人教B版高中数学必修2解析几何公式+知识点
- 格式:doc
- 大小:176.00 KB
- 文档页数:2
最新高二数学解析几何知识点1、向量的概念及性质:定义了向量的概念,并介绍了向量的加法、减法、数量乘法和向量的模等性质。
2、向量的线性组合与向量共线:讲解了向量的线性组合的概念,以及线性相关和线性无关的定义。
并介绍了向量共线的判定方法。
3、平面向量运算与坐标表示:介绍了向量的坐标表示、向量平行、垂直的判定方法,以及向量的数量积和向量的夹角的概念与性质。
4、平面向量的坐标运算:讲解了向量的坐标加法、减法和数量乘法的运算法则,以及平面向量的共线和垂直的判定方法。
5、平面直角坐标系与向量法表示直线:介绍了平面直角坐标系的定义和性质,以及向量法表示直线的方法。
6、直线的斜率和截距:讲解了直线的斜率和截距的概念,并介绍了直线的一般方程和截距式方程。
7、两直线的夹角:介绍了两条直线的夹角的概念和性质,并讲解了夹角的判定方法。
8、直线与圆的位置关系:讲解了直线与圆的位置关系的判定方法,包括相离、相切和相交。
9、二次曲线的定义:介绍了二次曲线的定义和基本性质,包括椭圆、双曲线和抛物线。
10、椭圆与直线的位置关系:讲解了椭圆与直线的位置关系,包括相离、相切和相交。
11、椭圆的标准方程:介绍了椭圆的标准方程的推导方法和性质。
12、双曲线与直线的位置关系:讲解了双曲线与直线的位置关系,包括相离、相切和相交。
13、双曲线的标准方程:介绍了双曲线的标准方程的推导方法和性质。
14、抛物线与直线的位置关系:讲解了抛物线与直线的位置关系,包括相离、相切和相交。
15、抛物线的标准方程:介绍了抛物线的标准方程的推导方法和性质。
16、圆的方程及性质:讲解了圆的方程的定义和推导方法,以及圆的性质,包括切线和切点的性质。
(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。
2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。
3. 一般式:Ax + By + C = 0,其中A、B、C是常数。
二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。
2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。
三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。
四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。
五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。
2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。
六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。
如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。
2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。
七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。
高中数学必修二平面解析几何知识点梳理平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离2200()()d a x b y =-+-】13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是 121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、-a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角︒0α︒90<≤。
最新高二数学解析几何知识点解析几何是数学中一个重要的分支,它研究的是平面几何和空间几何中的点、线、面等基本图形以及它们之间的关系。
在高二阶段,解析几何的知识点逐渐深入,涵盖了直线方程、平面方程、曲线方程、向量等内容。
以下是最新高二数学解析几何知识点的总结:知识点一:二维几何基本概念1.平面直角坐标系和直线方程2.直线的位置关系:相交、平行、重合3.直线与坐标轴交点的坐标计算4.直线的倾斜角和斜率计算知识点二:线段、三角形和四边形的性质1.线段长度的计算2.三角形的内角和、外角和、中线、垂线等性质3.各种类型的四边形的特点:平行四边形、矩形、菱形、正方形、梯形等知识点三:向量的基本概念和操作1.向量的表示方法2.向量的模、方向角、方向余弦计算3.向量的相等、相反、共线4.向量的加法、减法、数乘5.向量的线性运算知识点四:向量的数量积和向量的坐标运算1.向量的数量积的定义和性质2.向量的数量积的计算3.向量的坐标形式和分解知识点五:空间中点、直线的位置关系1.空间直角坐标系和直线方程2.空间直线的位置关系:相交、平行、重合3.直线与坐标轴交点的坐标计算4.空间点到直线的距离计算知识点六:平面的基本性质和平面方程1.平面的定义和表示方法2.平面的位置关系:相交、平行、重合3.平面的倾斜角和法向量计算4.平面的方程表示方法知识点七:点、线、面的投影1.点在直线上的投影和距离计算2.线在平面上的投影计算3.点在平面上的投影和距离计算4.空间直线在平面上的投影计算知识点八:空间向量和向量的线性运算1.空间向量的表示方法2.空间向量的模、方向角、方向余弦计算3.空间向量的相等、相反、共线4.空间向量的加法、减法、数乘5.空间向量的线性运算知识点九:平面与平面的位置关系和夹角1.平面的位置关系:相交、平行、重合2.平面与平面的夹角计算3.直线与平面的位置关系:相交、平行、重合知识点十:直线与平面的位置关系和夹角1.直线与平面的位置关系:相交、平行、重合2.直线与平面的夹角计算3.两平面夹线的倾斜角计算知识点十一:球面的基本性质和方程1.球面的定义和表示方法2.球面的方程:一般式、标准式、参数式3.点与球面的位置关系4.线与球面的位置关系知识点十二:空间几何与三视投影1.空间几何中的主视图、正视图、侧视图2.线段和多边形的三视投影计算3.空间物体的体积的计算知识点十三:二次曲线的性质和方程1.椭圆、双曲线、抛物线的定义和基本性质2.椭圆、双曲线、抛物线的方程及其图像特点知识点十四:参数方程与极坐标方程1.参数方程的定义和基本性质2.参数方程与直角坐标方程的转换3.极坐标方程的定义和基本性质4.极坐标方程与直角坐标方程的转换知识点十五:坐标系的变换和平移、旋转变换1.平移变换的定义和基本特点2.二维平面的平移变换及其坐标变换3.二维平面的旋转变换及其坐标变换知识点十六:几何模型的应用1.几何模型的建立和空间计算问题的解决2.几何模型与实际问题的应用以上是最新高二数学解析几何知识点的总结,希望对你的学习有所帮助。
