10交流阻抗法(2)
- 格式:ppt
- 大小:1.38 MB
- 文档页数:56
超级电容器的三种测试方法详解(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流★★★★★★★★★★关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。
我先说说自己的蠢蠢的不成熟的经验。
不正确或者不妥的地方欢迎大家指正批评,共同交流。
希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。
也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。
循环伏安cyclic voltammetry (CV)由CV曲线,可以直观的知道大致一下三个方面的信息Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。
工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。
Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算)Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性)测试的时候比较重要的测试参数:扫描速度和电位扫描范围。
电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。
恒电流充放电galvanostatic?charge–discharge (GCD)由GCD测试曲线,一般可以得到以下几方面的信息:the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化)degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性)Cyclelife(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。
交流阻抗和循环伏安法
交流阻抗和循环伏安法是两种常用的电化学测试方法。
交流阻抗法是一种测量电化学反应过程中阻抗的方法。
通过在不同频率下施加小电信号来测量电极材料的电学阻抗,可以得出电极材料的电化学反应动力学、扩散系数、电极材料与电解质之间的界面反应等信息。
循环伏安法是一种静电化学技术,可用于研究电极材料的电化学反应和电化学反应动力学。
该方法控制电极电势以不同的速率,随时间以三角波形一次或多次反复
扫描,电势范围是使电极上能交替发生不同的还原和氧化反应,并记录电流-电压曲
线。
根据曲线形状可以判断电极反应的可逆程度,中间体、相界吸附或新相形成的可能性,以及偶联化学反应的性质等。
实验一 软包锂离子电池的制备及性能表征一、实验目的1、通过制备软包锂离子电池,掌握化学电源的工作原理和制备方法。
2、通过对制备的电池性能的测试,掌握表征电池性能的实验技术。
二、实验原理及内容设计2.1 实验原理以炭材料为负极,以含锂的化合物作正极的锂电池,在充放电过程中,没有金属锂存在,只有锂离子,这就是锂离子电池。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。
而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。
同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。
回正极的锂离子越多,放电容量越高。
我们通常所说的电池容量指的就是放电容量。
在Li-ion的充放电过程中,锂离子处于从正极→负极→正极的运动状态。
Li-ion Batteries就像一把摇椅,摇椅的两端为电池的两极,而锂离子就像运动员一样在摇椅来回奔跑。
所以Li-ion Batteries又叫摇椅式电池。
一般锂电池充电电流设定在0.2C至1C之间,电流越大,充电越快,同时电池发热也越大。
而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。
就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。
(1)正极正极材料:可选正极材料很多,目前主流产品多采用锂铁磷酸盐。
正极反应:放电时锂离子嵌入,充电时锂离子脱嵌。
充电时:LiFePO4→ Li1-x FePO4 + xLi+ + xe放电时:Li1-x FePO4+ xLi+ + xe →LiFePO4(2)负极负极材料:多采用石墨。
