BP神经网络详解与实例
- 格式:ppt
- 大小:1.24 MB
- 文档页数:62
bp使用方法
BP(Back Propagation)是一种常用的神经网络训练算法,用于训练多层感知器(MLP)等神经网络。
以下是BP的用方法:
1.初始化神经网络:首先,需要初始化一个神经网络,包括输入层、隐藏层和输出层。
每个层包含一定数量的神经元,每个神经元都通过权重与其他神经元相连。
权重初始化为随机值。
2.前向传播:输入数据通过输入层进入神经网络,然后依次经过隐藏层和输出层,最终得到输出结果。
在前向传播过程中,每个神经元将输入值与其权重相乘,加上偏置项,然后通过激活函数得到输出值。
3.计算误差:根据实际标签和神经网络的输出结果,计算误差。
误差是实际标签与输出结果之间的差异,通常使用平方误差或交叉熵误差等函数计算。
4.反向传播:根据计算出的误差,通过反向传播算法更新神经网络的权重。
反向传播算法将误差从输出层逐层反向传播到输入层,并根据梯度下降法更新权重。
5.迭代训练:重复步骤2-4多次,直到神经网络的输出结果收敛或达到预设的训练轮数。
在每次迭代中,权重都会被更新以减小误差。
6.测试与预测:训练完成后,可以使用测试数据对神经网络进行测试或进行预测。
将测试数据输入神经网络,得到输出结果,并根据输出结果进行评估和比较。
BP算法是一种监督学习算法,需要使用已知标签的数据进行训练。
在训练过程中,需要注意选择合适的激活函数、学习率和迭代次数等参数,以获得最佳的训练效果。
同时,为了避免过拟合和欠拟合等问题,可以使用正则化、Dropout 等技术来优化神经网络的性能。
神经网络人工神经网络(Artificial Neural Network)又称连接机模型,是在现代神经学、生物学、心理学等学科研究的基础上产生的,它反映了生物神经系统处理外界事物的基本过程,是在模拟人脑神经组织的基础上发展起来的计算系统,是由大量处理单元通过广泛互联而构成的网络体系,它具有生物神经系统的基本特征,在一定程度上反映了人脑功能的若干反映,是对生物系统的某种模拟,具有大规模并行、分布式处理、自组织、自学习等优点,被广泛应用于语音分析、图像识别、数字水印、计算机视觉等很多领域,取得了许多突出的成果。
最近由于人工神经网络的快速发展,它已经成为模式识别的强有力的工具。
神经网络的运用展开了新的领域,解决其它模式识别不能解决的问题,其分类功能特别适合于模式识别与分类的应用。
BP神经网络在人工神经网络发展历史中,很长一段时间里没有找到隐层的连接权值调整问题的有效算法.直到误差反向传播算法(BP算法)的提出,成功地解决了求解非线性连续函数的多层前馈神经网络权重调整问题。
BP (Back Propagation)神经网络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输入层各神经元负责接收来自外界的输入信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能力的需求,中间层可以设计为单隐层或者多隐层结构;最后一个隐层传递到输出层各神经元的信息,经进一步处理后,完成一次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进入误差的反向传播阶段。
误差通过输出层,按误差梯度下降的方式修正各层权值,向隐层、输入层逐层反传。
周而复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经网络学习训练的过程,此过程一直进行到网络输出的误差减少到可以接受的程度,或者预先设定的学习次数为止。
BP神经网络模型BP网络模型包括其输入输出模型、作用函数模型、误差计算模型和自学习模型。
关于BP网络的总结1.辨识模型的建立目前,在人工神经网络的实际应用中,绝大部分的神经网络模型是采用BP网络和它的变化形式。
BP网络就是按照误差逆传播(error back propagation)学习算法(BP算法)进行训练的多层前向神经网络,亦称为误差逆传播神经网络。
它的优点有:23第三章基于肌电信号的人手肘关节运动轨迹的预测播,得到输出响应。
