=.2x =-∴2x =+.2AE =-∴空间向量练习题答案一.选择题 DDBBA二.填空题 6.3 7.3 8.65三.解答题9.由已知向量垂直列方程,解得a →2=b →2=2a →⋅b →,∴cos<a →,b →>=12,∴a →与b →夹角为60︒.10.由4123a a a a λμν=++成立,可建立方程组,解得213v λμ=-==-,,.11.以A 为原点,分别以CA →,AB →,AA 1→为x,y ,z 轴建立空间直角坐标系,则A(0,0,0),B(0,a,0),A 1(0,0,2a),C 1(-32a,12a,2a),由于n →=(-1,0,0)是面11ABB A 的法向量,计算得cos<AC 1→,n →>=12,∴<AC 1→,n →>=60︒.故1AC 与侧面11ABB A 所成的角为30︒.12.设A E x =,以D 为原点,分别以DA →,DC →,DD 1→为x y z ,,轴建立空间直角坐标系,可求得平面1D EC 的法向量为n →=(2-x,1,2).依题意πcos 422=⇒=2x =-∴2x =+.2AE =-∴。
高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
假。
7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。
10.略。
11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。
改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。
这是错误的。
7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。
10.略。
11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。
④“ x > 2 ”是“ 1 4.由直线 x = 12 D . 15B . 2 ln 2高中数学选修2-1、2-2 综合试题班级-------------姓名-----------得分-----------一、 选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.复数 z 的虚部记作 Im (z ),若 z= 5 1 + 2i,则 Im ( z )=( )A .2B . 2iC .-2D .-2i2.考察以下列命题:①命题“ lg x = 0, 则x=1 ”的否命题为“若 lg x ≠ 0, 则x ≠ 1 ”②若“ p ∧ q ”为假命题,则 p 、q 均为假命题③命题 p : ∃x ∈ R ,使得 s in x > 1 ;则 ⌝p : ∀x ∈ R ,均有 sin x ≤ 11< ”的充分不必要条件x 2则真命题的个数为( ) A .1 B .2C .3D .43.在平行六面体 ABCD - A B C D 中, M 为 A C 与 B D 的交点。
1 1 111 111若 AB = a , AD = b , AA = c 则与 BM 相等的向量是()11 1 1 1A . - a + b + cB . a + b + c2 2 2 2A1DD1 C1 MB1 C1 1 1 1C . - a - b + cD . a - b + c2 2 2 2A B1 , x = 2, 曲线 y = - 及轴所围图形的面积为 ( )2 xA .- 2ln 2 C . 1 ln 2 45.已知抛物线 y 2 = 2 px( p > 0) 上有一点 M (4,y ),它到焦点 F 的距离为 5,则 ∆OFM 的面积(O 为原点)为()A .1B .2C . 2D . 2 26.用火柴棒摆“金鱼”,如图所示:…①②③7.在正三棱柱ABC-A B C中,若AB=2B B,则AB与C B所成角的大小为()②实数a,b,有(a+b)2=a2+2ab+b2;类比向量a,b,有(a+b)2=a+2a⋅b+b按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()A.6n+2B.6n-2C.8n+2D.8n-2111111A.60°B.75°C.105°D.90°8.给出下面四个类比结论()①实数a,b,若ab=0则a=0或b=0;类比向量a,b,若a⋅b=0,则a=0或b=022③向量a,有a2=a2;类比复数z,有z2=z2④实数a,b有a2+b2=0,则a=b=0;类比复数z,z有z2+z2=0,则212z=z=012其中类比结论正确的命题个数为()A.0B.1C.2D.39.已知抛物线=2px(p>1)的焦点F恰为双曲线(a>0,b>0)的右焦点,且两曲线的交点连线过点F,则双曲线的离心率为()A.2B.2C.2+1D.2+210.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径()A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C二、填空题(每小题5分,共20分。
绝密★启用前高中数学选修2-1第一章检测题试卷副标题考试范围:XXX ;考试时间:100分钟;命题人:XXX学校:__________姓名:__________班级:__________考号:__________ 题号 一 二 三 总分 得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上评卷人 得分一、单项选择(注释)1、条件x x p =|:|,条件x x q -≥2:,则p 是q 的( )A .充分不必要条件B .必要不充分条件充要条件 D .既不充分又不必要条件2、命题“21,11x x <<<若则-”的逆否命题是( )A.21,1,1x x x ≥≥≤-若则或 B.若11<<-x ,则12<x C.若1x >或1x <-,则12>x D.若1x ≥或1x ≤-,则12≥x 3、下列命题中是全称命题的是( )A .圆有内接四边形B .23>C .23<D .若三角形的三边长分别为3、4、5,则这个三角形为直角三角形 4、在ABC ∆中,“A B =”是“sin sin A B =”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5、命题“对任意的2,310x R x x ∈-+≤”的否定是( ) 2000,310x R x x ∈-+≤2000,310x R x x ∈-+≤2000,310x R x x ∈-+>2,310x R x x ∈-+> 6、已知命题p :若(x -1)(x -2)≠0,则x≠1且x≠2;命题q :存在实数x 0,使2x 0<0.下列选项中为真命题的是( )A .⌝pB .qC .⌝p ∨qD .⌝q ∧p 7、)下列说法错误的是( )A .如果命题“⌝p ”与命题“p ∨q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:“若a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,x 02+2x 0-3<0,则?p :∀x ∈R ,x 2+2x -3≥0D .“sin θ=12”是“θ=30°”的充分不必要条件 8、“1k =-”是“两直线320kx y +-=和(2)70k x y -+-=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件9、在∆ABC 中,a B sin <bAsin 是A >B 成立的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分又不必要条件 10、有下列四个命题:①“若xy=1,则x 、y 互为倒数”的逆命题; ②“面积相等的三角形全等”的否命题; ③“若022=+-m x x 有实根则1≤m ”; ④“若B A B B A ⊆=则, ”的逆否命题.其中真命题个数为( ).3 D .4评卷人 得分二、填空题(注释)11、已知x y R ∈、,那么命题“若x y 、中至少有一个不为0,则220x y +≠.”的逆否命题是 .12、已知命题p :220R x x ax a ∃∈++≤,,则命题p 的否定是_________;若命题p 为假命题,则实数a 的取值范围是___________.13、已知命题p :?x ∈[1,2],x 2-a ≥0,命题q :?x ∈R ,x 2+2ax +2-a =0,若“p 且q ” 为真命题,则实数a 的取值范围是______________.14、给出下列命题:(1)命题:“若b 2-4ac<0,则方程ax 2+bx +c =0(a ≠0)无实根”的否命题; (2)命题“△ABC 中,AB =BC =CA ,那么△ABC 为等边三角形”的逆命题; (3)命题“若a>b>0,则>>0”的逆否命题;(4)“若m>1,则mx 2-2(m +1)x +(m -3)>0的解集为R ”的逆命题. 其中真命题的个数为____________.评卷人 得分三、解答题(注释)15、写出下列命题的否定,并判断真假. (1)q:∀x ∈R ,x 不是5x-12=0的根; (2)r:有些质数是奇数; (3)s:∃x ∈R ,|x|>0.16、设命题p :“若0a ≥,则20x x a +-=有实根”. (1)试写出命题p 的逆否命题;(2)判断命题p 的逆否命题的真假,并写出判断过程. 17、已知全集U=R ,非空集合{23x A x x -=-<}0,{()()22B x x a x a =---<}0. (1)当12a =时,求()U C B A ⋂; (2)命题:p x A ∈,命题:q x B ∈,若q 是p 的必要条件,求实数a 的取值范围.18、已知命题p:(x+1)(x-5)≤0,命题q:m x m +≤≤-11(1)若p 是q 的必要条件,求实数m 的取值范围;(2)若m=5,“p q ∨ ”为真命题,“p q ∧ ”为假命题,求实数x 的取值范围。
第三章 空间向量与立体几何空间向量的数乘运算 测试题姓名:_________班级:________ 得分:_______ 1. 下列命题中不正确的命题个数是( )①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 与不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 与b 所在直线平行。
A .1B .2C .3D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且P A ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 与1CD 所形成角的余弦值为( ) A .1010 B . 15 C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的_ C _ D _ A _ P_ N _ B_ M3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.;221111111①(A A+A D +A B )=3(A B )()0;C ⋅-=1111②A A B A A 60;︒11向量与向量的夹角为AD A B ③ ⋅⋅11111立方体ABCD-A B C D 的体积为|AB AA AD |;④4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ; (2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a =-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( ) A .可构成直角三角形 B .可构成锐角三角形 C .可构成钝角三角形 D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( )A .[0,5]B .[1,5]C .(1,5)D .[1,25] 4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 . 5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1与侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=C 1 B 1 A 1B A2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ; (2)求1C 到平面1A AB 的距离; (3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,13AC AA ==,∠ABC =60°. (1)证明:1AB A C ⊥;(2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面P AC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量与立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算§3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-.∵1122EN CD BA ===12AB -,CBA C 1B 1 A1 D 1C 1B 1A 1DABC_ C_ D_ A_S_ F_ B_ P_ N_ EEN PM PE =-=211326PC PC PC -=,连结AC ,则PC AC AP AB AD AP =-=+- ∴11()26MN AB AB AD AP =--+-=211366AB AD AP --+,∴211,,366x y z =-=-=.