多元线性回归方程的建立
- 格式:docx
- 大小:136.25 KB
- 文档页数:12
多元线性回归方程的建立建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。
与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。
由于残差平方和(2-2-5)是的非负二次式,所以它的最小值一定存在。
根据极值原理,当Q取得极值时,应满足由(2-2-5)式,即满足(2-2-6)(2-2-6)式称为正规方程组。
它可以化为以下形式(2-2-7)如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。
则有(2-2-8)式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X 的转置矩阵。
(2-2-7)式右端常数项也可用矩阵D来表示即因此(2-2-7)式可写成Ab=D (2-2-10)或(2-2-11)如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为(2-2-12)也就是多元线性回归方程的回归系数。
为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。
(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为(2-2-13)式中(2-2-14)将(2-2-13)式代入(2-2-7)式中的其余各方程,得(2-2-15)其中(2-2-16)将方程组(2-2-15)式用矩阵表示,则有Lb=F (2-2-17)其中于是b=L-1F (2-2-18)因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。
求b时,可用克莱姆法则求解,也可通过高斯变换求解。
如果把b直接代入(2-2-18)式,由于要先求出L 的逆矩阵,因而相对复杂一些。
例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
二、多元线性回归模型在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:a ka k a a a x x x y εββββ+++++=...22110(3.2.11)式中:k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为ŷ=k k x b x b x b b ++++...22110(3.2.12)式中:0b 为常数;k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使()[]min (2)12211012→++++-=⎪⎭⎫⎝⎛-=∑∑==∧n a ka k a a a na a a xb x b x b b y y y Q (3.2.13)有求极值的必要条件得⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫⎝⎛--=∂∂∑∑=∧=∧n a ja a a jn a a a k j x y y b Q y y b Q 110),...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================na a ka k n a ka n a ka a n a ka a n a ka n a aa k n a ka a n a a n a a a na a na aa k n a ka a n a a a n a a n a a na ak n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101121221221121012111121211121011112121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15)方程组(3.2.15)式,被称为正规方程组。
多元线性回归模型过程
多元线性回归是一种常用的回归分析模型,它可以用来分析两个或多个自变量之间的线性关系。
下面介绍多元线性回归模型的过程:
一、建立模型
1、观察原始数据:首先要收集需要分析的原始数据,从数据中观察现象背后
