多元线性回归模型的基本假定
- 格式:ppt
- 大小:62.00 KB
- 文档页数:1
经典多元线性回归模型的基本假定
1、判定系数检验。
多元线性回归模型判定系数的定义与一元线性回归分析类似。
判定系数R的计算公式为:R = R接近于1表明Y 与X1,X2,…,Xk之间的线性关系程度密切;R接近于0表明Y与X1,X2,…,Xk之间的线性关系程度不密切。
2、回归系数显著性检验。
在多元回归分析中,回归系数显著性检验是检验模型中每个自变量与因变量之间的线性关系是否显著。
显著性检验是通过计算各回归系数的t检验值进行的。
回归系数的t检验值的计算公式为:=(j = 1,2,…,k),式中是回归系数的标准差。
3、回归方程的显著性检验。
回归方程的显著性检验是检验所有自变量作为一个整体与因变量之间是否有显著的线性相关关系。
显著性检验是通过F检验进行的。
F检验值的计算公式是:F(k,n-k -1)=多元回归方程的显著性检验与一元回归方程类似,在此也不再赘述。
第三章 多元线性回归模型基本概念(1)多元线性回归模型; (2)偏回归系数;(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?2.在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中二者是否有等价的作用?3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?4.在一项调查大学生一学期平均成绩(Y )与每周在学习(1X )、睡觉(2X )、 娱乐(3X )与其他各种活动(4X )所用时间的关系的研究中,建立如下回归模型: 011223344Y X X X X u βββββ=+++++如果这些活动所用时间的总和为一周的总小时数168。
问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?5.表3-1给出三变量模型的回归结果。
表 3-1(1)求样本容量n ,残差平方和RSS ,回归平方和ESS 及残差平方和RSS 的自由度。
(2)求拟合优度2R 及调整的拟合优度2R -。
(3)检验假设:2X 和3X 对Y 无影响。
应采用什么假设检验?为什么? (4)根据以上信息,你能否确定3X 和3X 各自对Y 的影响?6.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 12310.360.0940.1310.210Y X X X =-++20.214R =其中,Y 为劳动力受教育年数,1X 为该劳动力家庭中兄弟姐妹的人数,2X 与3X 分别为母亲与父亲受教育的年数。
问:(1) 1X 是否具有预期的影响?为什么?若2X 与3X 保持不变,为了使预测的受教育水平减少一年,需要1X 增加多少?(2)请对2X 的系数给予适当的解释。
第五章 多元线性回归模型在第四章中,我们讨论只有一个解释变量影响被解释变量的情况,但在实际生活中,往往是多个解释变量同时影响着被解释变量。
需要我们建立多元线性回归模型。
一、多元线性模型及其假定 多元线性回归模型的一般形式是i iK K i i i x x x y εβββ++++= 2211令列向量x 是变量x k ,k =1,2,的n 个观测值,并用这些数据组成一个n ×K 数据矩阵X ,在多数情况下,X 的第一列假定为一列1,则β1就是模型中的常数项。
最后,令y 是n 个观测值y 1, y 2, …, y n 组成的列向量,现在可将模型写为:εββ++=K K x x y 11构成多元线性回归模型的一组基本假设为 假定1. εβ+=X y我们主要兴趣在于对参数向量β进行估计和推断。
假定2. ,0][][][][21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n E E E E εεεε 假定3. n I E 2][σεε='假定4. 0]|[=X E ε我们假定X 中不包含ε的任何信息,由于)],|(,[],[X E X Cov X Cov εε= (1)所以假定4暗示着0],[=εX Cov 。
(1)式成立是因为,对于任何的双变量X ,Y ,有E(XY)=E(XE(Y|X)),而且])')|()([(])')((),(EY X Y E EX X E EY Y EX X E Y X Cov --=--=))|(,(X Y E X Cov =这也暗示 βX X y E =]|[假定5 X 是秩为K 的n ×K 随机矩阵 这意味着X 列满秩,X 的各列是线性无关的。
在需要作假设检验和统计推断时,我们总是假定: 假定6 ],0[~2I N σε 二、最小二乘回归 1、最小二乘向量系数采用最小二乘法寻找未知参数β的估计量βˆ,它要求β的估计βˆ满足下面的条件 22min ˆ)ˆ(ββββX y X y S -=-∆ (2)其中()()∑∑==-'-=⎪⎪⎭⎫ ⎝⎛-∆-nj Kj j ij i X y X y x y X y 1212ββββ,min 是对所有的m 维向量β取极小值。
计量经济学简答题1.简述计量经济学中的检验包括哪些内容?(1)t 检验:回归模型中变量的显著性检验;(2)F 检验:方程总体线性的显著性检验;受约束的回归检验;多重共线性检验(判定系数检验法和逐步回归法检验法);异方差性检验(G-Q 检验)(3)卡方检验:异方差性的检验(White 检验)、拉格朗日乘数(LM )检验(4)拟合优度检验:检验模型对样本观测值的拟合程度,一元线性回归模型中看可决系数R 2统计量的值,多元回归模型中看调整的R 2统计量的值。
其值越接近1,说明模型的拟合优度较高。
(5)异方差性的检验:图示检验法、White 检验、布罗施-帕甘(B-P )检验(F 统计量或LM统计量)、戈里瑟(Gleiser )检验。
(6)序列相关性的检验:图示法、回归检验法、D.W.检验法、拉格朗日乘数(LM )检验(7)时间序列的平稳性检验:单位根检验(DF 检验、ADF 检验)2.计量经济学研究的对象是什么?计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律(或者说,计量经学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。
3.应用计量经济学方法,研究客观经济现象的步骤是什么?(1)陈述理论(或假设);(2)建立计量经济模型;(3)收集数据;(4)估计参数;(5)假设检验;(6)预测和政策分析。
4.多元线性回归模型的经典的基本假定有哪些?(1)回归模型是正确设定的;(2)解释变量X 1,X 2...X K 在所抽取的样本中具有变异性,且X j 之间不存在严格线性相关性(无完全多重共线性);(3)随机干扰项具有条件零均值性:()0...|2,1=K i X X X E μ;(4)随机干扰项具有条件同方差及不序列相关性:()221...,|ar σμ=K i X X X V ,()0...,|,21=K j i X X X Cov μμ;(5)随机干扰项满足正态分布:()221,0~...,|σμN X X X K i 。