排水采气工艺
- 格式:ppt
- 大小:3.32 MB
- 文档页数:82
排水采气工艺技术成本排水采气工艺技术是一种将煤矿水封闭排放利用的技术。
通过这种技术,将煤矿废水中的煤矿瓦斯进行采集,并进行脱硫处理和压缩,使其达到煤矿安全排放标准。
现在我们来探讨一下排水采气工艺技术的成本。
首先,排水采气工艺技术的成本主要分为设备成本和运维成本两部分。
设备成本包括采气设备、脱硫设备、压缩设备等。
采气设备用于采集煤矿瓦斯,通常包括瓦斯抽放装置、瓦斯抽放管道等。
脱硫设备用于对采集到的瓦斯进行脱硫处理,通常包括脱硫塔、吸收剂等。
压缩设备用于将处理后的瓦斯进行压缩,提高其储存和运输效率,通常包括压缩机、储气罐等。
这些设备的价格不一,根据规模的大小和技术的先进性而有所不同。
设备成本通常是排水采气工艺技术成本的主要部分,占比较大。
运维成本包括人工维护成本、能源成本和维修成本等。
由于排水采气工艺技术需要日常运行和维护,因此需要有专门的技术人员进行设备的维护和监控,确保设备正常运行。
这部分的成本主要是人工工资的支出。
另外,运行过程中需要消耗能源,比如电力、润滑油等,这也需要一定的成本支出。
此外,设备可能会出现故障需要维修和更换,维修成本也是运维成本的一部分。
除了设备成本和运维成本,还需要考虑一些固定成本,比如土地租赁费用、水资源费用等。
这些固定成本根据不同地区的情况而有所不同。
总体来说,排水采气工艺技术的成本较高。
设备成本是其中的主要组成部分,根据实际情况可以选择不同规模和技术先进性的设备,以降低成本。
运维成本主要是人工工资和能源成本,可以通过优化管理和技术提升来降低成本。
此外,还需要考虑一些固定成本,这些成本相对不易调整。
总的来说,排水采气工艺技术成本相对较高,但通过合理的设备选择、运维管理和成本控制,可以最大限度地降低成本,并实现煤矿排放的安全和环保。
同时,该技术的推广应用也能够对煤矿行业的可持续发展起到积极的促进作用。
国内排水采气工艺问题及对策分析随着我国经济的快速发展,能源需求日益增加,而传统的石油和天然气资源已经逐渐枯竭,因此对于新的能源开采方式有了更高的需求。
此时,排水采气工艺成为了一个备受关注的话题,它通过抽取地下水来减小地下水位,从而释放储存的天然气。
这一工艺也面临着很多问题,本文将对国内排水采气工艺的问题及对策进行深入分析。
一、排水采气的问题1. 水资源浪费:排水采气工艺需要大量的地下水来进行抽取,因此会导致大量的水资源浪费,对当地的生态环境造成破坏。
2. 地下水位下降:随着排水采气工艺的推进,地下水位逐渐下降,这会导致当地的地下水资源枯竭,对于农业和生活用水造成不利影响。
3. 地质灾害风险增加:排水采气会导致地下岩层松动,增加了地质灾害的风险,尤其是在地震多发地区。
4. 对天然气气田的影响:在排水采气过程中,地面的水压会导致地下天然气释放,这对于原本的天然气气田会产生不利影响。
5. 社会稳定问题:排水采气工艺的推进往往伴随着土地流转、生产关系调整等问题,这会对当地的社会稳定带来负面影响。
二、排水采气的对策分析1. 科学规划项目:对于排水采气的项目,需要进行科学规划,充分考虑地下水资源的恢复和保护,减少对当地生态环境的破坏。
2. 加强监管和管理:政府部门需要加强对于排水采气工艺的监管和管理,确保项目的合法性和环保性,减少对人民生活和农业生产的不利影响。
3. 推进技术创新:通过技术创新,研发出更为环保和高效的排水采气工艺,减少对水资源的浪费和对当地生态环境的破坏。
4. 加强公众参与和社会管理:在排水采气项目的推进过程中,应加强公众参与和社会管理,充分听取当地居民的意见和建议,确保项目的顺利推进。
5. 加强对地下水位变化的监测和评估:政府部门需要加强对地下水位变化的监测和评估,及时发现问题并采取相应的应对措施。
三、结论排水采气工艺是一项具有广阔前景的能源开发方式,但是在推进过程中也面临着许多问题。
面对这些问题,需要政府部门、企业单位和社会公众共同努力,共同寻找解决之道,确保排水采气项目的可持续发展。
排水采气工艺技术现状及新进展防水治水方法综述当前国内外治水措施归纳起来有三大类: 控气排水、水井排水和堵水。
控气排水是经过控制气井产量, 即抬高井底回压来减小水侵压差入而减缓了水侵。