如果网络输出与需要输出的误差大于标定值,将进行第二步,即输出误差反向传播过程,输出的误差值由输出层开始反向传播到输入层,传播到每一层的误差大小决定该层权值的改变。
网络的训练实质上是一个最优化的过程,即找到使输出误差最小的网络权值。
训练结束后的网络权值,代表了神经网络输入输出的映射关系。
在该网络中,输入层和隐层采用非线性的Sigmoid 函数(图3-7 所示)作为神经元激励函数,输出层采用线性函数。
图3-7 Sigmiod函数下面介绍此算法的具体过程:首先,我们定义误差函数为:(3-5)上式中,为期望输出值,即手臂实际运动角度,为网络输出值,即神经网络预测的手臂运动角度。
本文所定误差需小于0.001,在大于这个限定值以前,需要由输出层开始反向推导网络权系数的修正值。
(1).输出层神经元输出值及权值修正:25第三章基于肌电信号的人手肘关节运动轨迹的预测式中f (• )为线性函数,为隐层2 中第j 个神经元与输出层的权系数,为隐层2 的神经元输出值,=(3),=-1,即把神经元偏置的调整归入权系数的学习中,下面各隐层的情况也与之相同。
(2).隐层2 神经元输出值及权值修正:式中f (• )为sigmoid 函数,为隐层1 中第i 个神经元与隐层2 中第j 个神经元的权系数,为隐层1 中第i 个神经元输出值。
(2)(3).隐层1 神经元输出值及权值修正:为sigmoid 函数,为输入层中第m 个神经元与隐层 1 中第i 个神经元的权系数,为输入层中第m 个神经元输入值。
应用BP神经网络逼近非线性函一、实验要求1、逼近的非线性函数选取为y=sin(x1)+cos(x2),其中有两个自变量即x1,x2,一个因变量即y。
2、逼近误差<5%,即:应用测试数据对网络进行测试时,神经网络的输出与期望值的最大误差的绝对值小于期望值的5%。
3、学习方法为经典的BP算法或改进形式的BP算法,鼓励采用改进形式的BP算法。
4、不允许采用matlab中现有的关于神经网络建立、学习、仿真的任何函数及命令。
二、实验基本原理2.1 神经网络概述BP神经网络是一种多层前馈神经网络,该网络的主要特点是信号前向传播,误差反向传播。
在前向传递中,输入信号从输入层经隐含层逐层处理,直至输出层。
每一层的神经元状态只影响下一层神经元状态。
如果输出层得不到期望输出,则转入反向传播,根据预判误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期望输出。
BP神经网络的拓扑结构如图所示。
2.2 BP神经网络训练步骤BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。
BP神经网络的训练过程包括以下几个步骤。
步骤1:网络初始化。
根据系统输入输出序列(X,Y)确定网络输入层节点数n、隐含层节点数l、输出层节点数m,初始化输入层、隐含层和输出层神经元之间的连接权值ωij,ωjk,初始化隐含层阈值a,输出层阈值b,给定学习速率和神经元激励函数。
步骤2:隐含层输出计算。
根据输入变量X,输入层和隐含层间连接权值ωij以及隐含层阈值a,计算隐含层输出H。
j 1(a )nj ij i i H f x ω==-∑ j=1,2,…,l式中,l 为隐含层节点数,f 为隐含层激励函数,该函数有多种形式,一般选取为1(x)1xf e-=+步骤3:输出层输出计算。
根据隐含层输出H ,连接权值ωjk 和阈值b ,计算BP 神经网络预测输出O 。
1lk j jk k j O H b ω==-∑ k=1,2,…,m步骤4:误差计算。
第9卷第10期2012年10月Journal of Hubei University of Economics(Humanities and Social Sciences)湖北经济学院学报(人文社会科学版)Oct.2012Vol.9No.10前言我国正处于经济发展的重要机遇期,随着城市化进程的加快,经济社会发展、产业机构升级对土地的需求量不断增加,粗放利用耕地现象严重,在不到十年的时间内耕地减少了1亿多亩,加之人多地少的基本国情使我国人地矛盾日益激化,越来越多的地区、部门意识到集约利用土地的重要性。