§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ;(2)1,2,CD x CD CC ==1设则 2CC =x, 111,BD AA C C BD A C ⊥∴⊥ 面 ,11:0x AC CD ∴⋅= 只须求满足, 设1,,A A a AD b DC c ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-, 令24260x x+-=,则2320x x --=,解得1x =,或23x =-(舍去),111,.A C C BD ∴=⊥1CD时能使平面CC §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.A2.D3.B4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1 则有1(,0,0)2MC =-(0,,0)AB a=,1)AA =, ∴10MC AB ⋅=,110MC AA ⋅=,所以,MC 1⊥平面ABB 1A 1.因此,AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角.1(,)2a AC =-,(0,)2aAM =,A∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°.∴AC 1与侧面ABB 1A 1所成的角为30°.3.2立体几何中的向量方法1.A2.C3.(1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥, 所以DE AC ⊥,又1A D ⊥平面ABC , 以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()10,0,A t ,()10,2,C t ,()10,3,AC t =,()12,1,BA t =--,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得3t = 设平面1A AB 的法向量为(),,n x y z =,(13AA =,()2,2,0AB =,所以130220n AA y z n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,3,1n =-, 所以点1C 到平面1A AB 的距离1AC n d n⋅==221. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,3CA =-,()2,0,0CB =, 所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =, 故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向, 可知二面角1A A B C --7. 4.(1)三棱柱111ABC A B C -为直三棱柱,11AB AA AC AA ∴⊥⊥,,Rt ABC ∆,1,3,60AB AC ABC ==∠=︒,由正弦定理030ACB ∠=.090BAC ∴∠=AB AC ⊥即 .如右图,建立空间直角坐标系,则 1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A1(1,0,0),(0,3,3)AB AC ∴==, 110030(3)0AB AC ⋅=⨯+⨯+⨯-=, 1AB A C ∴⊥.(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量, 设平面1A BC 的法向量为(,,)n l m n =, 则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 303,330l m l m n m m n ⎧-+=⎪∴∴==⎨-=⎪⎩. 不妨取1,(3,1,1)m n ==则,22222231101015cos ,5(3)11100m n m n m n ⋅⨯+⨯+⨯<>===⋅++⋅++.1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)2SD a =-,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. _ C_ A_S_ F_ BO(2)由题设知,平面PAC 的一个法向量(,0,)22DS a a =,平面DAC 的一个法向量002OS =(,,),设所求二面角为θ,则cos 2OS DS OS DSθ⋅==,得所求二面角的大小为30°. (3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且,0,),(0,,)2222DS a a CS a a ==-(.设,CE tCS = 则(,(1),)222BE BC CE BC tCS a t at =+=+=--,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面.(完)。
(数学选修(数学选修2-12-1)第一章)第一章)第一章 常用逻辑用语常用逻辑用语常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c f ++<¹”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个 C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +¹” D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a Î<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p Ø是q Ø的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ×不为零,则,a b 都不为零”的逆否命题是 。
2.12:,A x x 是方程20(0)ax bx c a ++=¹的两实数根;12:b B x x a +=-,则A 是B 的 条件。
数学选修2-1空间向量及其运算练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 在棱长为1的正方体ABCD −A 1B 1C 1D 1中,点E 为底面A 1B 1C 1D 1内一动点,则EA →⋅EC →的取值范围是( ) A.[12,1] B.[0,1] C.[−1,0]D.[−12,0]2. 已知向量a →=(3, 5, −1),b →=(2, 2, 3),c →=(1, −1, 2),则向量a →−b →+4c →的坐标为( ) A.(5, −1, 4) B.(5, 1, −4) C.(−5, 1, 4) D.(−5, −1, 4)3. 已知空间三点坐标分别为A (1,1,1),B (0,3,0),C (−2,−1,4),点P(−3,x,3)在平面ABC 内,则实数x 的值为( ) A.1 B.−2 C.0 D.−14. 如图,在四面体ABCD 中,设G 是CD 的中点,则AB →+12(BD →+BC →)等于( )A.AD →B.BG →C.CD →D.AG →5. 已知{a →, b →, c →}是空间的一组单位正交基底,而{a →−b →, c →, a →+b →}是空间的另一组基底.若向量p →在基底{a →, b →, c →}下的坐标为(6, 4, 2),则向量p →在基底{a →−b →, c →, a →+b →}下的坐标为( ) A.(1, 2, 5) B.(5, 2, 1) C.(1, 2, 3) D.(3, 2, 1)6. 若a →=(2, −3, 1),b →=(2, 0, 3),c →=(0, 2, 2),则a →⋅(b →+c →)=( ) A.4 B.15 C.7 D.37. 已知a →,b →是空间两个向量,若|a →|=|b →|=2,|a →−b →|=√7,则cos ⟨a →,b →⟩=( ) A.18B.14C.12D.18. 已知正方体ABCD −A 1B 1C 1D 1,点P ,Q 为线段B 1B ,AB 上的动点,下列命题正确的是( )A.(A 1A →+A 1D 1→+A 1B 1→)2=3A 1B 1→2B.A 1C →⋅(A 1B 1→−A 1A →)=0C.若AC 1→=xAB →+2yBC →+3zC 1C →,则x +y +z =75 D.对任意给定的点Q ,存在点P ,使得CP ⊥D 1Q9. 已知正四面体ABCD 的棱长为1,O 是该正四面体外接球球心,且AO →=xAB →+yAC →+zAD →,x ,y ,z ∈R ,则x +y +z =( ) A.34 B.13C.12D.1410. 下列命题正确的是( )A.a →|−|b →|<|a →+b →|是向量a →,b →不共线的充要条件B.在空间四边形ABCD 中,AB →⋅CD →+BC →⋅AD →+CA →⋅BD →=0 C.在棱长为1的正四面体ABCD 中,AB →⋅BC →=12D.设A ,B ,C 三点不共线,O 为平面ABC 外一点,若OP →=13OA →+23OB →+OC →则P ,A ,B ,C 四点共面11. 已知a →=(x, −2, 6),b →=(2, −1, 3),a → // b →,则x =________.12. 已知正方体ABCD −A 1B 1C 1D 1,点E ,F 分别是上底面A 1C 1和侧面CD 1的中心,求下列各式中的x ,y 的值:(1)AC 1→=x(AB →+BC →+CC 1→),则x =________;(2)AE →=AA 1→+xAB →+yAD →,则x =________,y =________;(3)AF →=AD →+xAB →+yAA 1→,则x =________,y =________.13. 在长方体ABCD −A 1B 1C 1D 1中,化简:DA →−DB →+B 1C →−B 1B →+A 1B 1→−A 1B →=________.14. 如图,在四边形ABCD 中,DC →=13AB →,E 为BC 的中点,且AE →=x ﹒AB →+y ⋅AD →,则3x −2y =________.15. 设点C(2a +1, a +1, 2)在点P(2, 0, 0),A(1, −3, 2),B(8, −1, 4)所确定的平面上,则a =________.16. 已知向量a →=(3,5,0),b →=(1,2,−1),则|a →−2b →|等于________.17. 已知点A(1, −2, 11)、B(4, 2, 3),C(6, −1, 4),则△ABC 中角C 的大小是________.18. 如图,在三棱锥D −ABC 中,已知AB =AD =2,BC =1,AC →⋅BD →=−3,则CD =________.19. 已知扇形AOB ,点C 在弧AB 上(异于A ,B 两点),线段AB 与OC 交与点M ,设OC →=tOA →+3tOB →(t ≠0),AM →=mAB →(m ≠0),则m =________.20. 设a →=(2, 2m −3, n +2),b →=(6, 2m −1, 4n −2),且a → // b →,则m +n =________.21. 已知点A(1, −2, 0)和a →=(−3, 4, 12),求点B 的坐标,使AB → // a →,且|AB|等于|a →|的2倍.22. 已知正方体ABCD −A ′B ′C ′D ′的边长为a . (1)求AC →⋅AA ′→; (2)求AC →⋅A ′C ′→;(3)求AC →⋅AC ′→.23. 已知向量a →=2e →1−3e →2,b→=2e →1+3e →2,其中e →1、e →2不共线,向量c →=2e →1−9e →2.问是否存在这样的实数λ、μ,使向量d→=λa →+μb →与c →共线?24. 已知向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,他们的坐标各有什么特点?25. 已知向量a →=(−2, −1, 2),b →=(−1, 1, 2),c →=(x, 2, 2).(1)当|c →|=2√2时,若向量ka →+b →与c →垂直,求实数x 和k 的值;(2)若向量c →与向量a →,b →共面,求实数x 的值.26. 如图,在正四棱锥P −ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.(1)设AB →=a →,AD →=b →,AP →=c →,用a →,b →,c →表示向量BM →;(2)在如图的空间直角坐标系中,求向量BM →的坐标.27. 如图,在棱长为a 的正方体A 1B 1C 1D 1−ABCD 中,(1)作出面A 1BC 1与面ABCD 的交线l ,判断l 与直线A 1C 1位置关系,并给出证明;(2)证明B 1D ⊥面A 1BC 1;(3)求直线AC 到面A 1BC 1的距离;(4)若以A 为坐标原点,分别以AB ,AD ,AA 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,试写出C ,C 1两点的坐标.28. 如图,在平行六面体ABCD −A 1B 1C 1D 1中,AB =5,AD =3,AA 1=4,∠DAB =90∘,∠BAA 1=∠DAA 1=60∘,E 是CC 1的中点,设AB →=a →,AD →=b →,AA 1→=c →.(1)用a →,b →,c →表示AE →;(2)求AE 的长?29. 设空间向量a →=(3, 5, −4),b →=(2, 1, 8).(1)计算2a →+3b →,3a →−2b →,a →⋅b →的值,并求a →与b →所成角的余弦值;(2)当λ、μ,满足什么条件时,使得λa →+μb →与z 轴垂直.30. 如图,在正方体ABCD −A 1B 1C 1D 1中,点E 是上底面A 1C 1 的中心,化简下列向量表达式,并在图中标出化简结果的向量.(1)AB →+BC →−C 1C →;(2)12AB →−12DA →−A 1A →.31. 已知长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,求其中x ,y ,z 的值.(1)AC 1→=xAB →+yBC →+zCC 1→;(2)AE →=xAB →+yBC →+zCC 1→;(3)AF →=xBA →+yBC →+zC 1C →.32. 如图所示,在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点.(1)化简:A 1O →−12AB →−12AD →;(2)设E 是棱DD 1上的点,且DE →=23DD 1→,若EO →=xAB →+yAD →+zAA 1→,试求实数x ,y ,z 的值.33. 