第七章气体动理论习题
- 格式:doc
- 大小:135.00 KB
- 文档页数:6
⽓体动理论(附答案)⽓体动理论⼀、填空题1.(本题3分)某⽓体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ = 1.24×10-2 kg/m3,则该⽓体分⼦的⽅均根速率为____________。
(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分⼦密度为1026m-3,每个分⼦的质量为3×10-27kg,设其中1/6分⼦数以速率v=200m/s垂直向容器的⼀壁运动,⽽其余5/6分⼦或者离开此壁、或者平⾏此壁⽅向运动,且分⼦与容器壁的碰撞为完全弹性的。
则(1)每个分⼦作⽤于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位⾯积上的分⼦数n0=___________;(3)作⽤在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢⽓的容器以某速度v作定向运动,假设该容器突然停⽌,⽓体的全部定向运动动能都变为⽓体分⼦热运动的动能,此时容器中⽓体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中⽓体分⼦的平均动能增加了_____________J。
(普适⽓体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢⽓分⼦可视为刚性分⼦。
)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦⽓和氢⽓(均视为刚性分⼦理想⽓体),在某⼀温度T下混合,所有氢分⼦所具有的热运动动能在系统总热运动动能中所占的百分⽐为________。
答案:62.5%5.(本题4分)根据能量按⾃由度均分原理,设⽓体分⼦为刚性分⼦,分⼦⾃由度为i,则当温度为T时,(1)⼀个分⼦的平均动能为_______。
第七章分子动理论单元练习题一、单选题(共10小题,每小题5。
0分,共50分)1。
已知在标准状况下,1 mol 氢气的体积为22.4 L,氢气分子直径的数量级为()A. 10-9mB. 10-10mC. 10-11mD. 10-8m2.甲、乙两个分子相距较远(此时它们之间的分子力可以忽略),甲分子固定不动,乙分子由无穷远处逐渐向甲靠近,直到不能再靠近为止.在这整个过程中,分子力与分子势能的变化情况正确的是()A.分子力先减小后增大,分子势能不断增加B.分子力先增大后减小,分子势能不断减小C.分子力先增大后减小再增大,分子势能先增加后减少D.分子力先增大后减小再增大,分子势能先减少后增加3.下列关于分子热运动和热现象的说法正确的是()A.气体如果失去了容器的约束就会散开,这是因为气体分子之间存在势能的缘故B.一定量100 ℃的水变成100 ℃的水蒸气,其分子平均动能增加C.一定量气体的内能等于其所有分子的热运动动能和分子势能的总和D.如果气体温度升高,那么每一个分子热运动的速率都增加4。
如图所示为两分子间距离与分子势能之间的关系图象,则下列说法中正确的是()A.当两分子间距离r=r1时,分子势能为零,分子间相互作用的引力和斥力也均为零B.当两分子间距离r=r2时,分子势能最小,分子间相互作用的引力和斥力也最小C.当两分子间距离r<r1时,随着r的减小,分子势能增大,分子间相互作用的引力和斥力也增大D.当两分子间距离r〉r2时,随着r的增大,分子势能增大,分子间相互作用的引力和斥力也增大5。
当分子间距离从平衡位置(r=r0)处增大或减小时,分子势能的变化情况是()A.分子间的距离增大,势能增大,分子间距离减小,势能减小B.分子间距离增大,势能先增大后减小C.分子间距离增大,势能先减小后增大D.不论是距离增大还是减小,势能均增大6。
两个温度不同的物体相互接触,达到热平衡后,它们具有相同的物理量是()A.质量B.密度C.温度D.重力7。
气体动理论选择题(参考答案)1.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为( ):(A) pV / m . (B) pV / (kT ).(C) pV / (RT ). (D) pV / (mT ).答:(B )2.若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了( ) (A)0.500. (B) 400. (C) 900. (D) 2100.答:(B )3.如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气. 当温度相同时,水银滴静止于细管中央,则此时这两种气体中( )(A) 氧气的密度较大. (B) 氢气的密度较大.(C) 密度一样大. (D) 那种的密度较大是无法判断的.答:(A )4. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?( )(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.答:(D )5.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们( )(A) 温度相同、压强相同.(B) 温度、压强都不相同.(C) 温度相同,但氦气的压强大于氮气的压强.(D) 温度相同,但氦气的压强小于氮气的压强.