的规律来获取有效信息;
2、定义自变量与因变量:根据原始数据形成假设,确定要分析的自变量和因
变量,从而确定要分析的模型;
3、归纳回归方程式:运用最小二乘法解决回归方程,归纳出多元线性回归模型;
二、检验模型
1、显著性检验:检验所选变量是否对因变量有显著影响;
2、线性有效性检验:检验多元线性回归模型的线性有效性,确定拟合数据的完整性;
3、自相关性检验:检验各个自变量间的线性关系是否存在自相关现象;
4、影响因素较差检验:检验因变量的预测值与实际值之间的相对关系;
三、参数估计
1、极大似然估计:根据已建立的多元线性回归模型,可以运用极大似然估计,得出模型中未知参数的点估计值;
2、大致估计:利用已经进行检验的多元线性回归模型,对模型参数进行大致
估计,求出平均偏差平方根,从而估计模型的精确度;
四、分析模型
1、确定因子影响:根据已建立多元线性回归模型,可以求出每个自变量的系数,从而确定影响因变量的主要因素;
2、决定系数:可以利用模型求出每个自变量的决定系数,从而求得因变量对自变量的百分比影响;
3、对因变量施加假设:多元线性回归模型可以根据模型参数影响程度和数据情况,在每个自变量上施加多种假设,以确定模型最合理的假设;
4、模型检验:根据已建立的多元线性回归模型,可以运用张量分析,根据模型的指标,检验模型的被解释力水平,判断模型的有效性。
回归方程是如何建立的?一、回归分析的基本概念回归分析是一种常用的统计工具,用于探究变量之间的关系以及预测未来的趋势。
它通过建立数学模型,研究自变量与因变量之间的函数关系,从而实现对未知数据的预测。
回归方程便是其中最为重要的数学模型,它描述了自变量与因变量之间的关系,并可以据此进行预测和解释。
二、回归方程的建立过程1. 数据收集与整理在建立回归方程之前,首先需要收集相关的数据。
这些数据应当全面、真实地反映自变量和因变量之间的关系,以确保回归分析结果的准确性和可靠性。
之后,需要对数据进行整理和清洗,排除异常值、缺失值等干扰因素,使得数据具备一定的可靠性和精确性。
2. 变量选择与处理在建立回归方程时,需要明确自变量和因变量。
在选择自变量时,应根据实际问题和研究目的进行合理的选择,避免自变量之间的相关性过高,以免产生多重共线性问题。
同时,还可以进行变量的处理,如变量变换、指标构建等,以充分利用数据的信息。
3. 建立回归模型在选择好自变量和因变量之后,可以根据实际问题和数据情况选择适合的回归模型。
常见的回归模型有线性回归、多元线性回归、非线性回归等。
线性回归是最简单和常用的回归模型,它可以通过最小二乘估计法来估计模型参数,进而得到回归方程。
4. 模型评估与拟合完成回归模型的建立后,需要对模型进行评估和拟合。
通过检验回归模型的显著性、解释度和拟合度,可以评判回归模型的合理性和可靠性。
常用的模型评估指标有残差分析、决定系数、方差分析等。
三、回归方程的应用和限制1. 应用范围回归方程可以应用于各个领域,如经济学、社会学、医学等。
它可以用于预测未来的趋势和变化,为决策提供科学依据。
同时,回归方程还可以用于解释因果关系和探究变量之间的关系。
2. 限制与注意事项在应用回归方程时,需要注意以下几个问题。
首先,回归方程是基于当前数据建立的,对于未来数据的预测存在一定的不确定性。
其次,回归方程建立的前提是自变量和因变量之间存在一定的相关性,如果相关性较弱,则回归分析的结果可能不够可靠。
多元线性回归方程的建立
建立多元线性回归方程,实际上是对多元线性模型(2-2-4)进行估计,寻求估计式(2-2-3)的过程。
与一元线性回归分析相同,其基本思想是根据最小二乘原理,求解使全部观测值与回归值的残差平方和达到最小值。
由于残差平方和
(2-2-5)
是的非负二次式,所以它的最小值一定存在。
根据极值原理,当Q取得极值时,应满足
由(2-2-5)式,即满足
(2-2-6)
(2-2-6)式称为正规方程组。
它可以化为以下形式
(2-
2-7)
如果用A表示上述方程组的系数矩阵可以看出A是对称矩阵。
则有
(2-2-8)
式中X是多元线性回归模型中数据的结构矩阵,是结构矩阵X 的转置矩阵。
(2-2-7)式右端常数项也可用矩阵D来表示
即
因此(2-2-7)式可写成
Ab=D (2-2-10)
或
(2-2-11)
如果A满秩(即A的行列式)那么A的逆矩阵A-1存在,则由(2-10)式和(2-11)式得的最小二乘估计为
(2-2-12)也就是多元线性回归方程的回归系数。