已知长方体ABCD −A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点.求下列向量的数量积: (1)BC →⋅ED 1→;(2)BF →⋅AB 1→.34. 在平行六面体ABCD −A 1B 1C 1D 1中,AB =1,AD =2,AA 1=3,∠BAD =90∘,∠BAA 1=∠DAA 1=60∘.若AB →=a →,AD →=b →,AA 1→=c →(1)用基底{a →,b →,c →}表示向量BM →;(2)求向量AC 1→的长度.35. 如图,在三棱柱ABC −A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,△A 1AC 为等边三角形,AC ⊥A 1B .(1)求证:AB =BC ;(2)若∠ABC =90∘,求A 1B 与平面BCC 1B 1所成角的正弦值.36. 三棱柱ABC −A 1B 1C 1中,M 、N 分别是A 1B 、B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N .设AB →=a →,AC →=b →,AA 1→=c →.(1)试用a →,b →,c →表示向量MN →;(2)若∠BAC =90∘,∠BAA 1=∠CAA 1=60∘,AB =AC =AA 1=1,求MN 的长.37. 已知六边形ABCDEF 的三对对边都互相平行,并且FC →=2AB →=2DE →,又设AB →=α→,BC →=β→,求CE →和CD →.38. 已知PA 垂直于正方形ABCD 所在平面,M ,N 分别是AB ,PC 的中点,并且PA =AD =1,求MN →,DC →的坐标.39. 若M 、A 、B 三点不共线,且存在实数λ1,λ2,使MC →=λ1MA →+λ2MB →,求证:A 、B 、C 三点共线的充要条件是λ1+λ2=1.40. 如图所示,在各个面都是平行四边形的四棱柱ABCD −A 1B 1C 1D 1中,P 是CA 1的中点,M 是CD 1的中点,N 是C 1D 1的中点,点Q 在CA 1上,且CQ:QA 1=4:1,设AB →=a ,AD →=b ,AA 1→=c ,用基底{a, b, c}表示以下向量:(1)AP →;(2)AM →;(3)AN →;(4)AQ →.参考答案与试题解析数学选修2-1空间向量及其运算练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 A【考点】 空间向量向量的概念与向量的模【解析】 此题暂无解析 【解答】解:如图,以D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴, 以DD 1 所在的直线为x 轴,建立空间直角坐标系,可得点A(1,0,0),C(0,1,0) 设点E 的坐标为(x,y,1),则0≤x ≤1,0≤y ≤1 ∴ EA →=(1,−x,−y −1), EC →=(−x,1−y,−1),EA →⋅EC →=−x(1−x)−y(1−y)+1=x 2−x +y 2−y +1=(x −12)2+(y −12)2+12. 由二次函数的性质可得,当x =y =12时,EA →⋅EC →.取得最小值12,当x =0或x =1,且y =0或y =1时,EA →⋅EC →取得最大值1, 因此EA →⋅EC →的取值范围是[12,1],故选A .2. 【答案】A【考点】空间向量运算的坐标表示【解析】直接利用空间向量的坐标运算求解即可.【解答】解:向量a →=(3, 5, −1),b →=(2, 2, 3),c →=(1, −1, 2),则向量a →−b →+4c →=(3, 5, −1)−(2, 2, 3)+4(1, −1, 2)=(5, −1, 4),故选:A .3.【答案】A【考点】空间向量的基本定理及其意义【解析】利用点P (−3,x ,3)在平面ABC 内,得到AP →=mAB →+nAC →,利用向量的坐标运算和空间向量基本定理求解即可.【解答】解:点P (−3,x ,3)在平面ABC 内,则AP →=mAB →+nAC →,即(−4,x −1,2)=m (−1,2,−1)+n (−3,−2,3),所以−4=−m −3n ,x −1=2m −2n ,2=−m +3n ,解得m =1,n =1,x =1,故选:A .4.【答案】D【考点】空间向量的加减法【解析】先求出则12(BD →+BC →)=BG →,根据向量的加法运算法则计算即可.【解答】解:∵ G 是CD 的中点,∴ AB →+12(BD →+BC →)=AB →+BG →=AG →,故选:D .5.【答案】A【考点】空间向量【解析】设向量p →在基底{a →−b →, c →, a →+b →}下的坐标为(x, y, z),由p →=6a →+4b →+2c →=x(a →−b →)+yc →+z(a →+b →),列出方程组,求出x ,y ,z 的值即可.【解答】解:设向量p →在基底{a →−b →, c →, a →+b →}下的坐标为(x, y, z),可得p →=6a →+4b →+2c →=x(a →−b →)+yc →+z(a →+b →),所以:{6=x +z4=−x +z 2=y∴ x =1,y =2,z =5故选:A .6.【答案】D【考点】空间向量的数量积运算空间向量运算的坐标表示【解析】先求出 b →+c →,再利用空间向量的数量积公式 a →=(x 1,y 1,z 1),b →=(x 2,y 2,z 2),a →⋅b →=x 1⋅x 2+y 1y 2+z 1z 2求出a →⋅(b →+c →).【解答】解:∵ b →=(2, 0, 3),c →=(0, 2, 2),∴ b →+c →=(2, 2, 5),∴ a →⋅(b →+c →)=2×2+(−3)×2+1×5=3,故选D .7.【答案】A【考点】空间向量的数乘运算【解析】此题暂无解析【解答】此题暂无解答8.【答案】A,B,D【考点】空间向量运算的坐标表示空间向量的数量积运算空间向量的加减法命题的真假判断与应用棱柱的结构特征【解析】此题暂无解析【解答】解:建立如图的空间直角坐标系,设正方体ABCD −A 1B 1C 1D 1的棱长为1,则A(0,0,1),C(1,1,1),A 1(0,0,0),B 1(0,1,0),C 1(1,1,0),D 1(1,0,0),所以A 1A →=(0,0,1),A 1D 1→=(1,0,0),A 1B 1→=(0,1,0),A 1C →=(1,1,1),AD →1=(1,0,−1), (A 1A →+A 1D 1→+A 1B 1→)2=(1,1,1)2=3=3A 1B 1→2,A 正确; A 1C →⋅(A 1B 1→−A 1A →)=(1,1,1)⋅(0,1,−1)=0,B 正确;AC 1→=AB →+BC →+CC 1→=AB →+BC →−C 1C →=xAB →+2yBC →+3zC 1C →,解得x =1,y =12,z =−13,则x +y +z =76,C 错误;当点P 与B 1重合时,CP ⊥AB 且CP ⊥AD 1,所以CP ⊥平面ABD 1,因为对于任意给定的点Q ,都有D 1Q ⊂平面ABD 1,所以对于任意给定的点Q ,存在点P ,使得D 1Q ⊥CP ,D 正确.故选ABD .9.【答案】A【考点】棱锥的结构特征空间向量的数乘运算空间向量【解析】 根据正四面体的性质求出棱锥的高,根据等体积法求出内切球的半径,建立坐标系,求出各向量的坐标,代入坐标运算即可解出.【解答】解:设正四面体的高为AM ,延长DM 交BC 于E ,则E 为BC 的中点.∴ DE =√32,DM =23DE =√33, ∴ AM =√AD 2−DM 2=√63, 设内切球半径为r,则V A−BCD =13S △BCD ⋅AM =4×13×S BCD ⋅r ,∴ r =AM4=√612,∴ OM =√612, 以M 为原点,建立如图所示的空间坐标系M −xyz ,则A (0,0,√63),B (12,−√36,0),C (−12,−√36,0), D (0,√33,0),O (0,0,√612) ∴ AO →=(0,0,−√64),AB →=(12,−√36,−√63), AC →=(−12,−√36,√63),AD →(0,√33,√63), AO →=xAB →+yAC →+zAD → { 12x −12y =0−√36x −√36y +√33z =0−√63x −√63y −√63z =−√64, 解得x =y =z =14. ∴ x +y +z =34. 故选A .10.【答案】B【考点】空间向量的基本定理及其意义空间向量的数量积运算共线向量与共面向量【解析】本题考查了空间向量的有关命题,根据向量共线,共面定理,向量数乘运算即可依次判断.【解答】解:若a →,b →为非零的同向向量,则|a →|−|b →|<|a →+b →|,故A 错;在空间四边形中,AB →⋅CD →+BC →⋅AD →+CA →⋅BD →=−BA →⋅(BD →−BC →)+BC →⋅(BD →−BA →)+BD →⋅(BA →−BC →)=−BA →⋅BD →+BA →⋅BC →+BC →⋅BD →−BC →⋅BA →+BD →⋅BA →−BD →⋅BC →=0,故B 正确;在棱长为1的四面体中,AB →⋅BC →=1⋅1⋅cos (π−∠ABC)=−cos ∠ABC ,不一定为12,故C 错;若A ,B ,C 三点不共线,P 与之共面,则OP →=tOA →+mOB →+nOC →,满足t +m +n =1, 而13+23+1≠1,故P ,A ,B ,C 不共面,故D 错误.故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】4【考点】共线向量与共面向量【解析】根据所给的两个向量的坐标和两个向量之间的平行关系,写出向量平行的坐标形式的充要条件,解方程即可.【解答】解:∵ a →=(2, −1, 3),b →=(2, −1, 3),a → // b →∴ x 2=−2−1=63∴ x =4故答案为:412.【答案】112,1212,12【考点】空间向量的数乘运算空间向量的加减法【解析】(1)根据向量加法的首尾相连法则求解;(2)由向量加法的三角形法则和四边形法则得AE →=AA 1→+A 1E →和A 1E →=12(A 1B 1→+A 1D 1→),再由向量相等求解;(3)由向量加法的三角形法则和四边形法则得AF →=AD →+DF →和DF →=12(DC →+DD 1→),再由向量相等求解.【解答】解:(1)根据向量加法的首尾相连法则,x =1;(2)由向量加法的三角形法则得,AE →=AA 1→+A 1E →,由四边形法则和向量相等得,A 1E →=12(A 1B 1→+A 1D 1→)=12(AB →+AD →); ∴ AE →=AA 1→+12AB →+12AD →,∴ x =y =12;(3)由向量加法的三角形法则得,AF →=AD →+DF →,由四边形法则和向量相等得,DF →=12(DC →+DD 1→)=12(AB →+AA 1→);∴ AF →=AD →+12AB →+12AA 1→,∴ x =y =12.13.【答案】BD 1→【考点】空间向量的加减法【解析】根据向量的加减的运算法则即可求出.【解答】解:长方体ABCD −A 1B 1C 1D 1中,如图,DA →−DB →+B 1C →−B 1B →+A 1B 1→−A 1B →=BA →+BC →+BB 1→=BD →+BB 1→=BD 1→, 故答案为:BD 1→,14.【答案】1【考点】向量的线性运算性质及几何意义【解析】利用向量共线定理和向量的三角形法则及其多边形法则即可得出.【解答】解:∵ E 为BC 的中点,∴ BE →=12BC →, 又BC →=BA →+AD →+DC →=−AB →+AD →+13AB →,∴ BE →=12(−23AB →+AD →)=−13AB →+12AD →,∴ AE →=AB →+BE →=AB →−13AB →+12AD →=23AB →+12AD →.而AE →=x ﹒AB →+y ⋅AD →,∴ x =23,y =12.∴ 3x −2y =2−1=1.故答案为:1.15.【答案】16【考点】共线向量与共面向量【解析】利用平面向量基本定理即可得出.【解答】解:由已知,得PA →=(−1, −3, 2),PB →=(6, −1, 4).设PC →=xPA →+yPB →(x ,y ∈R ),则(2a −1, a +1, 2)=x(−1,−3,2)+y(6,−1,4)=(−x +6y,−3x −y,2x +4y),所以{2a −1=−x +6y a +1=−3x −y 2=2x +4y ,解得{x =−7y =4a =16.故答案为:16.16.【答案】 √6【考点】空间向量运算的坐标表示空间向量的数乘运算空间向量的数量积运算【解析】本题考查空间向量的坐标运算及向量的模.【解答】解:a →−2b →=(3,5,0)−2(1,2,−1)=(1,1,2),所以|a →−2b →|=√1+1+4=√6故答案为:√6.17.【答案】90∘【考点】空间向量运算的坐标表示【解析】空间两点P 1(x 1, y 1, z 1),P 2(x 2, y 2, z 2),则P 1、P 2的距离:P 1P 2=√(x 1−x 2)2+(y 1−y 2)2+(z 1−z 2)2,根据这个公式可以计算出AC 、BC 的长度,再用两个向量的夹角公式,得到∠ACB 的余弦,从而得到角C 的大小【解答】解:∵ A(1, −2, 11)、B(4, 2, 3),C(6, −1, 4),∴ |AC →|=√(1−6)2+(−2+1)2+(11−4)2=√75|BC →|=√(4−6)2+(2+1)2+(3−4)2=√14又∵ CA →=(−5,−1,7),CB →=(−2,3,−1)∴ CA →⋅CB →=(−5)×(−2)+(−1)×3+7×(−1)=0可得cos ∠ACB =|CA|→|×|CB →|˙=0∵ ∠ACB ∈(0∘, 180∘)∴ ∠ACB =90∘故答案为90∘18.【答案】 √7【考点】空间向量的数量积运算【解析】用AB →,AD →表示BD →,根据已知条件列方程得出AC ,∠BAC ,∠DAC 的关系,使用等量代换计算CD 2=|AD →−AC →|2.【解答】解:设∠BAC =α,∠DAC =β,∵ |AC →−AB →|=BC →=1,∴ AC 2+AB 2−2AC ⋅AB cos α=1,即AC 2−4AC cos α=−3.