其实质是控气控水, 现场有时也称为”控水采气”。
排水采气则是利用水井主动采水来消耗水体能量, 经过减小气和水的压差控制水侵, 从而保护气井稳定生产。
堵水则是经过注水泥桥寒或高分于堵水剂堵塞水侵通道, 以达到控制水侵的目的。
三种措施虽方式不同, 但基本原理都是尽可能降低或消除水侵压差、释放水体能量域增加水相流动阻力。
控气排水主要是以气井为实施对象, 着眼点是气; 水井排水则以水为实施对象, 着眼点是水。
堵水以体现气水压差的介质条件为实施对象, 着眼点是渗滤通道。
控气排水是一种现场常见的方法。
在出水初期水侵原因不明时常常采用股资省.便于操作.但不利于提高气藏采速和开采规模; 水井排水的实施对象巳转至水, 工艺要求相对较高俱有更积极、更主动的意义; 堵水常常受技术条件限制, 当前实际应用很少。
不论哪种措施, 其目的都是为了提高采收率, 都应针对不同的水侵机理、方式, 依据经济效盖来选择和确定。
一、现状综述中国的气藏大多属于封闭性的弹性水驱气藏, 在开发中都不同程度地产地层水。
由于地层水的干扰, 使气田在采出程度还不高的情况下就提前进入递减阶段, 甚至造成气井水淹停产, 影响气田最终采收率, 因此如何提高有水气藏的采收率, 是国内外长期以来所致力研究和解决的重要课题之一。
中国经过十几年的实践和发展, 以四川气田为代表, 已形成了一定生产能力、比较成熟的下列工艺技术。
当前排水采气工艺技术评价1.泡沫排水采气工艺泡沫排水采气工艺是将表面活性剂注入井内, 与气水混合产生泡沫, 减少气水两相垂直管流动的滑脱损失, 增加带水量, 起到助排的作用。
由于没有人工给垂直管举升补充能量, 该工艺用于尚有一定自喷能力的井。
a. 适用井的特点: ( 1) 自喷井中因气水比低, 井底压力低, 垂管流动带水不好, 形成了井底积液的井, 表现为产气量下降, 油压下降( 油管生产) , 套油压差值上升, 产出水不均匀或呈股状, 出水间歇周期延长, 井口压力波动等。
排水采气常见的工艺有哪些
排水采气是一种将废水中的可燃气体回收利用的工艺,常见的排水采气工艺有:
1. VSEP技术(薄膜分离技术):通过超滤膜对废水进行处理,分离出可燃气体并将其回收利用。
2. ADSorption技术(吸附技术):通过吸附剂吸附排水中的可燃气体,再通过脱附获得纯净的可燃气体。
3. MVR技术(机械蒸发再生技术):通过蒸发装置蒸发废水中的水分,生成水蒸气,并将其中的可燃气体回收利用。
4. CWS技术(压缩水气提取技术):通过压力吸附剂和温度降低,使废水中的可燃气体溶于水中,再通过压力释放将其分离出来。
5. 生物处理技术:利用微生物菌群降解废水中的有机物,产生可燃气体。
6. 催化燃烧技术:将废水中的可燃气体与氧气在催化剂的作用下进行燃烧,产生热能和二氧化碳。
以上是常见的排水采气工艺,每种工艺都有其优点和适用范围,具体选择哪种工艺应根据废水特点和处理要求来决定。
排水采气工艺技术故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。
该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。
泡排的投入采出比在1:30以上,经济效益十分显著。
3 柱塞气举排水采气技术柱塞气举是一种用于气井见水初期的排水采气工艺。
它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。
柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。
如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。
该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。
另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。
该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。
柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。
4 气举排水采气技术气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。
排水采气工艺--主要技术类型泡沫排水采气(简称泡排)的基本原理,是从井口向井底注入某种能够遇水起泡的表面活性剂(起泡剂)。
井底积水与起泡剂接触以后,借助天然气流的搅动,生成大量低密度含水泡沫,随气流从井底携带到地面,从而达到排出井筒积液的目的。
排水采气是解决“气井积液”的有效方法,也是水驱气田生产中常见的釆气工艺。
目前现场应用的常规排水采气工艺可分为:机械法和物理化学法。
机械法即优选管柱排水采气工艺、气举排水采气工艺、电潜泵排水采气工艺、机抽等排水采气工艺等,物理化学法即泡沫排水采气法及化学堵水等方法。
1排水采气·优选管柱小油管排水采气工艺技术适用于有水气藏的中、后期。
此时井已不能建立“三稳定”的排水采气制度,转入间歇生产,有的气井已濒临水淹停产的危险。
对这样的气井及时调整管柱,改换成较小管径的油管生产,任可以恢复稳定的连续自喷。
1.1优点:1.1.1属自力式气举,能充分利用其藏自身能量,不需人为施加外部能源助喷。
1.1.2变工艺井由间歇生产为较长时期的连续生产,经济效益显著。
1.1.3设计成熟、工艺可靠,成功率高。
1.1.4设备配套简单,施工管理方便,易于推广。
1.2缺点:1.2.1工艺井必须有一定的生产能力,无自喷能力的井必须辅以其他诱喷措施复产或采用不压井修井工艺作业。
1.2.2工艺的排液能力较小,一般在120m3/d左右。
1.2.3对11/2in小油管常受井深影响。
一般在2600m左右。
优选管柱排水采气工艺是在有水气井开采的中后期,重新调整自喷管柱的大小,减少气流的滑脱损失,以充分利用气井自身能量的一种自力式气举排水采气方法。
对排液能力比较好、流速比较高,产水量比较大的天然气井,可适当的放大管径生产,达到提高井口压力,减少阻力损失,增加产气量的目的。
该工艺理论成熟,施工容易,管理方便,工作制度可调,免修期长,投资少,其存在的工艺局限性是:气井排液量不宜过大,下入油管深度受油管强度的限制,因压井后复产启动困难,起下管柱时要求能实现不压井起下作业。
试论排水采气工艺研究现状及发展趋势一、前言排水采气工艺是煤矿开采中的重要环节,它是指在煤层开采过程中,通过排水来降低煤层水压,提高采煤效率,并同时采集煤层气,实现资源的有效利用。
本文旨在探讨排水采气工艺的现状及发展趋势。
二、排水采气工艺的发展历程1.传统排水采气工艺传统的排水采气工艺主要是通过井下钻孔进行排水和抽取煤层气。
这种方法具有操作简单、成本低等优点,但由于其局限性较大,如无法满足高产高效的需求等,因此逐渐被淘汰。
2.现代化排水采气技术随着科技的不断进步,现代化排水采气技术得到了广泛应用。
其中比较典型的技术包括:井下注浆预充法、井下爆破预充法、井下液压压裂法等。
这些技术不仅可以提高开采效率和安全性,还能够减少对环境的影响。
三、排水采气工艺的现状1.技术成熟度高目前,排水采气技术已经相对成熟,可以满足大多数煤矿的需求。
同时,随着新技术的不断涌现,排水采气工艺也在不断完善和升级。
2.应用范围广泛排水采气工艺已经被广泛应用于各类煤矿开采中,包括地下开采、露天开采等。
同时,在一些特殊的环境下,如深部、高压等条件下,排水采气技术也能够发挥出其优势。
3.存在一些问题尽管排水采气工艺已经相对成熟,但在实际应用中仍然存在一些问题。
比如:井下施工难度大、环境污染等。
这些问题需要在技术上得到解决。
四、排水采气工艺的发展趋势1.智能化发展随着人工智能技术和物联网技术的不断进步,未来排水采气工艺将会更加智能化。
比如:通过传感器监测煤层水压、气体浓度等数据,实现智能化的控制和管理。
2.绿色环保绿色环保已经成为当前社会的重要发展方向,排水采气工艺也不例外。
未来排水采气技术将更加注重环境保护,减少对环境的影响,并探索新的绿色技术。
3.多元化发展未来排水采气工艺将会呈现出多元化的发展趋势。
比如:在传统技术基础上,结合新材料、新工艺等方面进行创新和改进,以满足更加复杂多样的开采需求。
五、结论综上所述,排水采气工艺是煤矿开采中不可或缺的一部分。