为了计算方便往往并不先求,再求b,而是通过解线性方程组(2-2-7)来求b。
(2-2-7)是一个有p+1个未知量的线性方程组,它的第一个方程可化为
(2-2-13)式中
(2-2-14)将(2-2-13)式代入(2-2-7)式中的其余各方程,得
(2-2-15)其中
(2-2-16)
将方程组(2-2-15)式用矩阵表示,则有
Lb=F (2-2-17)
其中
于是
b=L-1F (2-2-18)
因此求解多元线性回归方程的系数可由(2-2-16)式先求出L,然后将其代回(2-2-17)式中求解。
求b时,可用克莱姆法则求解,也可通过高斯变换求解。
如果把b直接代入(2-2-18)式,由于要先求出L 的逆矩阵,因而相对复杂一些。
例2-2-1 表2-2-1为某地区土壤内含植物可给态磷(y)与土壤内所含无机磷浓度(x1)、土壤内溶于K2CO3溶液并受溴化物水解的有机磷浓度(x2)以及土壤内溶于K2CO3溶液但不溶于溴化物的有机磷(x3)的观察数据。
求y对x1,x2,x3的线性回归方程。
表2-2-1 土壤含磷情况观察数据
计算如下:
由(2-2-16)式
代入(2-2-15)式得
(2-2-19)若用克莱姆法则解上述方程组,则其解为
(2-2-20)其中
计算得
b 1=1.7848,b
2
=-0.0834,b
3
=0.1611
回归方程为
应用克莱姆法则求解线性方程组计算量偏大,下面介绍更实用的方法——高斯消去法和消去变换。
多项式回归
标签:c
2009-07-04 14:52 6443人阅读评论(0) 收藏举报在上一节所介绍的非线性回归分析,首先要求我们对回归方程的函数模型做出判断。
虽然在一些特定的情况下我们可以比较容易地做到这一点,但是在许多实际问题上常常会令我们不知所措。
根据高等数学知识我们知道,任何曲线可以近似地用多项式表示,所以在这种情况下我们可以用多项式进行逼近,即多项式回归分析。
一、多项式回归方法
假设变量y与x的关系为p次多项式,且在x i处对y的随机误
差(i=1,2,…,n)服从正态分布N(0,),则
令
x i1=x
i
, x
i2
=x
i
2,…,x
ip
=x
i
p
则上述非线性的多项式模型就转化为多元线性模型,即
这样我们就可以用前面介绍的多元线性回归分析的方法来解决上述问题了。
其系数矩阵、结构矩阵、常数项矩阵分别为
(2-4-11)
(2-4-12)
(2-4-
13)
回归方程系数的最小二乘估计为
(2-4
-14)
需要说明的是,在多项式回归分析中,检验b j是否显著,实质上就是判断x的j次项x j对y是否有显著影响。
对于多元多项式回归问题,也可以化为多元线性回归问题来解决。
例如,对于
(2-4 -15)
令x
i1=Z
i1
, x
i2
=Z
i2
, x
i3
=Z
i1
2, x
i4
=Z
i1
Z
i2
, x
i5
=Z
i2
2
则(2-4-15)式转化为
转化后就可以按照多元线性回归分析的方法解决了。
下面我们通过一个实例来进一步说明多项式回归分析方法。
一、应用举例
例2-4-2 某种合金中的主要成分为元素A和B,试验发现这两种元素之和与合金膨胀系数之间有一定的数量关系,试根据表2-4-3给出的试验数据找出y与x之间的回归关系。
表2-4-3 例2-4-2试验数据
首先画出散点图(图2-4-3)。
从散点图可以看出,y与x的关系可以用一个二次多项式来描述:
i=1,2,3…,13
现在我们就可以用本篇第二章介绍的方法求出
的最小二乘估计。
由表2-4-3给出的数据,求出
由此可列出二元线性方程组
将这个方程组写成矩阵形式,并通过初等变换求b1,b2和系数矩阵L的逆矩阵L-1:
于是
=-13.3854
b
1
=0.16598
b
2
=2.3323+13.385440-0.165981603.5=271.599
b
因此
下面对回归方程作显著性检验:
由(2-2-43)式
S
回
=由(2-2-42)式
S
总
=
S
残=L
yy
- S
回
=0.2572
将上述结果代入表2-2-2中制成方差分析表如下:
表2-4-4 方差分析表
查F检验表,F0。
01(2,10)=7.56, F>F0.01(2 ,10),说明回归方程是高度显著的。
下面对回归系数作显著性检验
由前面的计算结果可知:
b
1=-13.3854 b
2
=0.16598
c
11=51.125 c
22
=7.991610-3
由(2-2-54)式
由(2-2-53)式
检验结果说明的x一次及二次项对y都有显著影响。