国家要求建设节约型社会、发展循环经济、积极探索建立国土资源管理的新机制,全面落实土地管理的各项措施节约和集约使用土地,切实保护耕地特别是基本农田。
其中,对城市土地集约利用情况进行研究与评价则是其中的一项重要举措。
城市土地集约利用需要从全局的角度综合考虑,囊括城市规划、居民生活、生态环境效益等诸多因素,但从经济效益指标的高低评价集约利用程度是不科学的,它包括人口、就业、基础设施等多个方面的指标综合评价。
对城市土地集约的研究不是追究无限的高度集约,而是找寻最佳集约度,实现土地经济、环境、社会三方面互相协调、共同发展。
近些年,我国关于评价土地集约利用的项目不断增多,传统的模式一般为首先建立评价指标体系,然后采用回归分析法、层次分析法或者特尔菲法确定权重,从而以加权值的高低度量土地集约利用程度。
这种方法主观性、判断性强,计算繁冗,影响结果的科学性、客观性。
本文通过搜集相关数据,尝试运用BP 人工神经网络系统,建立一个合适的评价模型,以合肥市为例,对其土地集约利用做一个综合的评价。
1.BP 人工神经系统模型简述对BP 人工神经网络的定义很多,其中T.Koholen 是这样定义的:人工神经网络是由大量适应性处理单元互联组成的非线性、自适应信息处理系统网络,该系统网络模拟生物神经系统对真实世界的物体做出交互反应,结果如图一所示[1]。
BP神经网络的优缺点BP神经网络,也称为“反向传播神经网络”,是一种常见的人工神经网络模型。
它是基于误差反向传播算法的一种机器学习方法,广泛应用于分类、回归、预测等场景中。
优点1. 非线性逼近能力强BP神经网络的非线性逼近能力优秀,可以逼近任何非线性的函数。
它的输入层、隐层和输出层之间的结构可以实现对高维非线性数据的拟合。
2. 适用 range 广泛BP神经网络可以应用于许多不同领域,如医药、自然语言处理、图像识别等。
它可以对各种形式的数据进行分类、回归、预测等。
3. 学习能力强BP神经网络可以通过大量的样本数据进行训练,并能够自动学习和自我适应。
可以对训练数据进行高效的学习和泛化,从而适应未知数据。
4. 适应动态环境BP神经网络可以适应不断变化的环境。
当模型和所需输出之间的关系发生变化时,网络可以自适应,自动调整权重和阈值,以适应新的情况。
缺点1. 学习速度慢BP神经网络的学习速度相对较慢。
它需要大量的时间和数据来调整权重和阈值,以达到稳定的状态。
2. 容易陷入局部极小值BP神经网络很容易陷入局部极小值,而无法达到全局最优解。
这可能会导致网络的准确度降低,并影响到后续的预测、分类和回归任务。
3. 需要大量的数据BP神经网络需要大量的数据进行训练,以使网络达到优秀的效果。
如果训练数据不充分,可能会导致网络过度拟合或欠拟合。
4. 对初始参数敏感BP神经网络对初始参数非常敏感。
如果初始参数不好,那么网络可能会无法进行训练,或者陷入局部最小值。
综合来看,BP神经网络具有良好的非线性逼近能力和学习能力,但也存在一些缺点,比如学习速度慢、容易陷入局部极小值等。
因此,在具体应用场景中,我们需要权衡BP神经网络的优点和缺点,选择合适的机器学习模型进行训练和预测。
对训练BP神经网络的步骤进行总结训练多层反向传播(BP)神经网络是一种常用的机器学习算法,用于解决分类、回归等问题。
BP神经网络具有良好的非线性建模能力和逼近能力,但其训练过程较为复杂。
下面是BP神经网络的训练步骤的详细总结。
1.数据准备:训练BP神经网络首先需要准备训练数据集,包括输入数据和目标输出数据。
输入数据是网络接收的输入特征,而目标输出数据是对应的期望输出结果。
这些数据应该经过预处理,如归一化或标准化,以确保数据在合适的范围内。
2.网络结构定义:定义BP神经网络的结构,包括网络的层数、每层的神经元数量以及神经元之间的连接权重。
网络的结构设计需要根据具体问题的性质和需求进行选择,一般包括输入层、隐藏层和输出层。
3.初始化网络参数:初始化网络参数,包括各层之间的连接权重和偏置项的取值。
通常可以随机初始化这些参数。
4.前向传播:输入数据通过网络的前向传播过程,从输入层经过隐藏层到达输出层。
在前向传播过程中,每个神经元接收到输入信号后,根据激活函数计算输出值并传递给下一层。
5.计算误差:计算网络的输出误差,通过将网络的实际输出与期望输出进行比较得到。
