ANSYS第三章 坐标系
- 格式:doc
- 大小:107.50 KB
- 文档页数:9
ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
修改面单元和体单元坐标系方向(ESYS)。
显示坐标系:用于节点和单元PLOT LIST采用的坐标系,默认采用总体笛卡尔坐标系。
ANSYS中的坐标系及相应的命令2009-06-23 22:01ANSYS中的坐标系坐标系用于定义几何结构的空间位置,规定节点的自由度,定义材料的线性方向,以及改变图形显示和列表。
ANSYS中的坐标系有:总体坐标系,局部坐标系,节点坐标系,单元坐标系,显示坐标系,结果坐标系。
同一时刻只能有一个坐标系被激活。
总体坐标系:用于确定几何结构的空间位置,是绝对参考系。
如:笛卡尔坐标系(CSYS,0),柱坐标系(CSYS,1),球坐标系(CSYS,2)。
局部坐标系:由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
节点坐标系:用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
每个节点都有自己的节点坐标系,默认为平行于总体笛卡尔坐标系。
定义的方法有:定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
显示节点坐标系(NLIST)。
此外节点复制(NGEN)时,节点坐标系也一并复制。
单元坐标系:用于规定正交材料特性的方向和面力结果的输出方向。
每个单元均有各自的单元坐标系,默认为:线单元X轴正方向由该单元的I节点指向J节点;壳单元X轴正方向由该单元的I节点指向J节点,Z轴与壳面垂直并且通过I点,其正方向有单元的I、J、K节点按右手准则确定,Y轴垂直于X轴和Z轴;2D实体和3D实体单元的单元坐标系总是平行于总体笛卡尔坐标系。
Ansys的坐标系及其操作1 总体坐标系:用来确定几何形状的参数如节点、关键点等的空间位置。
总体坐标系是一个绝对参考系,用来确定空间几何结构的位置。
Ansys中有3类总体坐标系可以供用户选择,即笛卡尔坐标系、圆柱坐标系和球坐标系。
这三种坐标系都属于右手坐标系,而且公用一个坐标原点。
激活坐标系后,会在主界面下状态中显示相应的坐标信息。
2 局部坐标系:用户自定义的坐标系。
用户可用于建模等操作。
由于很多分析中的模型很复杂,仅使用总体坐标系是不够的,这是我们必须建立自己的坐标系,即局部坐标系。
局部坐标系的原点可以与总体坐标系的原点偏移一定的距离,或者不同不同于先前定义的总体坐标系。
与总体坐标系一样,局部坐标系也可以有笛卡尔坐标系、球坐标系和圆柱坐标系。
局部坐标系还可以是圆的,也可以是椭圆的,此外还可以是环形局部坐标系。
单击at specificed loc菜单项,将弹出特定点拾取对话框,用户在图形窗口拾取任意点作为自定义的坐标原点,也可以在输入文本框中输入自定义的坐标原点。
假设在图形窗口任意拾取一点作为坐标原点后,打开以下对话框。
所有的局部坐标系和总体坐标系都可以当做当前坐标系来使用,但只能有一个当前激活的坐标系。
激活坐标系可以按照如下方法:1 每次定义一个局部坐标系后,它自动被激活成当前坐标系。
2 utility menu /workplane/change active cs to/specificed coord system3 列表显示所有的坐标系列表如果想查看所有的总体坐标系和局部坐标系的信息,可以通过以下方法CSlist或utility menu/list/other/local coord system3 节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。
总体和局部坐标系用于几何体的定位,而节点坐标系则用于定义节点自由度的方向。
每个节点都有自己的节点坐标系。
在实际应用中,有时需要给节点施加不同于坐标系主方向上的载荷或约束,这就需将节点坐标系旋转到所需要的方向,然后在节点坐标系上施加载荷或约束。
ANSYS 坐标系实用方法一、总体坐标系在每开始进行一个新的ANSYS分析时,已经预先定义了四个坐标系。
它们位于模型的总体原点。
四种类型分别为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系,以总体z 轴为轴线CS,2: 总体球坐标系CS,5: 总体柱坐标系,以总体y 轴为轴线数据库中节点坐标总是以总体笛卡尔坐标系表示,无论节点是在什么坐标系中创建的。
这4个坐标系都是ANSYS 预先定义的,它们的原点都在总体直角坐标系的原点,使用时只需选择,不要重新定义。
参见CSYS 命令。
二、局部坐标系局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径:Workplane > Local CS > Create LC来创建,其编号从11 开始。
三、激活坐标系激活坐标系或当前坐标系是分析中特定阶段的参考坐标系。
缺省为总体笛卡尔坐标系。
当创建一个新的坐标系时,新坐标系变为激活坐标系。
这是随后的操作所使用的坐标系。
也可以使用激活坐标系的命令(csys) 来改变激活坐标系。
菜单中激活坐标系的路径:Workplane > Change active CS to > 选择一个已经定义的坐标系。
四、工作平面坐标系可以以工作平面作为参考的直角坐标系,其x,y 轴在工作平面上,z 轴垂直工作平面,由右手定则确定。