答:(C )6.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系( ):(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.答:( C )7. 在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为( ):(A) 3 / 10. (B) 1 / 2.(C) 5 / 6. (D) 5 / 3.答:(C )8.压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为( ): (A)25pV . (B) 23pV . (C) pV . (D) 21pV . 答:(A )9.在容积V =4×10-3 m 3的容器中,装有压强P =5×102 Pa 的理想气体,则容器中气体分子的平动动能总和为 ( )(A) 2 J . (B) 3 J .(C) 5 J . (D) 9 J .答:(B )10.下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)( ) (A)pV Mm 23. (B) pV M M mol 23. (C) npV 23. (D)pV N M M A 23mol . 答:(A )11. 一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为( ):(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.答:(B )12.若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为( )(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程.答:(C )13.关于平衡态,以下说法正确的是( )(A) 描述气体状态的状态参量p 、V 、T 不发生变化的状态称为平衡态;(B) 在不受外界影响的条件下,热力学系统各部分的宏观性质不随时间变化的状态称为平衡态;(C) 气体内分子处于平衡位置的状态称为平衡态;(D) 处于平衡态的热力学系统,分子的热运动停止.答:(B )p14.关于热量Q,以下说法正确的是()(A) 同一物体,温度高时比温度低时含的热量多;(B) 温度升高时,一定吸热;(C) 温度不变时,一定与外界无热交换;(D) 温度升高时,有可能放热.答:(D)15. 刚性三原子分子理想气体的压强为P,体积为V,则它的内能为( )A.2PVB. 5PV/2C.3PVD. 7PV/2答:(C )16. 一瓶刚性双原子分子理想气体处于温度为T的平衡态,据能量按自由度均分定理,可以断定()A.分子的平均平动动能大于平均转动动能B.分子的平均平动动能小于平均转动动能C.分子的平均平动动能等于平均转动动能D.分子的平均平动动能与平均转动动能的大小视运动情况而定答:(A )17. 1 mol 单原子分子理想气体和1 mol双原子分子理想气体分别处于平衡态,它们的温度相同,则它们的一个分子的平均平动动能( )A.相同,它们的内能相同B.不同,它们的内能相同C.相同,它们的内能不同D.不同,它们的内能不同答:(D)18. 理想气体分子的平均速率与温度T的关系为()A.与T成正比B.与T成反比C D答:(C )19.处于平衡态的双原子气体分子的平均平动动能为0.03eV,则分子的平均转动动能为()A.0.02eV B.0.03 eVC.0.04 eV D.0.05 eV答:(A )20.温度相同的氦气和氧气,它们分子的平均动能ε和平均平动动能tε有如下关系()A.ε和tε都相等B.ε相等,而tε不相等C.tε相等,而ε不相等D.ε和tε都不相等答:(C )21.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率()A.相同,且两种分子的平均平动动能也相同B.相同,而两种分子的平均平动动能不同C.不同,而两种分子的平均平动动能相同D.不同,且两种分子的平均平动动能也不同答:(B )22.氢气和氧气的温度和压强相同,则它们的()A.分子密度相同,分子的平均动能相同B.分子密度相同,分子的平均动能不同C.分子密度不同,分子的平均动能相同D.分子密度不同,分子的平均动能不同答:(B)23.一瓶单原子分子理想气体的压强、体积、温度与另一瓶刚性双原子分子理想气体的压强、体积、温度完全相同,则两瓶理想气体的()A.摩尔数相同,内能不同B.摩尔数不同,内能不同C.摩尔数相同,内能相同D.摩尔数不同,内能相同答:(A )24. 氦气和氧气的温度相同,则它们的()A.分子的平均动能相同,分子的平均速率相同B.分子的平均动能相同,分子的平均速率不同C.分子的平均动能不同,分子的平均速率相同D.分子的平均动能不同,分子的平均速率不同答:(D )25. 1mol氧气和1mol氢气,它们的( )A.质量相等,分子总数不等B.质量相等,分子总数也相等C.质量不等,分子总数相等D.质量不等,分子总数也不等答:(C )26. 容积恒定的车胎内部气压要维持恒定,那么,车胎内空气质量最多的季节是( )A.春季B.夏季C.秋季D.冬季答:(D )。
气体动理论练习内容提要一、平衡态理想气体物态方程1.气体的物态参量气体的体积、压强和温度三个物理量称为气体的物态参量.在国际单位制中,体积的单位是立方米,符号为m。