常用的误差函数包括均方误差(MSE)和交叉熵误差等。
6.反向传播:反向传播是BP神经网络的关键步骤,通过计算每个连接权重对误差的贡献来调整网络参数。
首先,计算输出层的误差,然后逐层向后传递误差,计算隐藏层和输入层的误差。
这个过程利用链式法则计算每个神经元的误差,并保存在反向传播过程中用于更新权重的临时变量中。
7.更新权重和偏置项:根据反向传播过程中计算得到的误差,使用梯度下降法或其他优化算法来更新网络中的权重和偏置项。
通过调整权重和偏置项来最小化总体误差,以提高网络的性能。
8.重复迭代训练:通过重复迭代上述步骤,直到网络达到预定的停止条件。
通常,可以设定一个最大的迭代次数,或者当误差降低到一定程度时停止训练。
9.结果评估:训练完成后,使用测试数据验证网络的性能。
BP神经网络算法步骤
1.初始化神经网络参数
-设置网络的输入层、隐藏层和输出层的神经元数目。
-初始化权重和偏置参数,通常使用随机小值进行初始化。
2.前向传播计算输出
-将输入样本数据传入输入层神经元。
-根据权重和偏置参数,计算隐藏层和输出层神经元的输出。
- 使用激活函数(如Sigmoid函数)将输出映射到0到1之间。
3.计算误差
4.反向传播更新权重和偏置
-根据误差函数的值,逆向计算梯度,并将梯度传播回网络中。
-使用链式法则计算隐藏层和输出层的梯度。
-根据梯度和学习率参数,更新权重和偏置值。
5.重复迭代训练
-重复执行2-4步,直到网络输出误差满足预定的停止条件。
-在每次迭代中,使用不同的训练样本对网络进行训练,以提高泛化性能。
-可以设置训练轮数和学习率等参数来控制训练过程。
6.测试和应用网络
-使用测试集或新样本对训练好的网络进行测试。
-将测试样本输入网络,获取网络的输出结果。
-根据输出结果进行分类、回归等任务,评估网络的性能。
7.对网络进行优化
-根据网络在训练和测试中的性能,调整网络的结构和参数。
-可以增加隐藏层的数目,改变激活函数,调整学习率等参数,以提高网络的性能。
以上是BP神经网络算法的基本步骤。
在实际应用中,还可以对算法进行改进和扩展,如引入正则化技术、批量更新权重等。
同时,数据的预处理和特征选择也对网络的性能有着重要的影响。
在使用BP神经网络算法时,需要根据实际问题对网络参数和训练策略进行适当调整,以获得更好的结果。
BP神经网络非线性回归研究
一、简介
BP神经网络是一种利用反向传播(Back-Propagation)算法构建的多层人工神经网络模型,它结合了神经网络学习的基本原理,将复杂的思考过程简化,并实现了从大量数据中自动提取特征,预测结果的计算。
BP 神经网络也广泛应用于非线性回归分析,在许多学习、预测任务中取得了良好的效果。
二、原理
BP神经网络的基本原理是根据输入和输出信号的差别来更新神经元之间的连接权值,以期达到最优的输出结果,简单来说就是利用反向传播法调整神经网络的权值,以便达到期望的结果。
具体地,BP神经网络的学习过程分为前馈和反向两个阶段,其中前馈阶段从输入层网络向输出层传递信号,反向阶段则根据输出层的结果实时调整每一层的连接权值,以使输出结果逐渐收敛到期望值。
三、应用
BP神经网络在实际应用中可以用来模拟非线性回归分析。
非线性回归分析是指根据输入和输出变量之间非线性关系建立的复杂回归模型,它可以用于建立多元函数,以提取多个层次的变量关系,计算非线性回归的参数,研究输入变量与输出变量之间的关系。
目录1绪论 (1)1.1人工神经网络的研究背景和意义 (1)1.2神经网络的发展与研究现状 (2)1.3神经网络的研究内容和目前存在的问题 (3)1.4神经网络的应用 (4)2神经网络结构及BP神经网络 (4)2.1神经元与网络结构 (4)2.2BP神经网络及其原理 (7)2.3BP神经网络的主要功能 (9)2.4BP网络的优点以及局限性 (9)3BP神经网络在实例中的应用 (10)3.1基于MATLAB的BP神经网络工具箱函数 (10)3.2BP网络在函数逼近中的应用 (12)3.3BP网络在样本含量估计中的应用 (17)4结束语 (23)参考文献: (24)英文摘要 (25)致谢 (26)基于MATLAB的BP神经网络应用1绪论人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统[1]。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用[2]。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。