∵ AC →⋅BD →=−3,∴ AC →⋅(AD →−AB →)=AC →⋅AD →−AC →⋅AB →=−3,即2AC cos β−2AC cos α=−3,∴ 2AC cos β=2AC cos α−3.∴ CD 2=(AD →−AC →)2=AD →2+AC →2−2AC →⋅AD →=4+AC 2−4AC cos β =4+AC 2−4AC cos α+6=7.∴ CD =√7.故答案为:√7.19.【答案】34【考点】向量的线性运算性质及几何意义【解析】根据条件及向量加法、减法,及数乘的几何意义及其运算便可得到OM →=(1−m)OA →+mOB →,从而有OC →=kOM →=k(1−m)OA →+kmOB →,由平面向量基本定理便得到{k(1−m)=t km =3t,解出m 即可. 【解答】解:如图,OM →=OA →+AM →=OA →+mAB →=OA →+m(OB →−OA →)=(1−m)OA →+mOB →;O ,M ,C 三点共线;∴ 存在实数k ,OC →=kOM →=k(1−m)OA →+mkOB →;又OC →=tOA →+3tOB →;∴ {k(1−m)=t mk =3t; 解得m =34.故答案为:34.20.【答案】10【考点】共线向量与共面向量【解析】利用向量平行的坐标之间的关系解答.【解答】解:∵ a →=(2, 2m −3, n +2),b →=(6, 2m −1, 4n −2),且a → // b →, ∴ 26=2m−32m−1=n+24n−2,解得m =2,n =8;∴ m +n =10;故答案为:10.三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:∵ AB → // a →,∴ 可设AB →=na →=(−3n, 4n, 12n),∵ |a →|=13,∴ |AB →|=|n|⋅|a →|=13|n|∵ |AB →|=2|a →|,13|n|=26,解得n =2或n =−2,当n =2时,OB →=OA →+AB →=(1, −2, 0)+(−6, 8, 24)=(−5, 6, 24), 当n =−2时,OB →=OA →+AB →=(1, −2, 0)+(6, −8, −24)=(7, −10, −24),故B 为(−5, 6, 24)或(7, −10, −24).【考点】空间向量的夹角与距离求解公式共线向量与共面向量【解析】设AB →=na →=(−3n, 4n, 12n),由|AB →|=2|a →|,得n =2或n =−2,由此利用OB →=OA →+AB →,能求出点B 的坐标.【解答】解:∵ AB → // a →,∴ 可设AB →=na →=(−3n, 4n, 12n),∵ |a →|=13,∴ |AB →|=|n|⋅|a →|=13|n|∵ |AB →|=2|a →|,13|n|=26,解得n =2或n =−2,当n =2时,OB →=OA →+AB →=(1, −2, 0)+(−6, 8, 24)=(−5, 6, 24), 当n =−2时,OB →=OA →+AB →=(1, −2, 0)+(6, −8, −24)=(7, −10, −24),故B 为(−5, 6, 24)或(7, −10, −24).22.【答案】解:(1)∵ AA ′⊥平面ABCD ,AC ⊂平面ABCD ,∴ AC ⊥AA ′,∴ AC →⋅AA ′→=0.(2)∵ AC // A ′C ′,∴ AC →⋅A ′C ′→=|AC →|⋅|A ′C ′→|⋅cos 0=√2a ⋅√2a =2a 2. (3)AC →⋅AC ′→=|AC →|⋅|AC ′→|cos ∠C ′AC=√2a ×√3a 2222√2a⋅√3a =2a 2.【考点】空间向量的数量积运算【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD′为z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】解:(1)∵ AA ′⊥平面ABCD ,AC ⊂平面ABCD ,∴ AC ⊥AA ′,∴ AC →⋅AA ′→=0.(2)∵ AC // A ′C ′,∴ AC →⋅A ′C ′→=|AC →|⋅|A ′C ′→|⋅cos 0=√2a ⋅√2a =2a 2. (3)AC →⋅AC ′→=|AC →|⋅|AC ′→|cos ∠C ′AC=√2a ×√3a 2222√2a⋅√3a =2a 2.23.【答案】 解:∵ d →=λ(2e →1−3e →2)+μ(2e →1+3e →2)=(2λ+2μ)e →1+(−3λ+3μ)e →2,若d →与c →共线,则存在实数k ≠0,使d →=kc →,即(2λ+2μ)e →1+(−3λ+3μ)e →2=2ke →1−9ke →2,由{2λ+2μ=2k −3λ+3μ=−9k 得λ=−2μ. 故存在这样的实数λ、μ,只要λ=−2μ,就能使d →与c →共线.【考点】向量的线性运算性质及几何意义【解析】先将向量a →、b →代入表示出向量d →,然后假设共线可得:应有实数k ,使d →=kc →.即可得到λ=−2μ的关系式,从而得到答案.【解答】解:∵ d →=λ(2e →1−3e →2)+μ(2e →1+3e →2)=(2λ+2μ)e →1+(−3λ+3μ)e →2,若d →与c →共线,则存在实数k ≠0,使d →=kc →,即(2λ+2μ)e →1+(−3λ+3μ)e →2=2ke →1−9ke →2,由{2λ+2μ=2k −3λ+3μ=−9k 得λ=−2μ. 故存在这样的实数λ、μ,只要λ=−2μ,就能使d →与c →共线.24.【答案】解:向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,所以向量a →的横坐标不为0,横坐标为0,竖坐标为0;向量b →的横坐标为0,横坐标不为0,竖坐标为0;向量c →的横坐标为0,横坐标为0,竖坐标不为0;【考点】空间向量的正交分解及其坐标表示空间向量【解析】直接利用向量与坐标轴的关系,写出结果即可.【解答】解:向量a →,b →,c →分别平行于x 轴,y 轴,z 轴,所以向量a →的横坐标不为0,横坐标为0,竖坐标为0;向量b →的横坐标为0,横坐标不为0,竖坐标为0;向量c →的横坐标为0,横坐标为0,竖坐标不为0;25.【答案】解:(1)当|c →|=2√2时,√x 2+4+4=2√2,解得x =0,且向量ka →+b →=(−2k −1, 1−k, 2k +2).因为向量ka →+b →与c →垂直,所以(ka →+b →)⋅c →=0,即2(1−k)+2(2k +2)=0,解得k =−3,所以实数x 和k 的值分别为0和−3.(2)因为向量c →与向量a →,b →共面,所以设c →=λa →+μb →(λ,μ∈R),所以(x, 2, 2)=λ(−2, −1, 2)+μ(−1, 1, 2),所以{x =−2λ−μ,2=μ−λ,2=2λ+2μ,解得{x =−12,λ=−12,μ=32, 所以实数x 的值为−12.【考点】向量的线性运算性质及几何意义向量的数量积判断向量的共线与垂直空间向量的数量积运算共线向量与共面向量【解析】(Ⅰ)直接利用向量的垂直的充要条件的应用求出结果.(Ⅱ)直接利用共面向量基本定理的应用求出结果.【解答】解:(1)当|c →|=2√2时,√x 2+4+4=2√2,解得x =0,且向量ka →+b →=(−2k −1, 1−k, 2k +2).因为向量ka →+b →与c →垂直,所以(ka →+b →)⋅c →=0,即2(1−k)+2(2k +2)=0,解得k =−3,所以实数x 和k 的值分别为0和−3.(2)因为向量c →与向量a →,b →共面,所以设c →=λa →+μb →(λ,μ∈R),所以(x, 2, 2)=λ(−2, −1, 2)+μ(−1, 1, 2),所以{x =−2λ−μ,2=μ−λ,2=2λ+2μ,解得{x =−12,λ=−12,μ=32, 所以实数x 的值为−12.26.【答案】解:(1)∵ BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,∴ BM →=AD →+12(AP →−AC →)=AD →+12AP →−12(AB →+AD →) =12AD →+12AP →−12AB → =12b →+12c →−12a →.(2)a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),∵ O(12,12,0),P(12,12,1).∴ c →=AP →=OP →−OA →=(0, 0, 1),∴ BM →=12b →+12c →−12a →=12(0, 1, 0)+12(0, 0, 1)−12(1, 0, 0)=(−12,12,12).【考点】空间向量的基本定理及其意义空间向量【解析】(1)利用向量的三角形法则可得:BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,代入化简即可得出.(2)由于a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),c →=AP →=OP →−OA →=(0, 0, 1),代入即可得出.【解答】解:(1)∵ BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →−AC →,AC →=AB →+AD →,∴ BM →=AD →+12(AP →−AC →)=AD →+12AP →−12(AB →+AD →) =12AD →+12AP →−12AB → =12b →+12c →−12a →.(2)a →=AB →=(1, 0, 0),b →=AD →=(0, 1, 0),∵ O(12,12,0),P(12,12,1).∴ c →=AP →=OP →−OA →=(0, 0, 1),∴ BM →=12b →+12c →−12a →=12(0, 1, 0)+12(0, 0, 1)−12(1, 0, 0) =(−12,12,12).27.【答案】(1)解:在平面ABCD 内过点B 作AC 的平行线BE ,∵ AC // A 1C 1,AC // BE ,∴ BE // A 1C 1,∴ 面A 1BC 1与面ABCD 的交线l 与BE 重合,即直线BE 就是所求的直线l .∵ BE // A 1C 1,l 与BE 重合,∴ l // A 1C 1.(2)证明:连接B 1D 1,∵ A 1B 1C 1D 1是正方形,∴ A 1C 1⊥B 1D 1,∵ A 1C 1⊥DD 1,∴ A 1C 1⊥面DBB 1D 1,∴ A 1C 1⊥B 1D .同理A 1B ⊥面ADC 1B 1,∴ A 1B ⊥B 1D ,∵ A 1C 1∩A 1B =A 1,∴ B 1D ⊥面A 1BC 1.(3)解:∵AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,∴AC // 面A1BC1,∴直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,在三棱锥中A−A1BC1中,V A_A1BC1=V C1−ABA1,∵正方体A1B1C1D1−ABCD棱长为a,∴V A−A1BC1=13⋅S△A1BC1⋅ℎ=13×12×(√2a)2×ℎ×sin60∘=√3a26ℎ,V C1−ABA1=13⋅S△ABA1⋅A1C1=13⋅12⋅a⋅a⋅√2a=√26a3,∵V A_A1BC1=V C1−ABA1,∴ℎ=√63a.(4)解:若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,∵正方体A1B1C1D1−ABCD的棱长为a,∴C(a, a, 0),C1(a, a, a).【考点】点、线、面间的距离计算柱体、锥体、台体的体积计算空间中直线与直线之间的位置关系空间向量的正交分解及其坐标表示【解析】(1)在平面ABCD内过点B作AC的平行线BE,由AC // A1C1,AC // BE,知BE // A1C1,故直线BE就是所求的直线l.且l // A1C1.(2)由A1C1⊥面DBB1D1,知A1C1⊥B1D.由A1B⊥面ADC1B1,知A1B⊥B1D,所以B1D⊥面A1BC1.(3)AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,所以AC // 面A1BC1,直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,由等积法能求出ℎ=√63a.(4)若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立空间直角坐标系,能写出C,C1两点的坐标.【解答】(1)解:在平面ABCD内过点B作AC的平行线BE,∵AC // A1C1,AC // BE,∴BE // A1C1,∴面A1BC1与面ABCD的交线l与BE重合,即直线BE就是所求的直线l.∵BE // A1C1,l与BE重合,∴l // A1C1.(2)证明:连接B1D1,∵A1B1C1D1是正方形,∴A1C1⊥B1D1,∵A1C1⊥DD1,∴A1C1⊥面DBB1D1,∴A1C1⊥B1D.同理A1B⊥面ADC1B1,∴A1B⊥B1D,∵A1C1∩A1B=A1,∴B1D⊥面A1BC1.(3)解:∵AC // A1C1,且AC在面A1BC1外,A1C1⊂面A1BC1,∴AC // 面A1BC1,∴直线AC到面A1BC1的距离即为点A到面A1BC1的距离,记为ℎ,在三棱锥中A−A1BC1中,V A_A1BC1=V C1−ABA1,∵正方体A1B1C1D1−ABCD棱长为a,∴V A−A1BC1=13⋅S△A1BC1⋅ℎ=13×12×(√2a)2×ℎ×sin60∘=√3a26ℎ,V C1−ABA1=13⋅S△ABA1⋅A1C1=13⋅12⋅a⋅a⋅√2a=√26a3,∵V A_A1BC1=V C1−ABA1,∴ℎ=√63a.(4)解:若以A为坐标原点,分别以AB,AD,AA1所在的直线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,∵正方体A1B1C1D1−ABCD的棱长为a,∴C(a, a, 0),C1(a, a, a).28.