压强的单位是帕[斯卡],符号为51atm1.01310Pa760mmHgPa,。
热力学温度的单位是开[尔文],符号为K,3Tt273.15。
2.理想气体物态方程:pVmRTM二、理想气体的压强公式温度的微观本质1.热动平衡的统计规律(1)分子按位置的分布是均匀的:ndNNdVV222(2)各方向运动概率均等:v某vyvz0;v某vyvz12v31222.理想气体压强的微观公式:pmnvnkt333.理想气体物态方程:pnkT4.理想气体分子的平均平动动能与温度的关系:kt三、能量均分定理和理想气体的内能1.刚性分子自由度分子种类单原子分子双原子分子多原子分子2.能量均分定理平动t333转动r02313m0v2kT22总自由度i356气体处于平衡态时,分子任何一个自由度的平均能量都相等,均为按自由度均分定理。
3.理想气体的内能:E1kT,这就是能量2miRTM21dNNdv94四、麦克斯韦气体速率分布定律1.麦氏分布函数:f(v)物理意义:气体在温度为T的平衡状态下,速率在v附近单位速率区间的分子数占总数的百分比。
2.三种统计速率(1)最概然速率:vp2kT2RTmM(2)平均速率:v8kT8RTπmπM2(3)方均根速率:v3kT3RTmM习题精选一、选择题1.对于一定质量的理想气体,以下说法正确的是()A、如果体积减小,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大B、如果压强增大,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大C、如果温度不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变D、如果密度不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变2.关于温度的意义,下列说法正确的是()(1)气体的温度是分子平均平动动能的量度(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义(3)温度的高低反映物质内部分子运动剧烈程度的不同(4)从微观上看,气体的温度表示每个气体分子的冷热程度A、(1)、(2)、(4)B、(1)、(2)、(3)C、(2)、(3)、(4)D、(1)、(2)3.如图12-1所示,一气室被可以左右移动的隔板分成相等的两部分,一边装氧气,另一边装氢气,两种气体的质量相同、温度一样。
《大学物理学》气体的动理论学习材料可能用到的数据:8.31/R J mol =; 231.3810/k J K -=⨯; 236.0210/A N mol =⨯。
一、选择题12-1.处于平衡状态的一瓶氮气和一瓶氦气的分子数密度相同,分子的平均平动动能也相同,则它们( C )(A )温度,压强均不相同; (B )温度相同,但氦气的压强大于氮气的压强; (C )温度,压强都相同; (D )温度相同,但氦气的压强小于氮气的压强。
【分子的平均平动动能3/2kt kT ε=,仅与气体的温度有关,所以两瓶气体温度相同;又由公式P nkT =,n 为气体的分子数密度,知两瓶气体的压强也相同】2.容器中储有一定量的处于平衡状态的理想气体,温度为T ,分子质量为m ,则分子速度在x 方向的分量平均值为:(根据理想气体分子模型和统计假设讨论)( D )(A )x υB )x υC )x υ=m kT 23;(D )x υ=0。
【大量分子在做无规则的热运动,某一的分子的速度有任一可能的大小和方向,但对于大量分子在某一方向的平均值应为0】3.若理想气体的体积为V ,压强为P ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为 ( B )(A )m PV /; (B ))/(kT PV ; (C ))/(RT PV ; (D ))/(mT PV 。
【由公式P nkT =判断,所以分子数密度为Pnk T=,而气体的分子数为N nV=】4.根据气体动理论,单原子理想气体的温度正比于( D ) (A )气体的体积; (B )气体分子的压强; (C )气体分子的平均动量;(D )气体分子的平均平动动能。
【见第1题提示】5.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是( A )(A )氧气的温度比氢气的高;(B )氢气的温度比氧气的高; (C )两种气体的温度相同; (D )两种气体的压强相同。
气体动理论习题、答案及解法一、 选择题1. 一定量氢气(视为刚性分子的理想气体),若温度每升高1K ,其内能增加20.8J ,则该氢气的质量为 【 B 】 (A )1.0⨯10kg 3- (B)2.0⨯10kg 3-(C)3.0⨯10kg 3- (D)4.0⨯10kg 3-参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ 5=i 刚性双原子的自由度为 ()kg 100.2131.851028.202233--⨯=⨯⨯⨯⨯⨯=∆⋅∆=T iR E M μ2. 