工作平面坐标系的初始状态与总体直角坐标系相同,即:初始的原点在总体坐标系的原点,三个坐标轴与总体直角坐标系一致;以后,随着工作平面的移动、旋转而改变。
注意:其它坐标系,在定义(ANSYS 预先定义或用户自己定义) 后,其方向和原点就不再改变,除非重新定义,而工作平面坐标系也属于预先定义的坐标系,但是会随着工作平面的移动或旋转而改变,即它的原点和方向都不是固定的。
工作平面坐标系的编号为 4 (或用WP 表示),参见CSYS 命令。
五、节点坐标系每一个节点都有一个附着的坐标系。
无论当前的激活坐标系是什么,节点坐标系缺省总是笛卡尔坐标系。
第三章坐标系3.1坐标系的类型ANSYS程序提供了多种坐标系供用户选取。
· 总体和局部坐标系用来定位几何形状参数(节点、关键点等)的空间位置。
· 显示坐标系.用于几何形状参数的列表和显示。
· 节点坐标系。
定义每个节点的自由度方向和节点结果数据的方向。
· 单元坐标系。
确定材料特性主轴和单元结果数据的方向。
· 结果坐标系。
用来列表、显示或在通用后处理(POST1)操作中将节点或单元结果转换到一个特定的坐标系中。
工作平面与本章的坐标系分开讨论,以在建模中确定几何体素,参见§4中关于工作平面的详细信息。
3.2总体和局部坐标系总体和局部坐标系用来定位几何体。
缺省地,当定义一个节点或关键点时,其坐标系为总体笛卡尔坐标系。
可是对有些模型,定义为不是总体笛卡尔坐标系的另外坐标系可能更方便。
ANSYS程序允许用任意预定义的三种(总体)坐标系的任意一种来输入几何数据,或在任何用户定义的(局部)坐标系中进行此项工作。
3.2.1总体坐标系总体坐标系统被认为是一个绝对的参考系。
ANSYS程序提供了前面定义的三种总体坐标系:笛卡尔坐标、柱坐标和球坐标系.所有这三种系统都是右手系。
且由定义可知它们有共同的原点。
它们由其坐标系号来识别:0是笛卡尔坐标,1是柱坐标,2是球坐标(见图总体坐标系)图3-1总体坐标系· (a) 笛卡尔坐标系(X, Y, Z) 0 (C.S.0)· (b)柱坐标系(R,θ, Z com ponents) 1 (C.S.1)· (c) 球坐标系(R,θ,φcomponents) 2 (C。
S。
2)· (d)柱坐标系(R,θ,Y components) 5 (C.S.5)3.2。
2局部坐标系在许多情况下,有必要建立自己的坐标系。
其原点与总体坐标系的原点偏移一定的距离,或其方位不同于先前定义的总体坐标系(如图3—2所示用局部、节点或工作平面坐标系旋转定义的一个坐标系的例子)。
ANSYS有限元基础教程第三章答案1.填空题(1)ANSYS 11.0的操作方式可分为GUI方式和命令方式。
(2)主菜单(Main Menu)是使用GUI模式进行有限元分析的主要操作窗口,包含了ANSYS软件的主要功能:参数选择、预处理器、求解计算器或求解计算模块、通用后处理、时间历程后处理模块或称时间历程后处理器和优化设计模块等。
(3)可以对图形视窗中的模型进行缩放、移动和视角切换的工具栏是试图工具栏。
(4)工程领域常用的数据模拟方法有有限元法、边界元法、离散单元法和有限差分法等。
就广泛性而言,主要还是有限单元法。
2.判断题(1)ANSYS是一个通用的有限元分析软件,它具有多种多样的分析能力,包括简单的线性静态分析和复杂的非线性动态分析。
(√)(2)选择开始→程序→ANSYS 11.0→ANSYS Product Launcher命令可直接启动ANSYS 11.0程序。
(×)(3)ANSYS软件中常用到的有限单元有Link单元、Beam单元、Block单元和Plane单元等。
(√)(4)一个典型的ANSYS分析过程可分为以下6个步骤:定义参数、创建几何模型、划分网格、加载数据、求解计算和结果分析。
(√)第2章实体建模1.填空题(1)实体模型由点、线、面和体组合而成,这些基本的点、线、面和体在ANSYS软件中通常称为图元。
直接生成实体模型的方法主要有自底向上和自顶向下两种。
(2)建立实体模型时,关键点是最小的图元对象,关键点即为结构中一个点的坐标,点与点连接成线,也可直接组合成面及体。
(3)布尔运算就是对生成的实体模型进行诸如交、并、减等的逻辑运算处理。
这样就给用户快速生成复杂模型提供了极大的方便。
(4)将两个或多个图元连接以生成三个或更多新的图元的布尔运算叫做搭接运算。
2.判断题(1)选择Main Menu→Preprocessor→Modeling→Delete→Lines Only命令,可删除线及其上的关键点。
第三章前处理3-1General Preprocessing简介在这一章,将会涵盖不使用Wizards 的使用特征:内容:A. 几何B. 接触C. 作业3-1, “接触控制”D.E.F.G. 网格划分命名选择坐标系作业3-2, “网格控制”Training Manual这一章介绍的功能会应用在ANSYS DesignSpace Entra和更高级的产品的许可中。
3-2General Preprocessing简介上一章,通过使用Mechanical Wizards介绍Mechanical GUI 。
本章介绍不使用Wizards 的GUI操作。
Training Manual3-3General Preprocessing… 简介The Outline Tree 是进行分析的基本步骤Training Manual– The Context Toolbar, Details View, 和Graphics Window 的更新, 都是靠Outline Tree的分支进行选择。