第三部分 解析几何常用公式、结论汇总 1. 斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).2 .直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式0Ax By C ++=(其中A 、B 不同时为0).3. 两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+①121212||,ll k k b b ⇔=≠; ②12121ll k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C ll A B C ⇔=≠;②1212120ll A A B B ⊥⇔+=;4. 夹角公式 (1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π.5.1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.6.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.7 .点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).8.0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B=,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.9.111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.10. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220xy Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).11. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l:Ax By C ++=与圆C:220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数. (3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E yF x y D x E y F λ+++++++++=,λ是待定的系数.12.点与圆的位置关系 点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d=d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.13.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22BA C Bb Aa d+++=.14.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .15.圆的切线方程 (1)已知圆220xy Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=.当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程. ②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222xy r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±16.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.17.椭圆22221(0)x y a b a b +=>>焦半径公式)(21c a x e PF +=,)(22x ca e PF -=.18.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.19. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.(3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=.20.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.21.双曲线的内外部(1)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->.(2)点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b⇔-<.22.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x a by ±=.(2)若渐近线方程为x a by ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222by a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).23. 双曲线的切线方程(1)双曲线22221(0,0)x y a b a b-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.(2)过双曲线22221(0,0)x y a b a b-=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.(3)双曲线22221(0,0)x y a b a b-=>>与直线0Ax By C ++=相切的条件是22222A aB b c -=.24. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x px p x CD ++=+++=212122. 25.抛物线px y 22=上的动点可设为P ),2(2y py 或或)2,2(2pt pt P P (,)x y ,其中 22y px = .26.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=. 27.抛物线的内外部 (1)点00(,)P x y 在抛物线22(0)y px p =>的内部22(0)y px p ⇔<>.点00(,)P x y 在抛物线22(0)y px p =>的外部22(0)y px p ⇔>>.(2)点00(,)P x y 在抛物线22(0)y px p =->的内部22(0)y px p ⇔<->.点00(,)P x y 在抛物线22(0)y px p =->的外部22(0)y px p ⇔>->.(3)点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)xpy p =>的外部22(0)x py p ⇔>>.(4) 点00(,)P x y 在抛物线22(0)x py p =>的内部22(0)x py p ⇔<>.点00(,)P x y 在抛物线22(0)x py p =->的外部22(0)x py p ⇔>->.28. 