有一瓶质量为m 的氢气(是作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能 【 B 】 (A )kT 23(B )kT 25 (C ) RT 23 (D )RT 25参考答案:kT i2=ε 5=i 刚性双原子的自由度为 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 【 C 】 (A )21倍 (B )32倍 (C )35倍 (D )2倍参考答案:T R i M E ⎪⎭⎫ ⎝⎛=2μ RT MpV μ=3522222==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=e e eH H H H H H i i T R i M T R i M E E μμ4. A 、B 、C3个容器中皆装有理想气体,它们的分子数密度之比为A n :Bn :C n =4:2:1,而分子的平均平动动能之比为4:2:1::=C B A εεε,则它们的压强之比C B A p p p :::为 【 A 】(A )1:1:1 (B)1:2;2 (C )1:2;3 (D )1:2;4参考答案:εn p 32=1:1:132:32:32:::==C C B B A A C B A n n n p p p εεε 5. 2g 氢气与2g 氦气分别装在两个容器相等的封闭容器内,温度也相同(氢气分子视为刚性双原子分子),氢气与氦气内能之比eH H E E 2为(A )31 (B )35 (C )310 (D)316 【 C 】参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ31010231045223322222=⨯⨯⨯⨯==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=--H H H H H H H H H H e e e e ei i T R i M T R i M E E μμμμ 6.1mol 的单原子分子理想气体,在1atm 的恒定压强下,从c 0︒加热到c 100︒,则气体的内能改变了 【 D 】(A )0.25J 103⨯ (B )J 105.03⨯ (C )J 100.13⨯ (D )J 1025.13⨯ 参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ ()()J 1025.127337331.82323⨯=-⨯⨯=∆⎪⎭⎫ ⎝⎛=∆T R i M E μ7. 在容积为3210m -的容器中,装有质量g 100的气体,若气体分子的方均根速率为1200-⋅s m ,则气体的压强为 【B 】 (A )Pa 1067.05⨯ (B )Pa 1033.15⨯ (C )Pa 1066.25⨯ (D )Pa 1099.35⨯参考答案:μRTv 32=RT MpV μ= ()Pa 1033.131522⨯=⎪⎭⎫ ⎝⎛⨯=v V M p8. 如图1所示的两条()v ~v f 曲线分别表示氢气和氧气在同一温度下的麦克斯)(1s m -⋅v韦速率分布曲线。
大学物理课后练习七气体动理论1班级: 学号: 姓名:一、选择题:1、置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A )一定都是平衡态;(B )不一定都是平衡态;(C )前者一定是平衡态,后者一定不是平衡态;(D )后者一定是平衡态,前者一定不是平衡态。
( )2、处于平衡状态的A ,B ,C 三种理想气体,储存在一密闭容器中,A 种气体分子数密度为1n ,其压强为1p ,B 种气体分子数密度为12n ,C 种气体分子数密度为13n ,则混合气体压强为(A )16p ; (B )15p ; (C )13p ; (D )12p 。
( )3、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N 0为阿伏伽德罗常数,M mol 为摩尔质量)。
(A )32m pV M ; (B )mol 32m pV M ; (C )32npV ; (D )mol 032M N pV M。
( ) 4、一瓶氦气He 和一瓶氮气2N 密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们(A )温度相同,压强相同;(B )温度、压强都不相同;(C )温度相同,但氦气的压强大于氮气的压强;(D )温度相同,但氦气的压强小于氮气的压强。
( )5、若在固定容器内,理想气体分子速率都提高为原来的二倍,则(A )温度和压强都升高为原来的二倍;(B )温度升高为原来的二倍,压强升高为原来的四倍;(C )温度升高为原来的四倍,压强升高为原来的二倍;(D )温度与压强都升高为原来的四倍。
( )6、标准状态下,若氧气和氦气的体积比2/1/21=V V ,则其内能E 1 / E 2为(A )1/2; (B )5/6; (C )3/2; (D )1/3。
( )7、水蒸汽分解为同温度T 的氢气和氧气,即222H O H 0.5O →+,内能增加了多少?(A )50%; (B )25%; (C )66.7%; (D )0。