【答案】解:(1)根据向量的三角形法则得到AE →=AB →+BC →+CE →=a →+b →+12c → (2)∵ |AE →|2=(a →+b →+12c →)2 =a →2+b →2+14c →2+2a →⋅b →+a →⋅c →+b →⋅c → =25+9+4+0+(20+12)⋅cos 60∘=54 ∴ |AE →|=3√6,即AE 的长为3√6.【考点】空间向量的基本定理及其意义空间向量的夹角与距离求解公式【解析】(1)根据向量的三角形法则把要表示的向量写成以几何体的棱为基底的向量的加法的形式,从向量的起点出发,沿着棱到终点.(2)根据上一问表示出的结果,把要求的向量两边平方,把得到平方式展开,得到已知向量的模长和数量积的关系,代入数据做出结果.【解答】解:(1)根据向量的三角形法则得到AE →=AB →+BC →+CE →=a →+b →+12c → (2)∵ |AE →|2=(a →+b →+12c →)2 =a →2+b →2+14c →2+2a →⋅b →+a →⋅c →+b →⋅c → =25+9+4+0+(20+12)⋅cos 60∘=54 ∴ |AE →|=3√6,即AE 的长为3√6.29.【答案】解:(1)∵ 空间向量a →=(3, 5, −4),b →=(2, 1, 8),∴ 2a →+3b →=(6, 10, −8)+(6, 3, 24)=(12, 13, 16),3a →−2b →=(9, 15, −12)−(4, 2, 16)=(5, 13, −28),a →⋅b →=6+5−32=−21,∴ a →与b →所成角的余弦值为:cos <a →,b →>=√9+25+16⋅√4+1+64=−7√138230. (2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),∵ λa →+μb →与z 轴垂直,则0⋅(3λ+2μ)+0⋅(5λ+μ)+(−4λ+8μ)=0,即8μ−4λ=0,∴ λ=2μ.∴ λ=2μ时,λa →+μb →与z 轴垂直.【考点】空间向量的数量积运算空间向量运算的坐标表示【解析】(1)利用空间向量坐标运算法则能求出2a →+3b →,3a →−2b →,a →⋅b →的值,并能求出a →与b →所成角的余弦值.(2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),由向量垂直的性质,能求出λ=2μ时,λa →+μb →与z 轴垂直.【解答】解:(1)∵ 空间向量a →=(3, 5, −4),b →=(2, 1, 8),∴ 2a →+3b →=(6, 10, −8)+(6, 3, 24)=(12, 13, 16),3a →−2b →=(9, 15, −12)−(4, 2, 16)=(5, 13, −28),a →⋅b →=6+5−32=−21,∴ a →与b →所成角的余弦值为:cos <a →,b →>=√9+25+16⋅√4+1+64=−7√138230. (2)z 轴的方向向量为(0, 0, 1),λa →+μb →=(3λ+2μ, 5λ+μ, −4λ+8μ),∵ λa →+μb →与z 轴垂直,则0⋅(3λ+2μ)+0⋅(5λ+μ)+(−4λ+8μ)=0,即8μ−4λ=0,∴ λ=2μ.∴ λ=2μ时,λa →+μb →与z 轴垂直.30.【答案】解:(1)AB →+BC →−C 1C →=AC →+CC 1→=AC 1→ ,AC 1→如图所示.(2)12AB →−12DA →−A 1A →=12(AB →+AD →)−A 1A →=12AC →+AA 1→=AE →,AE →如图所示.【考点】空间向量的加减法【解析】此题暂无解析【解答】解:(1)AB →+BC →−C 1C →=AC →+CC 1→=AC 1→, AC 1→如图所示.(2)12AB →−12DA →−A 1A →=12(AB →+AD →)−A 1A → =12AC →+AA 1→=AE →,AE →如图所示.31.【答案】解:(1)∵ 长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,AC 1→=AB →+BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =1,y =1,z =1.(2)AE →=AA 1→+A 1E →=12AB →+12BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =12,y =12,z =1.(3)AF →=AD →+DF →=12AB →+BC →+12CC 1→=−12BA →+BC →+12CC 1→=xBA →+yBC →+zC 1C →, ∴ x =−12,y =1,z =12.【考点】空间向量的基本定理及其意义【解析】利用空间向量三角形法则结构长方体结构特征求解.【解答】解:(1)∵ 长方体ABCD −A 1B 1C 1D 1,点E 、F 分别是上底面A 1B 1C 1D 1和面CC 1D 1D 的中心,AC 1→=AB →+BC →+CC 1→=xAB →+yBC →+zCC 1→, ∴ x =1,y =1,z =1.(2)AE →=AA 1→+A 1E →=12AB →+12BC →+CC 1→=xAB →+yBC →+zCC 1→,∴ x =12,y =12,z =1.(3)AF →=AD →+DF →=12AB →+BC →+12CC 1→=−12BA →+BC →+12CC 1→=xBA →+yBC →+zC 1C →, ∴ x =−12,y =1,z =12.32.【答案】解:在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点;(1)A 1O →−12AB →−12AD →=A 1O →−12(AB →+AD →) =A 1O →−12AC → =A 1O →−AO →=A 1O →+OA →=A 1A →;(2)∵ E 是棱DD 1上的点,且DE →=23DD 1→,∴ OE →=OD →+DE →=12BD →+23DD 1→ =12(BA →+BC →)+23AA 1→ =12BA →+12BC →+23AA 1→ =−12AB →+12AD →+23AA 1→, ∴ EO →=−OE →=12AB →−12AD →−23AA 1→; 又EO →=xAB →+yAD →+zAA 1→,∴ x =12,y =−12,z =−23. 【考点】空间向量的基本定理及其意义空间向量的加减法【解析】根据题意,利用空间向量的线性运算法则,对(1)式进行化简,对(2)式进行线性表示即可.【解答】解:在长方体体ABCD −A 1B 1C 1D 1中,O 为AC 的中点;(1)A 1O →−12AB →−12AD →=A 1O →−12(AB →+AD →) =A 1O →−12AC → =A 1O →−AO →=A 1O →+OA →=A 1A →;(2)∵ E 是棱DD 1上的点,且DE →=23DD 1→, ∴ OE →=OD →+DE →=12BD →+23DD 1→ =12(BA →+BC →)+23AA 1→ =12BA →+12BC →+23AA 1→ =−12AB →+12AD →+23AA 1→,∴ EO →=−OE →=12AB →−12AD →−23AA 1→; 又EO →=xAB →+yAD →+zAA 1→,∴ x =12,y =−12,z =−23.33.【答案】解:(1)建立如图所示的空间直角坐标系,由题意可得A(0, 0, 0),B(2, 0, 0),C(2, 4, 0),E(1, 0, 1),B 1(2, 0, 2),D 1(0, 4, 2),F(0, 2, 2),可得BC →=(0, 4, 0),ED 1→=(−1, 4, 1),故BC →⋅ED 1→=0×(−1)+4×4+0×1=16.(2)可得BF →=(−2, 2, 2),AB 1→=(2, 0, 2),故BF →⋅AB 1→=−2×2+2×0+2×2=0.【考点】空间向量的数量积运算【解析】建立坐标系,由题意可得相关点的坐标,进而可得向量的坐标,由向量的坐标运算可得结果.【解答】解:(1)建立如图所示的空间直角坐标系,由题意可得A(0, 0, 0),B(2, 0, 0),C(2, 4, 0),E(1, 0, 1),B 1(2, 0, 2),D 1(0, 4, 2),F(0, 2, 2),可得BC →=(0, 4, 0),ED 1→=(−1, 4, 1),故BC →⋅ED 1→=0×(−1)+4×4+0×1=16.(2)可得BF →=(−2, 2, 2),AB 1→=(2, 0, 2),故BF →⋅AB 1→=−2×2+2×0+2×2=0.34.【答案】解:(1)由题意可得BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→−A 1B 1→)=c →+12(b →−a →), 故BM →=−12a →+12b →+c →.------- (2)由条件得|a →|=1,|b →|=2,|c →|=3. a →⋅b →=0,a →⋅c →=32,b →⋅c →=3.------- AC 1→=a →+b →+c →.------故|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=√23.------ 【考点】空间向量的基本定理及其意义【解析】(1)利用两个向量的加减法的法则,以及其几何意义可得BM →=BB 1→+B 1M →=BB 1→+12(A 1D 1→−A 1B 1→),把已知的条件代入化简可得结果. (2)利用两个向量的数量积的定义求出基底中每个向量的模以及每两个向量的数量积,由|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c → 运算求得结果.【解答】解:(1)由题意可得BM →=BB 1→+B 1M →=BB 1→+12B 1D 1→=BB 1→+12(A 1D 1→−A 1B 1→)=c →+12(b →−a →),故BM →=−12a →+12b →+c →.-------(2)由条件得|a →|=1,|b →|=2,|c →|=3. a →⋅b →=0,a →⋅c →=32,b →⋅c →=3.------- AC 1→=a →+b →+c →.------故|AC →|=√(a →+b →+c →)2=√a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=√23.------ 35.【答案】(1)证明:如图,取AC 的中点O ,连接OA 1,OB .∵ 点O 为等边△A 1AC 边AC 的中点,∴ AC ⊥OA 1.∵ AC ⊥A 1B ,OA 1∩A 1B =A 1,OA 1⊂平面OA 1B ,A 1B ⊂平面OA 1B .∴ AC ⊥平面OA 1B ,又OB ⊂平面OA 1B ,∴ AC ⊥OB .∵ 点O 为AC 的中点,∴ AB =BC .(2)解:由(1)知,AB =BC , 又∠ABC =90∘ ,故△ABC 是以AC 为斜边的等腰直角三角形.∵ A 1O ⊥AC ,侧面ACC 1A 1⊥底面ABC ,面ACC 1A 1∩面ABC =AC ,∴ A 1O ⊥底面ABC以线段OB ,OC ,OA 1所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系O −xyz ,设AC =2,则A(0,-1,0),A 1(0,0,√3),B(1,0,0),C(0,1,0).∴ BC →=(−1,1,0),BB →1=AA →1=(0,1,√3),A 1B →=(1,0,−√3).设平面BCC 1B 1的一个法向量n 0=(x 0,y 0,z 0),则由{n 0⋅BC →=0,n 0⋅BB 1→=0,得{−x 0+y 0=0,y 0+√3z 0=0,令y 0=√3,得x 0=√3,z 0=−1,∴ 平面BCC 1B 1的一个法向量为n 0=√3,√3,−1.设A 1B 与平面BCC 1B 1所成角为θ,则sin θ=cos ⟨n 0,A 1B⟩=|n 0⋅A 1B →||n 0||A 1B →|=√217.【考点】空间向量的正交分解及其坐标表示棱柱的结构特征【解析】此题暂无解析【解答】解:(1)证明:如图,取AC的中点O,连接OA1,OB.∵点O为等边△A1AC边AC的中点,∴AC⊥OA1.∵AC⊥A1B,OA1∩A1B=A1,OA1⊂平面OA1B,A1B⊂平面OA1B.∴AC⊥平面OA1B,又OB⊂平面OA1B,∴AC⊥OB.∵点O为AC的中点,∴AB=BC.(2)解:由(1)知,AB=BC,又∠ABC=90∘,故△ABC是以AC为斜边的等腰直角三角形.∵A1O⊥AC,侧面ACC1A1⊥底面ABC,面ACC1A1∩面ABC=AC,∴A1O⊥底面ABC以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系O−xyz,设AC=2,则A(0,-1,0),A1(0,0,√3),B(1,0,0),C(0,1,0). ∴BC→=(−1,1,0),BB→1=AA→1=(0,1,√3),A 1B →=(1,0,−√3).设平面BCC 1B 1的一个法向量n 0=(x 0,y 0,z 0),则由{n 0⋅BC →=0,n 0⋅BB 1→=0,得{−x 0+y 0=0,y 0+√3z 0=0,令y 0=√3,得x 0=√3,z 0=−1,∴ 平面BCC 1B 1的一个法向量为n 0=√3,√3,−1.设A 1B 与平面BCC 1B 1所成角为θ,则sin θ=cos ⟨n 0,A 1B⟩=|n 0⋅A 1B →||n 0||A 1B →|=√217.36.【答案】解:(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c →−a →)+a →+13(b →−a →)=13a →+13b →+13c →. (2)由题设条件∵ (a →+b →+c →)2=a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=1+1+1+0+2×1×1×12+2×1×1×12=5, ∴ |a →+b →+c →|=√5,|MN →|=13|a →+b →+c →=|√53. 【考点】空间向量的夹角与距离求解公式【解析】(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→再用a →,b →,c →表示出来即可(2)求MN 的长,即求|MN →|=13|a →+b →+c →|,利用求向量模的方法,求|a →+b →+c →|即可求得MN 的长【解答】解:(1)由图形知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→=13(c →−a →)+a →+13(b →−a →)=13a →+13b →+13c →. (2)由题设条件∵ (a →+b →+c →)2=a →2+b →2+c →2+2a →⋅b →+2b →⋅c →+2a →⋅c →=1+1+1+0+2×1×1×12+2×1×1×12=5,∴ |a →+b →+c →|=√5,|MN →|=13|a →+b →+c →=|√53. 37.【答案】解:如图,根据FC →=2AB →=2DE →知,AB // DE ,AB =DE ,AB // FC ,FC =2AB ; ∴ 四边形ABDE 为平行四边形,连接AD ,BE ,设交于O ;则O 点在线段FC 上;∴ OE →=BO →=BA →+BC →,CO →=BA →;∴ CE →=CO →+OE →=BA →+BA →+BC →=−2AB →+BC →=−2α→+β→; ∴ CD →=CE →+ED →=−2α→+β→+α→=−α→+β→.【考点】向量的线性运算性质及几何意义【解析】画出六边形,根据条件知AB // DE ,且AB =DE ,且AB // FC ,FC =2AB ,从而四边形ABDE 为平行四边形,连接对角线,交点O 应在FC 上.结合图形即可看出:OE →=BO →=BA →+BC →,CO →=BA →,从而可以得出CE →=−2α→+β→,而由CE →+ED →即可表示出CD →.【解答】解:如图,根据FC →=2AB →=2DE →知,AB // DE ,AB =DE ,AB // FC ,FC =2AB ; ∴ 四边形ABDE 为平行四边形,连接AD ,BE ,设交于O ;则O 点在线段FC 上;∴ OE →=BO →=BA →+BC →,CO →=BA →;∴ CE →=CO →+OE →=BA →+BA →+BC →=−2AB →+BC →=−2α→+β→;。