–本章将会重点使用Outline Tree 。
使用Outline Tree意味着用户导航会通过Simulation GUI.3-4General PreprocessingA. 几何分支Geometry 分支列出了模型的组成部分。
在模拟过程中,有三种类型的实体会被分析到:––––实体一般是3D 或2D 体/面/部件只由面组成的面体只由线组成的线体后面将一一进行讲解Training Manual3-5General Preprocessing… 体的类型实体一般为3D 或2D:Training Manual–3D 实体是由带有二次状态方程的高阶四面体或六面体实体单元进行网格划分的。
–2D 实体是由带有二次状态方程的高阶三角形或四边形实体单元进行网格划分的。
“2D”开关设置在Project 页输入。
几何导入后,不能将几何类型由2D 变成3D 。
Ansys坐标系的种类创建有限元模型,需要通过坐标系对所要生成的模型进行定位。
Ansys根据不同的用途,提供了多种座标系,用户可以根据具体情况选择使用、●整体和局部坐标系:确定几何形状参数(节点、关键点等)在空间中的位置—●节点坐标系:定父各节点的自由度方向和节点结果数据的取向。
●举元坐标系·定义单元各向异性材料性质、施加面荷载的方向和单元结果数据的取向。
●显示坐标系:决定几何体被列出和显示的坐标系,默认时为整体直角坐标系.●结果坐标系:节点或单元结果数据在列表或显示时所采用的特殊坐标系,默认时为整体坐标系。
1.整体与局部坐标系整体和局部座标系用来对几何体进行空间定位。
默认情况下,ANSYS使用的坐标系是整体的笛卡儿坐标系(即直角坐标系)。
为方便建立模型,根据模型特点;用户可以选择ANSYS预定义的几种(整体)座标系中的任意一种输入儿何数据—用户也可以使用自己定义的(局部) 坐标系。
ANSYS的整体坐标系有二类:直角坐标系/Cartesiancoordinatesystem,C,S,O)、柱座标系(Cylindricalcoordinatesystem,C.S.1)和球座标系(Sphericalcoordinatesystem,C.S.2)、三类坐标系均属右手系,而且原点相互重合。
局部坐标系是用户自己建立的坐标系,其原点不同于"整体座标系的原点‘偏离一定距离),或其方位不同于整体坐标系(坐标轴偏移一定角度)。
每个坐标系均分配一个坐标号以标识,对用户创建的局部座标系,其坐标系号必须是不小于ll的整数。
可以按下面几种方式创建局部坐标系.根据整体座标系定义局部坐标系:命令:LOCAL,KCN,KCS.XC,YC,2C,THXY,THYZ,THZX,PARl,PAR2●GUI:Utility Menu->WorkPlane->Local Coordinate Systems->Create Local CS->At Specified loc例如:LOCAL,11,0,1.O,2.O,3.0,5.O,10.O,15.O--定义局部坐标系为11,原点为整体直角坐标系上的点(1.0,2.0,3.0),绕z,x,Y轴旋转角度为5.0,10.o,15.o。
一、工作平面(Working Plane)工作平面是创建几何模型的参考(X,Y)平面,在前处理器中用来建模(几何和网格)二、总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是以总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
三、局部坐标系局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径Workplane>Local CS>Create LC来创建。
激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane>Change active CS to>。
四、节点坐标系每一个节点都有一个附着的坐标系。
节点坐标系缺省总是笛卡尔坐标系并与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
时间历程后处理器/POST26 中的结果数据是在节点坐标系下表达的。
而通用后处理器/POST1中的结果是按结果坐标系进行表达的。
例如: 模型中任意位置的一个圆,要施加径向约束。
首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。
这个局部坐标系现在成为激活的坐标系。
然后选择圆上的所有节点。
通过使用"Prep7>Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。
未选择节点保持不变。
节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。
这些节点坐标系的X方向现在沿径向。
约束这些选择节点的X方向,就是施加的径向约束。
注意:节点坐标系总是笛卡尔坐标系。
ANSYS中坐标系1. 总体坐标系在每开始进行一个新的ANSYS分析时,已经有三个坐标系预先定义了。
它们位于模型的总体原点。
三种类型为:CS,0: 总体笛卡尔坐标系CS,1: 总体柱坐标系CS,2: 总体球坐标系数据库中节点坐标总是默认总体笛卡尔坐标系,无论节点是在什么坐标系中创建的。