气体动理论选择题1.在一密闭容器中,储有A、B、C 三种理想气体,处于平衡状态.A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为( )(A) 3 p 1. (B) 4 p 1. (C) 5 p 1. (D) 6 p 1. 答:( )2.若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为( ): (A) pV / m . (B) pV / (kT ). (C) pV / (RT ). (D) pV / (mT ). 答:( )3.有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为( ):(A) (1/16) kg. (B) 0.8 kg. (C) 1.6 kg. (D) 3.2 kg. 答:( )4.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值( ) (A) mkT π8=x v . (B) m kTπ831=x v .(C) mkTπ38=x v . (D) =x v 0 . 答:( )5.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::CB A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为( ):(A) 1∶2∶4. (B) 1∶4∶8.(C) 1∶4∶16. (D) 4∶2∶1. 答:( )6.若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了( )(A)0.500. (B) 400.(C) 900. (D) 2100. 答:( )7.如图所示,两个大小不同的容器用均匀的细管相连,管中有一水银滴作活塞,大容器装有氧气,小容器装有氢气. 当温度相同时,水银滴静止于细管中央,则此时这两种气体中( )(A) 氧气的密度较大. (B) 氢气的密度较大.(C) 密度一样大. (D) 那种的密度较大是无法判断的. 答:( )8. 已知氢气与氧气的温度相同,请判断下列说法哪个正确?( )(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. 答:( )9.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们( )(A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强. 答:( )10.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系( ):(A) ε和w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等. (D) ε和w 都不相等. 答:( )11. 在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比 V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为( ): (A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3. 答:( )12.压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为( ):(A)25pV . (B) 23pV . (C) pV . (D) 21pV .答:( )13.在标准状态下体积比为1∶2的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的内能之比为( ) (A) 1∶2. (B) 5∶6. (C) 5∶3. (D) 10∶3. 答:( )14.在容积V =4×10-3 m 3的容器中,装有压强P =5×102Pa 的理想气体,则容器中气体分子的平动动能总和为 ( )(A) 2 J. (B) 3 J. (C) 5 J. (D) 9 J. 答:( )15.下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)( )(A)pV Mm 23. (B)pV M Mmol 23. (C) npV 23. (D)pV N MM A 23mol .答:( )16. 一定质量的理想气体的内能E 随体积V 的变化关系为一直线(其延长线过E ~V 图的原点),则此直线表示的过程为( ):(A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程. 答:( ) 17.若在某个过程中,一定量的理想气体的内能E 随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为( )(A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程. 答:( )18.玻尔兹曼分布律表明:在某一温度的平衡态,(1) 分布在某一区间(坐标区间和速度区间)的分子数,与该区间粒子的能量成正比. (2) 在同样大小的各区间(坐标区间和速度区间)中,能量较大的分子数较少;能量较小的分子数较多.(3) 在大小相等的各区间(坐标区间和速度区间)中比较,分子总是处于低能态的概率大些. (4) 分布在某一坐标区间内、具有各种速度的分子总数只与坐标区间的间隔成正比,与粒子能量无关. 以上四种说法中,( ) (A) 只有(1)、(2)是正确的. (B) 只有(2)、(3)是正确的. (C) 只有(1)、(2)、(3)是正确的. (D) 全部是正确的. 答:( )19.设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为( )(A) p v v v ==2/12)( (B) 2/12)(v v v <=p(C) 2/12)(v v v <<p (D)2/12)(v v v >>p答:( )20.