新的研究发现钛酸盐可能是更好的材料。
负极反应:放电时锂离子脱插,充电时锂离子插入。
充电时:xLi ++ xe + C →Li x C 放电时:LixC → xLi + + xe + C电池反应:LiFePO 4+C Li 1-x FePO 4 + Li x C图1 锂离子电池结构示意图2.2 实验内容称量正极材料:LiFePO 4(活性物质)7g ,乙炔黑(导电剂)2g ,PVDF (粘结剂)1g 和有机溶剂(NMP )约21ml ;负极材料石墨8g ,PVDF (粘结剂)1g 和有机溶剂20ml ,制备软包锂离子电池。
用交流阻抗法,用CHI电化学分析仪测试电导率,测试过程交流微扰幅度为5 mV,频率范围为1~105 Hz。
(1) 吸碱率切取10 cm ×10 cm的原纸, 称量,记为m1 ; 浸入质量分数30%的KOH溶液中, 015 h后取出, 悬挂10 min, 称量, 记为m2 ; 吸碱率为(m2- m1 ) /m1 ×100%。
(2) 电解液保留率切取314 cm ×5 cm的原纸,称量, 记为m3 ; 浸入质量分数30%的KOH溶液中,充分浸泡后, 取出, 放在滤纸上, 再在原纸上加100g重物, 压30 s, 称量, 记为m4 ; 电解液保留率为(m4 - m3 ) /m3 ×100%。
(3) 吸碱高度每张纸切取15mm ×250mm的试样2条, 夹在试样夹上, 试样垂直地浸入温度20℃、质量分数30%的KOH溶液中准确至5mm, 015 h后,记录水爬升高度, 即为吸碱高度。
收缩率:根据GB/T 12027—2004标准[4],裁取100 mm×100 mm样品5张,在110℃烘箱中处理1 h,然后测其纵向尺寸。
穿刺强度:根据Din 53373标准[5],采用一个没有锐边缘的直径为1 mm的针,在穿刺强度测试仪上(深圳市新三思材料检测有限公司)以3 m/min速度刺向环状固定的薄膜,记录穿刺薄膜所需要的最大力,以g表示。
透气性:根据ASTM D726标准[6],采用美国Gurley透气度测试仪测试,以Gurley值表示。
Gurley 为在一定压力下,50 ml气体通过微孔隔膜所需的时间,低Gurley值表明薄膜具有较好的透气性。
电解液吸附能力:参照SJ/T10171.1标准[7],采用1 mol/L硝酸锂/碳酸乙烯酯/碳酸丙烯酯电解液,将微孔隔膜浸泡在该电解液中4 h,然后取出,悬空30 s,在电子天平上测其浸泡前后的质量,计算吸液率(吸液率=吸液量/隔膜质量×100%)。
交流阻抗法研究Fe(CN)63+/Fe(CN)62+的电极反应一、实验目的1.利用阻抗法研究不同浓度铁氢化钾的电极反应.2.掌握交流阻抗的操作技术。
(我们这个是有做什么条件实验的么?即什么对什么的影响那些?) 二、实验原理 1、交流阻抗电化学阻抗谱(Electrochemical Impedance Spectroscopy ,EIS )即给电化学系统施加一个频率不同的小振幅的交流正弦电势波,测量交流电势与电流信号的比值(系统的阻抗)随正弦波频率ω的变化,或者是阻抗的相位角φ随ω的变化. 由于扰动电信号是交流信号,所以电化学阻抗谱也叫做交流阻抗谱。
测量的响应信号是交流电势与电流信号的比值,通常称之为系统的阻抗,随正弦波频率ω的变化,或者是阻抗的相位角随频率的变化。
电化学阻抗测量技术是利用波形发生器,产生一个小幅正弦电势信号,通过恒电位仪,施加到电化学系统上,将输出的电流/电势信号,经过转换,再利用锁相放大器或频谱分析仪,输出阻抗及其模量或相位角。
通过改变正弦波的频率,可获得一些列不同频率下的阻抗、阻抗的模量和相位角,作图即得电化学阻抗谱-这种方法就称为电化学阻抗谱法。
由于扰动电信号是交流信号,所以电化学阻抗谱也叫做交流阻抗谱。
如果对系统施加一个正弦波电信号作为扰动信号,则相应地系统产生一个与扰动信号相同频率的响应信号。
通常,正弦信号()U ω被定义为0()=()sin t U U ωωω()(1)其中,U 为电压,ω为角频率(=2f ωπ,f 为频率),t 为时间。
如果对体系施加如式(1)的正弦信号,则体系产生如式(2)的响应信号0()sin t+I I ωωθ=()(2)其中()I ω为响应信号,0I为电压,θ为相位角。
式(1)与式(2)中的频率相同。
而体系的复阻抗*()ωZ则服从欧姆定律:*()()()iUZ eIθωωω==Z'''cos sinZ i Z Z iZθθ=+=+即'''cossinZ ZZ Zθθ==其中,1i=-,Z为模,'Z为实部,''Z为虚部。