高二数学第一章《常用逻辑用语》检测题1.设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.下列四个结论中正确的个数是()①“x2+x﹣2>0”是“x>1”的充分不必要条件②命题:“∀x∈R,sinx≤1”的否定是“∃x0∈R,sinx0>1”.③“若x=,则tanx=1,”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.A.1 B.2 C.3 D.43.下列说法正确的是()A.“x2+x﹣2>0”是“x>l”的充分不必要条件B.“若am2<bm2,则a<b的逆否命题为真命题C.命题“∃x∈R,使得2x2﹣1<0”的否定是:“∀x∈R,均有2x2﹣1<0”D.命题“若x=,则tanx=1的逆命题为真命题4.命题“若x2≠4,则x≠2且x≠﹣2”的否命题为()A.若x2=4,则x≠2且x≠﹣2 B.若x2≠4,则x=2且x=﹣2C.若x2≠4,则x=2或x=﹣2 D.若x2=4,则x=2或x=﹣25.下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2﹣x+3≥0的解集为R”的逆否命题;③“周长相同的圆面积相等”的逆命题;④“若为有理数,则x为无理数”的逆否命题.其中真命题序号为()A.②④ B.①②③C.②③④D.①②③④6、以下有关命题的说法错误的是()A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”B.若a∈R,则“a=2”是“(a﹣1)(a﹣2)=0”的充分且不必要条件C.对于命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,则x2+x+1≥0D.命题“若am2<bm2,则a<b”的逆命题是真命题7.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1<0C.命题“若α>β,则2α>2β”的逆否命题为真命题D.“x=﹣1”是x2﹣5x﹣6=0的必要不充分条件8.已知命题p:对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立;命题q:不等式x2+ax+2<0有解.若p是真命题,q是假命题,求a的取值范围.9.已知p:|1﹣|<2;q:x2﹣2x+1﹣m2<0;若¬p是¬q的充分非必要条件,求实数m的取值范围.10.已知命题p:函数f(x)=x2+ax﹣2在[﹣1,1]内有且仅有一个零点.命题q:x2+3(a+1)x+2≤0在区间内恒成立.若命题“p且q”是假命题,求实数a的取值范围.11、(Ⅰ)已知命题p:函数f(x)=(2a﹣5)x是R上的减函数;命题q:在x∈(1,2)时,不等式x2﹣ax+2<0恒成立,若p∨q是真命题,求实数a的取值范围;(Ⅱ)设条件p:2x2﹣3x+1≤0,条件q:x2﹣(2a+1)x+a(a+1)≤0,若¬p是¬q的必要不充分条件,求实数a的取值范围.12.已知p:|x﹣4|≤6,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.13.已知命题p:(x﹣3)(x+1)<0,命题q :<0,命题r:a<x<2a,其中a>0.若p∧q 是r的充分条件,求a的取值范围.14.已知命题p:x+2≥0且x﹣10≤0,命题q:1﹣m≤x≤1+m,m>0,若¬p是¬q的必要不充分条件,求实数m的取值范围.15.设p:不等式x2+(m﹣1)x+1>0的解集为R;q:∀x∈(0,+∞),m≤x+恒成立.若“p且q”为假命题,“p或q”为真命题,求实数m的取值范围.16.已知命题p:实数x满足|2x﹣m|≥1;命题q:实数x 满足>0.(Ⅰ)若m=1时,p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是q的充分不必要条件,求实数m的取值范围.高二数学第一章《常用逻辑用语》检测题参考答案1解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.2.解:对于①,x2+x﹣2>0,解得x<﹣2或x>1,故“x>1”的必要不充分条件,故错误,对于②,命题:“∀x∈R,sinx≤1”的否定是“∃x0∈R,sinx0>1”,故正确,对于③,若x=,则tanx=1,”的逆命题为“若tanx=1,则x=,x 还可以等于,故错误,对于④,f(x)是R上的奇函数,则f(﹣x)=﹣f(x),∵log32=,∴log32与log23不是互为相反数,故错误.故选:A.3.解:选项A,x2+x﹣2>0,解得x<﹣2或x>1,故“x2+x﹣2>0”是“x>l”的必要不充分条件,故A错误,选项B,“若am2<bm2,则a<b”的逆否命题为“若a≥b,则am2≥bm2”为真命题,故B正确,选项C,命题“∃x∈R,使得2x2﹣1<0”的否定是:“∀x∈R,均有2x2﹣1≥0,故C错误,选项D,命题“若x=,则tanx=1”的逆命题“若tanx=1,则x=”,因为tanx=1,则x=kπ+”,故D错误,故选:B.4.解:“若x2≠4,则x≠2且x≠﹣2”的否命题是:“若x2=4,则x=2或x=﹣2”,故选:D.5.解:对于①,逆命题为真,故否命题为真;对于②“若a=1,则ax2﹣x+3≥0的解集为R”原命题为真,故逆否命题为真;对于③“面积相等的圆周长相同”为真;对于④“若为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.故选:B.6、解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”,正确;对于B,a=2时,(a﹣1)(a﹣2)=0,充分性成立,(a﹣1)(a﹣2)=0时,a=1或a=2,必要性不成立,是充分且不必要条件,正确;对于C,命题p:∃x0∈R,使得x02+x0+1<0,则¬p:∀x∈R,则x2+x+1≥0,命题正确;对于D,命题“若am2<bm2,则a<b”的逆命题是命题“若a<b,则am2<bm2”,是假命题,因为m=0时不成立,所以错误.故选:D.7.解:对于A,命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,∴A错误;对于B,若命题p:∃x∈R,x2﹣2x﹣1>0,则命题¬p:∀x∈R,x2﹣2x﹣1≤0,∴B错误;对于C,命题“若α>β,则2α>2β”是真命题,则它的逆否命题也为真命题,∴C正确;对于D,x=﹣1时,x2﹣5x﹣6=0,充分性成立,x2﹣5x﹣6=0时,x=﹣1或x=6,必要性不成立,所以是充分不必要条件,D错误.故选:C.8.解:∵m∈[﹣1,1],∴∈[2,3].∵对m∈[﹣1,1],不等式a2﹣5a﹣3≥恒成立,可得a2﹣5a﹣3≥3,∴a≥6或a≤﹣1.故命题p为真命题时,a≥6或a≤﹣1.又命题q:不等式x2+ax+2<0有解,∴△=a2﹣8>0,∴a>2或a<﹣2.从而命题q为假命题时,﹣2≤a≤2,∴命题p为真命题,q为假命题时,a的取值范围为﹣2≤a≤﹣1.9.解:p:|1﹣|<2即为p:﹣2<x<10,q:x2﹣2x+1﹣m2<0即为(x﹣1)2<m2,即q:1﹣|m|<x<1+|m|,又¬p是¬q的充分非必要条件,所以q是p的充分非必要,∴(两式不能同时取等)得到|m|≤3,满足题意,所以m的范围为[﹣3,3].10.解:在命题p中,若a=0,则不合题意,∴,解得a≤﹣1,或a≥1.在命题q中,∵x∈[,],∴3(a+1)≤﹣(x+)在[]上恒成立.∴(x+)max =,故只需3(a+1)即可,解得a.∵命题“p且q”是假命题,∴p真q假,或p假q真,或p、q均为假命题,当p真q 假时,,或a≥1,当p假q真时,a∈∅.当p、q均为假命题时,有﹣1<a<1,故实数a的取值范围{a|a >﹣}.11、解:(Ⅰ)在p中,∵函数f(x)=(2a﹣5)x是R上的减函数,∴0<2a﹣5<1,解得<a<3;在q中,由x2﹣ax+2<0得ax>x2+2,∵1<x<2,∴a >=x+在x∈(1,2)时恒成立;又当x∈(1,2)时,x+∈[2,3),∴a≥3;∵p∨q是真命题,故p真或q真,∴有<a<3或a≥3;∴a的取值范围是a >;(Ⅱ)命题p为:{x/},命题q为:{ x/a≤x≤a+1},¬p对应的集合A={x/x>1,或x <},¬q对应的集合为B={x/x>a+1,或x<a},∵若¬p是¬q的必要不充分条件,∴B⊂A,∴a+1≥1且,∴0≤a ≤.12.解:由题知,若¬p是¬q的必要不充分条件的等价命题为:p是q的充分不必要条件.由|x﹣4|≤6,解得﹣2≤x≤10,∴p:﹣2≤x≤10;由x2﹣2x+1﹣m2≤0(m>0),整理得[x﹣(1﹣m)][x﹣(1+m)]≤0解得 1﹣m≤x≤1+m,∴q:1﹣m≤x≤1+m又∵p是q的充分不必要条件∴,∴m≥9,∴实数m的取值范围是[9,+∞).13.解:由题可知,命题p:﹣1<x<3,命题q:2<x<4,…..(2分)故p∧q:2<x<3.…(4分)根据a>0,及p∧q是r 的充分条件可知:;…(8分)解得,综上可知,a 的取值范围是.…(10分)14.解:命题p:﹣2≤x≤10,命题q:1﹣m≤x≤1+m,m>0;∴¬p:x<﹣2,或x>10;¬q:x<1﹣m,或x>1+m,m>0;¬p是¬q的必要不充分条件,就是由¬q能得到¬p,而¬p得不到¬q;∴集合{x|x<﹣2,或>10}真包含集合{x|x<1﹣m,或x>1+m,m>0};∴1﹣m≤﹣2,且1+m≥10,且两等号不能同时取;∴解得:m≥9,即实数m的取值范围为[9,+∞).15.解:若p为真:判别式△<0,则(m﹣1)2﹣4<0,所以:﹣1<m<3若q为真::∀x∈(0,+∞),x+≥2,当且仅当x=1时取“=”所以:m≤2.(1)当p为真q为假时:2<m<3(2)当q为真p为假时:m≤﹣1综上所述:m≤﹣1或2<m<316.解:(Ⅰ)∵p∧q为真,∴p,q都为真…(1分)又m=1,∴p真;|2x﹣1|≥1,即x≤0或x≥1…(2分),∴(1﹣3x)(x+2)>0,即…(4分)由,∴实数x的取值范围为(﹣2,0]…(6分)(Ⅱ)∵p:实数x满足|2x﹣m|≥1,∴¬p;|2x﹣m|<1,即令…(7分),令…(8分)∵¬P是q的充分非必要条件,A是B的真子集…(9分)∴,得∴实数m 的取值范围是…(12分)。