已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则( ) (A) v p 1 > v p 2, f (v p 1)> f (v p 2).p(B) v p 1 > v p 2, f (v p 1)< f (v p 2). (C) v p 1 < v p 2, f (v p 1)> f (v p 2). (D) v p 1 < v p 2, f (v p 1)< f (v p 2). 答:( )21.下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?( )答:( )22.在一容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则( ) (A) 温度和压强都提高为原来的2倍. (B) 温度为原来的2倍,压强为原来的4倍. (C) 温度为原来的4倍,压强为原来的2倍. (D)温度和压强都为原来的4倍. 答:( )23.两种不同的理想气体,若它们的最概然速率相等,则它们的( ) (A) 平均速率相等,方均根速率相等. (B) 平均速率相等,方均根速率不相等. (C) 平均速率不相等,方均根速率相等. (D) 平均速率不相等,方均根速率不相等. 答:( )24.假定氧气的热力学渭度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的( )(A) 4倍. (B) 2倍.倍. (D) 21倍.答:( )v v (B (A (D (C25.麦克斯韦速率分布曲线如图所示,图中A、B 两部分面(A) 0v (B) 0v (C) 0v (D) 速率大于和小于0v 的分子数各占一半.答:( )26.速率分布函数f (v )的物理意义为( ): (A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比. (C) 具有速率v 的分子数. (D) 速率分布在v 附近的单位速率间隔中的分子数. 答:( )27.若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是( ) (A) m ,T . (B) N .(C) N ,m . (D) N ,T . (E) N ,m ,T . 答:( )28.设某种气体的分子速率分布函数为f (v ),则速率在v 1─v 2区间内的分子的平均速率为( ) (A)()⎰21d v v v v v f . (B) ()⎰21d v v v v v v f .(C) ()⎰21d v v v v v f /()⎰21d v vv v f . (D) ()⎰21d v vv v f /()⎰∞0d v v f .答:( )29.已知分子总数为N ,它们的速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为( ) (A) ⎰21d )(v v v v v f . (B) ⎰21d )(v v v v v f /⎰21d )(v v v v f .(C)⎰21d )(v v v v v f N . (D) ⎰21d )(v v v v v f /N .答:( )30.在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于( ) (A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . 答:( )31. 把一容器用隔板分成相等的两部分,左边装CO 2 ,右边装H 2,两边气体质量相同,温度相同,如果隔板与器壁无摩擦,则隔板应( ) (A) 向右移动. (B) 向左移动.f (v )(D) 无法判断是否移动.答:( )32.关于平衡态,以下说法正确的是( )(A) 描述气体状态的状态参量p、V、T不发生变化的状态称为平衡态;(B) 在不受外界影响的条件下,热力学系统各部分的宏观性质不随时间变化的状态称为平衡态;(C) 气体内分子处于平衡位置的状态称为平衡态;(D) 处于平衡态的热力学系统,分子的热运动停止.答:( )33.关于热量Q,以下说法正确的是( )(A) 同一物体,温度高时比温度低时含的热量多;(B) 温度升高时,一定吸热;(C) 温度不变时,一定与外界无热交换;(D) 温度升高时,有可能放热.答:( )34. 气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体分子的平均速率变为原来的几倍?( )(A)22 / 5 . (B) 21 / 5 .(C) 22 / 3 . (D) 21 / 3 .答:( )35. 刚性三原子分子理想气体的压强为P,体积为V,则它的内能为( )A.2PVB. 5PV/2C.3PVD. 7PV/2答:( )36. 一瓶刚性双原子分子理想气体处于温度为T的平衡态,据能量按自由度均分定理,可以断定( )A.分子的平均平动动能大于平均转动动能B.分子的平均平动动能小于平均转动动能C.分子的平均平动动能等于平均转动动能D.分子的平均平动动能与平均转动动能的大小视运动情况而定答:( )37. 1 mol 单原子分子理想气体和1 mol双原子分子理想气体分别处于平衡态,它们的温度相同,则它们的一个分子的平均平动动能( )A.相同,它们的内能相同B.不同,它们的内能相同C.相同,它们的内能不同D.不同,它们的内能不同38. 理想气体分子的平均速率与温度T的关系为( )A.