bp网络的基本原理bp网络是一种常用的人工神经网络模型,用于模拟和解决复杂问题。
它是一种前馈型神经网络,通过前向传播和反向传播的过程来实现信息的传递和参数的更新。
在bp网络中,首先需要定义输入层、隐藏层和输出层的神经元。
输入层接收外部输入的数据,隐藏层用于处理和提取数据的特征,输出层用于输出最终的结果。
每个神经元都有一个对应的权重和偏置,用于调节输入信号的强弱和偏移。
前向传播是bp网络中的第一步,它从输入层开始,将输入的数据通过每个神经元的加权和激活函数的运算,逐层传递到输出层。
加权和的计算公式为:S = Σ(w * x) + b其中,w是权重,x是输入,b是偏置。
激活函数则负责将加权和的结果转换为神经元的输出。
常用的激活函数有sigmoid 函数、ReLU函数等。
反向传播是bp网络的第二步,它通过比较输出层的输出与实际值之间的误差,反向计算每个神经元的误差,并根据误差调整权重和偏置。
反向传播的目标是不断减小误差,使神经网络的输出与实际值更加接近。
具体的反向传播算法是通过梯度下降法实现的,它通过计算每个神经元的误差梯度,按照梯度的方向更新权重和偏置。
误差梯度表示误差对权重和偏置的变化率,通过链式法则可以计算得到。
在更新权重和偏置时,一般使用学习率来调节更新的步长,避免权重和偏置的变化过大。
通过多次迭代的前向传播和反向传播过程,bp网络不断优化和调整参数,最终使得输出与实际值的误差达到最小。
这样的训练过程可以使bp网络逐渐学习到输入数据之间的关联性和规律性,从而达到对问题进行分类、回归等任务的目的。
总结起来,bp网络的基本原理是通过前向传播将输入的数据逐层传递并计算每个神经元的输出,然后通过反向传播根据实际输出与目标输出之间的误差来调整权重和偏置,最终达到训练和优化神经网络的目标。
基于BP神经网络算法的函数逼近神经网络是一种基于生物神经元工作原理构建的计算模型,可以通过学习和调整权重来逼近非线性函数。
其中,基于误差反向传播算法(BP)的神经网络是最常见和广泛应用的一种,其能够通过反向传播来调整网络的权重,从而实现对函数的近似。
BP神经网络的算法包括了前馈和反向传播两个过程。
前馈过程是指输入信号从输入层经过隐藏层传递到输出层的过程,反向传播过程是指将网络输出与实际值进行比较,并根据误差来调整网络权重的过程。
在函数逼近问题中,我们通常将训练集中的输入值作为网络的输入,将对应的目标值作为网络的输出。
然后通过反复调整网络的权重,使得网络的输出逼近目标值。
首先,我们需要设计一个合适的神经网络结构。
对于函数逼近问题,通常使用的是多层前馈神经网络,其中包括了输入层、隐藏层和输出层。
隐藏层的神经元个数和层数可以根据具体问题进行调整,一般情况下,通过试验和调整来确定最优结构。
然后,我们需要确定误差函数。
对于函数逼近问题,最常用的误差函数是均方误差(Mean Squared Error)。
均方误差是输出值与目标值之间差值的平方和的均值。
接下来,我们进行前馈过程,将输入值通过网络传递到输出层,并计算出网络的输出值。
然后,我们计算出网络的输出与目标值之间的误差,并根据误差来调整网络的权重。
反向传播的过程中,我们使用梯度下降法来最小化误差函数,不断地调整权重以优化网络的性能。
最后,我们通过不断训练网络来达到函数逼近的目标。
训练过程中,我们将训练集中的所有样本都输入到网络中,并根据误差调整网络的权重。
通过反复训练,网络逐渐优化,输出值逼近目标值。
需要注意的是,在进行函数逼近时,我们需要将训练集和测试集分开。
训练集用于训练网络,测试集用于评估网络的性能。
如果训练集和测试集中的样本有重叠,网络可能会出现过拟合现象,导致在测试集上的性能下降。
在神经网络的函数逼近中,还有一些注意事项。
首先是选择适当的激活函数,激活函数能够在网络中引入非线性,使网络能够逼近任意函数。