高二数学选修2-1测试题(120分钟150分)班级姓名成绩一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题“如果-1≤a≤1,那么关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为 ”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A.0个B.1个C.2个D.4个【变式训练】命题“若C=90°,则△ABC是直角三角形”与它的逆命题、否命题、逆否命题这4个命题中,真命题的个数是( )A.0B.1C.2D.32.设m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m∥β且l1∥αB.m∥l1且n∥l2C.m ∥β且n ∥βD.m∥β且n∥l2【变式训练】有下述说法:①a>b>0是a2>b2的充要条件;②a>b>0是<的充要条件;③a>b>0是a3>b3的充要条件.其中正确的说法有( )A.0个B.1个C.2个D.3个3. “1<m<3”是“方程+=1表示椭圆”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知抛物线y2=2px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为( )A. B.+1 C.+1 D.【变式训练】若双曲线C:x 2-=1(b>0)的顶点到渐近线的距离为,则双曲线的离心率e=( )A.2B.C.3D.5.已知命题p:∀x∈R,x ≥2,那么下列结论正确的是( )A.命题p:∀x∈R,x≤2B.命题p:∃x0∈R,x0<2C.命题p:∀x∈R,x≤-2D.命题p:∃x0∈R,x0<-26.已知矩形ABCD中,AB=1,BC=,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则B与D之间的距离为( )A.1B.C.D.7.过抛物线y2=4x焦点的直线交抛物线于A,B两点,若=10,则AB的中点到y轴的距离等于( )A.1B.2C.3D.48.在四边形ABCD中,“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为( )A.60°B.90°C.45°D.以上都不正确10.设F1,F2是双曲线x2-4y2=4a(a>0)的两个焦点,点P在双曲线上,且满足:·=0,||·||=2,则a的值为( )A.2B.C.1D.11.点P是棱长为1的正方体ABCD-A1B1C1D1的底面A1B1C1D1上一点,则·的取值范围是( )A. B.C.[-1,0]D.12.已知正六边形ABCDEF的边长是2,一条抛物线恰好经过该六边形的四个顶点,则抛物线的焦点到准线的距离是( )A. B. C. D.2二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.抛物线焦点在y轴上,且被y=x+1截得的弦长为5,则抛物线的标准方程为.14.在△ABC中,若∠ACB=90°,∠BAC=60°,AB=8,PC⊥平面ABC,PC=4,M是AB上一点,则PM的最小值为.15.在四棱锥P-ABCD中,ABCD为平行四边形,AC与BD交于O,G为BD上一点,BG=2GD,=a,=b,=c,试用基底{a,b,c}表示向量= .16.曲线C是平面内到直线l1:x=-1和直线l2:y=1的距离之积等于常数k2的点的轨迹.给出下列四个结论:①曲线C过点(-1,1);②曲线C关于点(-1,1)对称;③若点P在曲线C上,点A,B分别在直线l1,l2上,则+不小于2k.④设P0为曲线C上任意一点,则点P0关于直线x=-1、点(-1,1)及直线y=1对称的点分别为P1,P2,P3,则四边形P0P1P2P3的面积为定值4k2.其中,所有正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)设p:关于x的不等式a x>1(a>0且a ≠1)的解集为{x|x<0},q:函数y=l g(ax2-x+a)的定义域为R.如果p和q有且仅有一个正确,求a的取值范围. 18.(12分)如图,正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1.(2)用向量法证明MN⊥平面A1BD.19.(12分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1)求抛物线C的方程,并求其准线方程.(2)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求直线l的方程;若不存在,说明理由.20.(12分)设F1,F2为椭圆+=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|PF1|>|PF2|.(1)求|PF1|的长度.(2)求的值. 21.(12分)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)求直线BE和平面ABB1A1所成角的正弦值.(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.(12分)如图,四棱柱ABCD -A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE.(2)求二面角B1-CE-C1的正弦值.(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.高二数学选修2-1测试题答案一、选择题1、【解析】选C.当-1≤a≤1时,Δ=(a+2)2+4(a2-4)=5--12≤5--12<0,所以原命题为真,逆否命题亦为真.反之,如a=-2时,所给不等式的解集即为空集,但a∉[-1,1],所以逆命题为假,故否命题亦为假.【变式训练】【解析】选C.原命题是真命题.其逆命题为“若△ABC是直角三角形,则C=90°”,这是一个假命题,因为当△ABC为直角三角形时,也可能A或B为直角.这样,否命题是假命题,逆否命题是真命题.因此真命题的个数是2.2.【解析】选B.对于选项A,α,β也可能相交,此时,l1,m都平行于交线,是必要不充分条件;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选项B符合题意;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,【变式训练】【解析】选 A.a>b>0⇒a2>b2,a2>b2⇒|a|>|b|⇒a>b>0,故①错.a>b>0⇒<,但<⇒a>b>0,故②错.a>b>0⇒a3>b3,但a3>b 3⇒a>b>0故③错故选A.3. 【解析】选 B.当方程+=1表示椭圆时,必有所以1<m<3;但当1<m<3时,该方程不一定表示椭圆,如当m=2时,方程变为x 2+y2=1,它表示一个圆.4【解析】选B.如图,由双曲线-=1,且AF⊥x轴得-=1得|y|=,由抛物线y2=2px的定义得AF=p,即=2c.得b2=2ac,所以=,e2-1=2e,所以e=+1.【拓展延伸】求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.【变式训练】【解析】选B.由双曲线方程知a=1,所以c=,所以一条渐近线的方程为y=bx,即bx-y=0.所以=,解得b=1,所以c=,所以e==.5.【解析】选B.全称命题的否定是特称命题,所以命题p:∃x0∈R,x0<2.6. 【解析】选B.过B,D分别向AC作垂线,垂足分别为M,N.则可求得AM=,BM=,CN=,DN=,MN=1.由于=++,所以||2=(++)2=||2+||2+||2+ 2(·+ ·+·)=+12++2(0+0+0)=,所以||=.7.【解析】选D.抛物线y2=4x的焦点(1,0),准线为l:x=-1,设AB的中点为E,过A,E,B分别作准线的垂线,垂足分别为C,F,D,EF交纵轴于点H,如图所示,则由EF为直角梯形的中位线知,|EF|===5,所以EH=EF-1=5-1=4,即AB的中点到y 轴的距离等于4.8. 【解析】选C.若=λ,=λ,则∥,∥,即AB∥DC,AD∥BC,所以四边形ABCD为平行四边形.反之,若四边形ABCD为平行四边形,则有AB∥DC,AD∥BC且AB=DC,AD=BC ,即=,=,此时λ=1,所以∃λ∈R ,使得=λ,=λ成立.所以“∃λ∈R ,使得=λ,=λ”是“四边形ABCD为平行四边形”的充分必要条件.9. 【解析】选B.以点D为原点,直线DA,DC,DD 1分别为x轴,y轴,z轴,建立空间直角坐标系,如图.由题意知,A1(1,0,2),E(1,1,1),D1(0,0,2),A(1,0,0),所以=(0,1,-1),=(1,1,-1),=(0,-1,-1).设平面A1ED1的一个法向量为n=(x,y,z).则⇒令z=1,得y=1,x=0.所以n=(0,1,1),cos<n ,>===-1.所以<n ,>=180°.所以直线AE与平面A1ED1所成的角的大小为90°.10. 【解析】选C.双曲线方程化为-=1(a>0),因为·=0,所以PF1⊥PF2.所以||2+||2=4c2=20a. ①由双曲线定义||-||=±4,②又已知||·||=2,③由①②③得20a-2×2=16a,所以a=1.11. 【解析】选D.如图所示建立空间直角坐标系,则A(1,0,1),C1(0,1,0).设P(x,y,0)其中0≤x≤1,0≤y≤1.则=(1-x,-y,1) =(-x,1-y,0)所以·=(1-x,-y,1)·(-x,1-y,0)=+-,因为+的几何意义是平面区域到点的距离的平方,所以当x=y=时,+有最小值0,当x=y=0或x=y=1或x=1,y=0或x=0,y=1时,+有最大值,所以-≤+-≤0,即·的取值范围是.12. 【解析】选B.设抛物线方程为y2=2px(p>0),根据对称性可知,正六边形ABCDEF的顶点A,B,C,F在抛物线y2=2px上,设A(x1,1),F(x2,2),则即x2=4x1,又AF==2,即(x1-x2)2=(x1-4x1)2=3,所以=,x1=,即p===.二、填空题13.【解析】设抛物线方程为x2=my,联立抛物线方程与直线方程y=x+1并消元,得:2x2-mx-2m=0,所以x1+x2=,x1x2=-m,所以5=,把x1+x2=,x1x2=-m代入解得m=4或m=-20.所以抛物线的标准方程为x2=4y或x2=-20y. 答案:x2=4y或x2=-20y 14.【解析】由条件知PC,AC,BC 两两垂直,设=a ,=b ,=c,则a·b=b·c=c·a=0,因为∠BAC=60°,AB=8,所以|a |=||=8cos60°=4,|b |=||=8sin60°=4,|c |=||=4.设=x=x(b -a),其中x∈[0,1],则=++=-c+a+x(b-a)=(1-x)a+x b-c,||2=(1-x)2|a|2+x2|b|2+|c|2+2(1-x)x a·b-2x b·c-2(1-x)a·c=16(1-x) 2+48x2+16=32(2x2-x+1)=64+28,所以当x=时,||2取最小值28,所以||min =2. 答案:215. 【解析】因为BG=2GD ,所以=.又=+=-+-=a+c-2b,所以=+=b +(a+c-2b)=a -b +c.答案:a -b +c16.【解析】设动点为(x,y),则由条件可知·=k2,①,将(-1,1)代入得0=k2,因为k>0,所以不成立,故方程不过点(-1,1),①错误.②,把方程中的x用-2-x代换,y用2-y代换,方程不变,故此曲线关于点(-1,1)对称,②正确.③,由题意知点P在曲线C上,点A,B分别在直线l1,l2上,则≥,≥,所以+≥2=2k,故③正确.④,由题意知点P0在曲线C上,根据对称性,则四边形P0P1P2P3的面积为2·2=4·=4k2,所以④正确.综上所述,正确结论的序号是②③④.答案:②③④三、解答题17.【解析】当p真时,0<a<1,当q 真时,即a>,所以p假时,a>1,q假时,a ≤.又p和q有且仅有一个正确,当p真q假时,0<a ≤;当p假q真时,a>1. 综上a 的取值范围为∪(1,+∞). 18.【证明】(1)在正方体ABCD-A1B1C1D1中,=-,=-,又因为=,=,所以=,所以BD∥B1D1.又B1D1⊂平面B1CD1,BD⊄平面B1CD1,所以BD∥平面B1CD1,同理可证A1B∥平面B1CD1.又BD∩A1B=B,所以平面A1BD∥平面B1CD1.(2)=++=++(+)=++(-+)=++.设=a ,=b ,=c,则=(a+b+c).又=-=b-a,所以·=(a+b+c)·(b-a)=(b2-a2+c·b-c·a).又因为⊥,⊥,所以c·b=0,c·a=0.又|b|=|a|,所以b2=a2.所以b2-a2=0.所以·=0.所以MN⊥BD.同理可证,MN⊥A1B.又A1B∩BD=B,所以MN⊥平面A1BD.19.【解析】(1)将A(1,-2)代入y2=2px,得(-2)2=2p·1,所以p=2.故所求抛物线C的方程为y2=4x,其准线方程为x=-1.(2)假设存在符合题意的直线l,其方程为y=-2x+t.由得y2+2y-2t=0.因为直线l与抛物线C有公共点,所以Δ=4+8t≥0,解得t≥-.由直线OA与l的距离d=,可得=,解得t=±1.因为-1∉,1∈,所以符合题意的直线l存在,其方程为2x+y-1=0.20.【解析】(1)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8.(2)若∠PF2F1是直角,则|PF1|2=|PF2|2+|F1F2|2,即|PF1|2=(12-|PF1|)2+80,得|PF1|=,|PF2|=,所以=.若∠F1PF2是直角,则|PF1|2+(12-|PF1|)2=80,即2|PF1|2-24|PF1|+64=0,得|PF1|=8,|PF2|=4,所以=2,综上,=2或.21.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系Axyz.(1)依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1所成的角为θ,则sinθ===.故直线BE和平面ABB1A1所成的角的正弦值为.(2)在棱C1D1上存在点F,使B1F∥平面A1BE.证明如下:依题意,得A1(0,0,1),=(-1,0,1),=.设n=(x,y,z)是平面A1BE的一个法向量,则由n ·=0,n ·=0,得所以x=z,y=z.取z=2,得n=(2,1,2).因为F是棱C1D1上的点,则F(t,1,1)(0≤t≤1). 又B1(1,0,1),所以=(t-1,1,0).而B1F⊄平面A1BE,于是B1F∥平面A1BE ⇒·n=0⇔(t-1,1,0)·(2,1,2)=0⇔2(t-1)+1=0⇔t=⇔F为棱C1D1的中点.这说明在棱C1D1上存在点F(C1D1的中点),使B1F∥平面A1BE.22.【解题指南】方法一:(1)建立空间直角坐标系,写出,的坐标,利用数量积证明.(2)求出平面B1CE与平面CEC1的法向量,由法向量的夹角余弦值求二面角的正弦值.(3)用直线AM的方向向量与平面ADD1A1的法向量表示直线AM与平面ADD1A1所成角的正弦,确定向量的坐标,由向量的模求线段AM的长.方法二:(1)要证明线线垂直,先证明线面垂直,关键是找出与线B1C1垂直的平面CC1E,然后进行证明.(2)要求二面角B1-CE-C1的正弦值,关键是构造出二面角B1-CE-C1的平面角,然后在三角形中求解.(3)首先构造三角形,设AM=x,在直角三角形AHM,C1D1E中用x表示出AH,EH的长度,最后在三角形AEH中利用余弦定理求解.【解析】如图,以点A为坐标原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)易得=(1,0,-1),=(-1,1,-1),于是·=0,所以B1C1⊥CE.(2)=(1,-2,-1),设平面B1CE的法向量m=(x,y,z),则即消去x,得y+2z=0,不妨设z=1,可得一个法向量为m=(-3,-2,1).由(1)知B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故=(1,0,-1)为平面CEC1的一个法向量.于是cos<m ,>===-,从而sin<m ,>=.所以二面角B1-CE-C1的正弦值为.(3)=(0,1,0),=(1,1,1),设=λ=(λ,λ,λ),0≤λ≤1,有=+=(λ,λ+1,λ).可取=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ====.于是=,解得λ=,所以AM=.【一题多解】(1)因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1,经计算可得B1E=,B1C1=,EC1=,从而B1E2=B 1+E,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连接C1G,由(1)知,B1C1⊥CE,B1C1,B1G⊂平面B1C1G,B1C1∩B1G=B1,故CE⊥平面B1C1G,又C1G⊂平面B1C1G ,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E中,由CE=C1E=,CC1=2,可得C1G=.在Rt△B1C1G中,B1G=,所以sin∠B1GC1=,即二面角B1-CE-C1的正弦值为.(3)连接D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连接AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=x,AH=x,在Rt△C1D1E中,C1D1=1,ED1=,得EH=MH=x,在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE·EHcos135°,得x2=1+x2+x,整理得5x2-2x-6=0,解得x=.所以线段AM的长为.。