与T成正比 B.与T成反比答:( )39.处于平衡态的双原子气体分子的平均平动动能为0.03eV,则分子的平均转动动能为( )A.0.02eV B.0.03 eVC.0.04 eV D.0.05 eV答:( )40.处于平衡态的氧气和氮气,它们的分子平均速率相同,则它们的分子最概然速率( )A.不同,它们的温度不同 B.不同,它们的温度相同C.相同,它们的温度相同 D.相同,它们的温度不同答:( )41.温度相同的氦气和氧气,它们分子的平均动能ε和平均平动动能tε有如下关系( )A.ε和tε都相等B.ε相等,而tε不相等C.tε相等,而ε不相等D.ε和tε都不相等答:( )42.一瓶单原子分子理想气体与一瓶双原子分子理想气体,它们的温度相同,且一个单原子分子的质量与一个双原子分子的质量相同,则单原子气体分子的平均速率与双原子气体分子的平均速率( )A.相同,且两种分子的平均平动动能也相同B.相同,而两种分子的平均平动动能不同C.不同,而两种分子的平均平动动能相同D.不同,且两种分子的平均平动动能也不同答:( )43.氢气和氧气的温度和压强相同,则它们的( )A.分子密度相同,分子的平均动能相同B.分子密度相同,分子的平均动能不同C.分子密度不同,分子的平均动能相同D.分子密度不同,分子的平均动能不同答:( )44.一瓶单原子分子理想气体的压强、体积、温度与另一瓶刚性双原子分子理想气体的压强、体积、温度完全相同,则两瓶理想气体的( )A.摩尔数相同,内能不同B.摩尔数不同,内能不同C.摩尔数相同,内能相同D.摩尔数不同,内能相同答:( )45. 氦气和氧气的温度相同,则它们的( )A.分子的平均动能相同,分子的平均速率相同B.分子的平均动能相同,分子的平均速率不同C.分子的平均动能不同,分子的平均速率相同D.分子的平均动能不同,分子的平均速率不同答:( )46.f(v)是麦克斯韦速率分布函数,v p是最概然速率.设v l<v2<v p<v3<v4,则可以断定( ) A.f(v l)>f(v2),f(v3)>f(v4) B.f(v l)>f(v2),f(v3)<f(v4)C.f(v l)<f(v2),f(v3)<f(v4) D.f(v l)<f(v2),f(v3)>f(v4)答:( )47. v p是最概然速率,由麦克斯韦速率分布定律可知( )A.在0到v p/2速率区间内的分子数多于v p/2到v p速率区间内的分子数B.在0到v p/2速率区间内的分子数少于v p/2到v p速率区间内的分子数C.在0到v p/2速率区间内的分子数等于v p/2到v p速率区间内的分子数D.在0到v p/2速率区间内的分子数多于还是少于v p/2到v p速率区间内的分子数,要视温度的高低而定答:( )48. 某理想气体分子在温度T l和T2时的麦克斯韦速率分布曲线如图所示,两温度下相应的分子平均速率分别为1υ和2υ,则( )A.T1>T2,1υ<2υB.T1>T2,1υ>2υC.T1<T2,1υ<2υD.T1<T2,1υ>2υ答:( )49. 1mol氧气和1mol氢气,它们的( )A.质量相等,分子总数不等B.质量相等,分子总数也相等C.质量不等,分子总数相等D.质量不等,分子总数也不等答:( )50. 容积恒定的车胎内部气压要维持恒定,那么,车胎内空气质量最多的季节是( )A.春季B.夏季C.秋季D.冬季答:( )。
1.两瓶装有不同种类的理想气体,若气体的平动动能相等,两种气体的分子数密度
不同,则两瓶气体的
( )
(A)压强相等,温度相等;
(B)压强相等,温度不等;
(C)压强不等,温度相等;
(D)压强不等,温度不等;
2.在一封闭容器中,理想气体分子的平均速率提高为原来的2倍,则
( )
(A)温度和压强都提高为原来的2倍;
(B)温度为原来的2倍,压强为原来的4倍;
(C)温度为原来的4倍,压强为原来的2倍;
(D)温度和压强都提高为原来的4倍。
3.一打足气的自行车内胎,当温度为7.0℃时,轮胎中空气的压强为4.0×105Pa,温度变为
37.0℃时,轮胎内的压强为 。(设胎内容积不变)
4.已知n为气体的分子数密度f(v)为麦克斯韦速率分布函数,则nf(v)dv的物理意义
。
。
5.一容器内贮有氧气,压强为1.0×105Pa ,温度为27℃,求(1)气体分子数密度; (2)
氧气的密度; (3)分子的平均平动动能; (4)分子间的平均距离。
6.氧气瓶的容积为3.2×10-2m3,其中氧气的压强为1.30×107Pa,氧气厂规定压强降低
到1.00×106Pa时,就应重新充气,以免经常洗瓶。若平均每天用去0.40m3,压强为
1.01×105Pa的氧气,问一瓶氧气能用几天?(设温度不变)
1.1mol刚性双原子分子理想气体,当温度为T时,其内能为
( )
3.2g氢气(刚性双原子)与2g氦气分别装在两个容积相等的封闭容器中内,温度相同,则氢
气分子与氦气分子的平均平动动能之比 压强之比 ;内能之
比 。
4.现有两条气体分子速率分布曲线(1)和(2),如图所示。若两条曲线分别表示同一种气
体处于不同温度下的速率分布,则曲线 表示气体的温度较高。若两条曲线分别表
示同一温度下的氢气和氧气的速率分布,则曲线 表示的是氧气。
5.在容积为3.0×10-2m3的容器中,贮有2.0×10-2 kg 的气体,其压强为5.06×104Pa ,
试求该气体的分子最概然速率,平均速率及方均根速率 。
6.在压强为1.01×105Pa下,氮气分子的平均自由程为6.0×10-6cm,当温度不变时,
在多大压强下,其平均自由程为1.0mm。