2. 局部坐标系由用户自己创建的(坐标系编号从11开始),原点相对于总体坐标系的原点偏离了一定的距离或各轴相对于总体坐标系偏转了一定的角度。
定义的方法有:在特定位置(笛卡尔坐标系)定义(LOCAL);通过已有节点定义(CS);通过已有关键点定义(CSKP);以当前定义的工作平面的原点为中心定义(CSWPLA);通过已激活的坐标系定义(CLOCAL)。
删除局部坐标系(CSDELE)。
查看局部坐标系(CSLIST)。
局部坐标系是用户定义的坐标系。
局部坐标系可以通过菜单路径:Workplane>Local CS>Create LC>at WP Origin来创建。
坐标系编号其中,Cartesian 0: 总体笛卡尔坐标系; Cylindrical 1: 总体柱坐标系; Spherical 2: 总体球坐标系; Toroidal 3: 圆环坐标系。
3. 激活的坐标系激活的坐标系是分析中特定时间的参考系。
缺省为总体笛卡尔坐标系。
当创建了一个新的坐标系时,新坐标系变为激活坐标系。
这表明后面的激活坐标系的命令。
菜单中激活坐标系的路径Workplane>Change active CS to>。
材料4. 节点坐标系4.1 定义节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是默认与总体笛卡尔坐标系平行。
用于定义节点自由度的方向,需要在不同于总体坐标系的方向施加位移约束时用到。
4.2 调整节点坐标系方法定义节点时直接设定(N);将节点坐标系旋转到当前激活的坐标系的方向(NROTAT,可以批量操作);按照给定的旋转角度旋转(NMODIF);通过新坐标系各轴的方向余弦旋转(NANG)。
ansys 坐标系节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。
而通用后处理器 /POST1中的结果是按结果坐标系进行表达的。
例如: 模型中任意位置的一个圆,要施加径向约束。
首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。
这个局部坐标系现在成为激活的坐标系。
然后选择圆上的所有节点。
通过使用 "Prep7> Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。
未选择节点保持不变。
节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。
这些节点坐标系的X方向现在沿径向。
约束这些选择节点的X方向,就是施加的径向约束。
注意:节点坐标系总是笛卡尔坐标系。
可以将节点坐标系旋转到一个局部柱坐标下。
这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。
可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。
有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括:输入数据:1 自由度常数2 力3 主自由度4 耦合节点5 约束方程等输出数据:1 节点自由度结果2 节点载荷3 反作用载荷等但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。
具体操作可参见ANSYS联机帮助手册中的“分析过程指导手册->建模与分网指南->坐标系->节点坐标系”中说明的步骤实现。
ansys坐标系ANSYS坐标系以及工作平面的具体说明ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。
而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。
▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。
输入过程中未给出值的符号用0默认。
LOCAL的目的主要是为了建模方便以及选取便利。
LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0)LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0)LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2)【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。
▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCNANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL 或者CSYS命令才改变。
这个命令影响到点(K)坐标的输入类型。
工作平面(WP)与全局坐标系重合。
CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点CSYS,2 !激活全局球坐标,原点在全局坐标的原点CSYS,4(WP) !激活工作平面,原点在工作平面的原点CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令:1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN注:所有点的坐标均是全局坐标。