高二数学选修2-1测试试题及答案本试题满分150分,用时100分钟)一、选择题:1.命题“若a>b,则a-8>b-8”的逆否命题是()A.若a<b,则a-8<b-8B.若a-8≤b-8,则a≤bC.若a≤b,则a-8≤b-8D.若a-8b2.如果方程x^2+ky^2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0.+∞)B.(0.2)C.(0.1)D.(1.+∞)3.已知x-3x+2≥0,2x-2≥1,则“非P”是“非Q”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件4.双曲线16/(x^2)-9/(y^2)=1的左、右焦点分别为F1,F2,在左支上过点F1的弦AB的长为5,那么△ABF2的周长是()A、24B、25C、26D、285.若焦点在轴上的椭圆x^2/3+y^2/2=1的离心率为e,则m=A.3B.38/2C.23/2D.33/26.在同一坐标系中,方程x^2/2+y^2/2=1与ax+by^2=(a>b>)的曲线大致是()ab7.椭圆25x^2+16y^2=400的面积为()A.9B.12C.10D.88.正方体ABCD-A1B1C1D1的棱长为1,E是A1B1的中点,则E到平面ABC1D1的距离是()A.√2/2B.√6/2C.√3/2D.√29.若向量a与b的夹角为60°,b=4,(a+2b)(a-3b)=-72,则a=A.2B.4C.6D.1210.方程x^2/k-y^2/k=1表示双曲线,则k的取值范围是()A.-1<k<1B.k>0XXX≥1D.k>1或k<-111.方程x^2/a^2+y^2/b^2=1(a>b>0,k>且k≠1),与方程y^2/a^2+x^2/b^2=1的图形是()两个坐标轴上的椭圆12.若x^2+y^2+z^2=1,则x^2y^2+y^2z^2+z^2x^2的最大值为()1/3二、填空题:13.当k>1时,曲线x^2/k-y^2/k=1是()。
姓名:___________班级:___________一、选择题1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.若p q Λ是假命题,则( ) A.p 是真命题,q 是假命题 B.p 、q 均为假命题C.p 、q 至少有一个是假命题D.p 、q 至少有一个是真命题3.1F , 2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( )A.椭圆B.直线C.线段D.圆4. 双曲线221169x y -=的渐近线方程为( ) A. x y 916±= B. x y 169±= C. x y 43±= D. x y 34±= 5.中心在原点的双曲线,一个焦点为,,则双曲线的方程是( )A .B .C .D . 6.已知正方形ABCD 的顶点,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( ) A1 B 1 D .27.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值为( ) A .1 B .2C .2D .38.与双曲线1422=-x y 有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) (A )112322=-x y (B )112322=-y x (C )18222=-x y (D )18222=-y x 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是( ) A .0B .2πC .πD .32π (0F 12212x y -=2212y x -=221x =221y -=10.与向量(1,3,2)a =-平行的一个向量的坐标是 ( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1) D .(2,-3,-22) 11.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的方程为( )A.22(1)(1)2x y ++-=B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 12.若直线m y x =+与圆m y x =+22相切,则m 的值为( ) A .0 B .1 C .2 D .0或2 二、填空题13.直线y x =被圆22(2)4x y +-=截得的弦长为_______________.14.已知椭圆x y k k ky x 12)0(3222=>=+的一个焦点与抛物线的焦点重合,则该椭圆的离心率是 .15.已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为___________16.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 . 三、解答题17.求过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线方程.18.求渐近线方程为x y 43±=,且过点)3,32(-A 的双曲线的标准方程及离心率。
19.求与x 轴相切,圆心C 在直线3x -y =0上,且截直线x -y =0得的弦长为27的圆的方程.20.已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值.21.已知椭圆)0(1:2222>>=+b a by a x C 的焦距为62,椭圆C 上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 2:-=kx y 与椭圆C 交于B A ,两点,点P (0,1),且PA =PB ,求直线l 的方程.22.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,,E F 分别是,AB PB 的中点.(1)求证:EF CD ⊥;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论;(3)求DB 与平面DEF 所成角的正弦值.参考答案1.B 【解析】试题分析: 2320(1)(2)0x x x x -+≠⇒--≠,则1x ≠且2x ≠;反之,1x ≠且2x =时,2320x x -+=,故选B.考点:充要条件的判断. 2.C 【解析】试题分析:当p 、q 都是真命题p q ⇔Λ是真命题,其逆否命题为: p q Λ是假命题⇔p 、q 至少有一个是假命题,可得C 正确.考点: 命题真假的判断. 3.C 【解析】解题分析:因为1F , 2F 是距离为6,动点M 满足∣1MF ∣+∣2MF ∣=6,所以M 点的轨迹是线段12F F 。
故选C 。
考点:主要考查椭圆的定义。
点评:学习中应熟读定义,关注细节。
4.C【解析】因为双曲线221169x y -=,a=4,b=3,c=5,则其渐近线方程为x y 43±=,选C.5.A【解析】试题分析:由焦点为,所以,双曲线的焦点在y 轴上,且c,所以,a-)=1,所以,b =,所以,双曲线方程为:.本题容易错选B ,没看清楚焦点的位置,注意区分. 考点:双曲线的标准方程及其性质. 6.A 【解析】试题分析:设正方形ABCD 的边长为1,则根据题意知,121,,2c c =∴=21a =+ (0F 112212x y -=12a ∴=11.2== 考点:本小题主要考查椭圆中基本量的运算和椭圆中离心率的求法,考查学生的运算求解能力.点评:求椭圆的离心率关键是求出ca,而不必分别求出,.a c 7.A 【解析】试题分析:因为椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,所以0a >,且椭圆的焦点应该在x 轴上,所以242,2, 1.a a a a -=+∴=-=或因为0a >,所以 1.a = 考点:本小题主要考查椭圆与双曲线的标准方程及其应用. 点评:椭圆中222c a b =-,而在双曲线中222.c a b =+ 8.B【解析】试题分析:设所求的双曲线方程为224y x λ-=,因为过点(2,2),代入可得3λ=-,所以所求双曲线方程为112322=-y x . 考点:本小题主要考查双曲线标准方程的求解,考查学生的运算求解能力.点评:与双曲线1422=-x y 有共同的渐近线的方程设为224y x λ-=是简化运算的关键. 9.C【解析】试题分析: 应用向量的夹角公式||||cos b a ⋅=θ=-1.所以量,OA OB 与的夹角是π,故选C 。
考点:本题主要考查向量的数量积及向量的坐标运算.点评:较好地考查考生综合应用知识解题的能力以及运算能力,属于基本题型。
10.C ; 【解析】试题分析:向量的共线(平行)问题,可利用空间向量共线定理写成数乘的形式.即λ=⇔≠//,.也可直接运用坐标运算。
经计算选C 。
考点:本题主要考查向量的共线及向量的坐标运算.点评:有不同解法,较好地考查考生综合应用知识解题的能力。
11.B 【解析】试题分析:因圆心在直线0=+y x 上,而点(1,1)和点(-1,-1)不在直线上,故C 、D 错;又直线0=-y x 及04=--y x 平行,且都与圆相切,故圆心在第四象限,故A 错,选B.或用直接法求解亦可.考点:1.圆的标准方程;2.直线与圆的位置关系. 12.C 【解析】试题分析:根据题意,由于直线m y x =+与圆m y x =+22相切,则圆心(0,0)到直线x+y=mm 的值为2,故答案为C. 考点:直线与圆的位置关系点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
13.【解析】试题分析:由弦心距、半径、弦长的一半构成的直角三角形,应用勾股定理得,直线y x =被圆22(2)4x y +-=截得的弦长为= 考点:直线与圆的位置关系点评:简单题,研究直线与圆的位置关系问题,要注意利用数形结合思想,充分借助于“特征直角三角形”,应用勾股定理。
14.e =【解析】试题分析:抛物线的焦点为(3,0)F ,椭圆的方程为:22133x y k += 3394k k -=⇒=,所以离心率2e ==. 考点:1、椭圆与抛物线的焦点;2、圆的离心率. 15.11(3,)(,2)22--- 【解析】试题分析:方程12322=-++k yk x 表示椭圆,需要满足302032k k k k+>⎧⎪->⎨⎪+≠-⎩,解得k 的取值范围为11(3,)(,2)22---.考点:本小题主要考查椭圆的标准方程,考查学生的推理能力. 点评:解决本小题时,不要忘记32k k+≠-,否则就表示圆了. 16 【解析】试题分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则1100n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,116D C n n ⋅∴==,所以异面直线1D E 和1BC 考点:本题主要考查空间向量的应用,综合考查向量的基础知识。
点评:法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 17.3x -4y+27=0或x=-1. 【解析】试题分析:圆x 2+y 2+6x -4y+9=0,即22(3)(2)4x y ++-=。
点(-1,6)在圆x 2+y 2+6x-4y+9=0外,所以,过点(-1,6)与圆x 2+y 2+6x -4y+9=0相切的直线有两条。
当切线的斜率不存在时,x=-1符合题意;当切线的斜率存在时,设切线方程为6(1)y k x -=+,即60kx y k-++=。
由圆心(-3,2)到切线距离等于半径22=,解得,k=34, 所以,切线方程为3x -4y+27=0。
综上知,答案为3x -4y+27=0或x=-1. 考点:直线与圆的位置关系点评:中档题,研究直线与圆的位置关系问题,利用“代数法”,须研究方程组解的情况;利用“几何法”,则要研究圆心到直线的距离与半径比较。
本题易错,忽视斜率不存在的情况。
18.(x-1)2+(y-3)2 =9或(x+1)2+(y+3)2=9 【解析】试题分析:解:设圆心为(a,b ),半径为r, 因为圆x 轴相切,圆心C 在直线3x -y =0上, 所以b=3a,r=|b|=|3a|,圆心(a,3a )到直线x -y =0的距离d=11|3a |+-a由r 2-d 2=(7)2得:a=1或-1所以圆的方程为(x-1)2+(y-3)2=9或(x+1)2+(y+3)2=9 考点:圆的方程点评:确定出圆心和半径是解决圆的方程的关键,属于基础题。