抛物线的切线方程 (1)抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.(2)过抛物线px y 22=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.(3)抛物线22(0)y px p =>与直线0Ax By C ++=相切的条件是22pB AC =.29.两个常见的曲线系方程 (1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).(2)共焦点的有心圆锥曲线系方程22221x y a k b k+=--,其中22max{,}k a b <.当22min{,}k a b >时,表示椭圆; 当2222min{,}max{,}ab k a b <<时,表示双曲线.30.直线与圆锥曲线相交的弦长公式AB =1212||||AB x x y y =-=-A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率). 31.圆锥曲线的两类对称问题(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=.(2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B ++++--=++.32.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.。
平面解析几何1.直线的倾斜角与斜率:( 1 )直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角 .倾斜角[ 0,180 ) , 90 斜率不存在 .( 2 )直线的斜率:k y2 y1 ( x1 x2 ), k tan .( P1 ( x1 , y1 ) 、 P2 ( x2 , y 2 ) ).x2 x12.直线方程的五种形式:( 1)点斜式: y y1 k ( x x1 ) ( 直线l过点 P1 ( x1 , y1 ) ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为x x 0.( 2)斜截式:y kx b ( b 为直线l在 y 轴上的截距 ).( 3)两点式:y y 1 x x 1( y1 y2 , x1 x2). y2 y 1 x 2 x 1注:①不能表示与 x 轴和y轴垂直的直线;②方程形式为: ( x 2 x1 )( y y1 ) ( y 2 y1 )( x x1 ) 0 时,方程可以表示任意直线.( 4)截距式:xy 1 ( a , b 分别为x轴 y 轴上的截距,且 a 0, b 0 ).a b注:不能表示与 x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.( 5)一般式:Ax By C 0 (其中 A、 B 不同时为 0).一般式化为斜截式:y A CkA x ,即,直线的斜率:.B B B注:( 1)已知直线纵截距 b ,常设其方程为y kx b 或 x 0 .已知直线横截距x0 ,常设其方程为x m y x 0(直线斜率k存在时,m为k的倒数)或 y 0 .已知直线过点 ( x0 , y 0 ) ,常设其方程为y k ( x x 0 ) y 0 或 x x0.( 2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.( 1)直线在两坐标轴上的截距相等直线的斜率为1 或直线过原点.....( 2)直线两截距互为相反数直线的斜率为 1 或直线过原点........( 3)直线两截距绝对值相等直线的斜率为 1 或直线过原点........4.两条直线的平行和垂直:( 1)若l1: y k 1 x b1, l 2 : y k 2 x b2① l 1 // l 2 k1 k 2 , b1 b2;②l1 l 2 k1k 21.( 2)若 l 1 : A1 x B1 y C1 0 , l 2 : A 2 x B 2 y C 2 0 ,有① l 1 // l 2 A1B2 A2B1且 A1C2 A2 C1.② l 1 l 2 A1 A2 B1B2 0 .5.平面两点距离公式:( P1( x1, y1)、P2 ( x 2 , y 2 ) ), P1 P2 ( x1 x 2 ) 2 ( y 1 y 2 ) 2 . x 轴上两点间距离: ABx B x A .x 0x 1 x 22线段 P 1 P 2 的中点是 M ( x 0 , y 0 ) ,则.y 1y 2y 026.点到直线的距离公式:点 P ( x 0 , y 0 ) 到直线 l : AxBy C的距离: d Ax 0By 0C2.A 2B7.两平行直线间的距离:两条平行直线 l 1: AxByC 10, l 2: AxBy C 2 0 距离: d C 1 C 2.22AB8.直线系方程:( 1)平行直线系方程:① 直线 ykxb 中当斜率 k 一定而 b 变动时,表示平行直线系方程..② 与直线 l : AxByC0 平行 的直线可表示为 AxBy C 10 .③过点P ( x 0 , y 0 ) 与直线 l : AxByC0 平行 的直线可表示为:A ( x x 0 )B ( yy 0 )0 .( 2)垂直直线系方程:① 与直线 l : AxByC0 垂直 的直线可表示为 BxAy C 1 0 .② 过点 P ( x 0 , y 0 ) 与直线 l : AxBy C0 垂直 的直线可表示为: B ( xx 0 )A ( yy 0 )0 .( 3)定点直线系方程:① 经过定点 P ( x 0 , y 0 ) 的直线系方程为 yy 0 k ( x x ) ( 除直线 xx ), 其中 k 是待定的系数.② 经过定点 P ( x 0 , y 0 ) 的直线系方程为 A( xx 0 ) B ( y y 0 )0 , 其中 A , B 是待定的系数.( 4)共点直线系方程: 经过两直线l 1: A 1 x B 1 y C 12 0 交点的直线系方, l 2: A 2 x B 2 y C程为 A 1 xB 1 yC 1 ( A 2 x B 2 y C 2 ) 0 ( 除 l 2 ) ,其中 λ 是待定的系数.9. 曲线 C 1 : f ( x , y )0与C 2 : g ( x, y)0 的交点坐标 方程组 f ( x , y )的解.g ( x , y ) 010.圆的方程:( 1)圆的标准方程: ( x a ) 2( y b)2r 2( r 0 ).( 2)圆的一般方程: x 2 y2Dx EyF0(D 2E 24 F0 ) .( 3)圆的直径式方程:若 A( x 1 , y 1 ), B ( x 2 , y 2 ) ,以线段 AB 为直径的圆的方程是: ( x x 1 )( x x 2 ) ( yy 1 )( yy 2 ) 0 .注: (1) 在圆的一般方程中,圆心坐标和半径分别是( D , E) , r 1 D 2 E24 F .22 2( 2)一般方程的特点:① x 2和 y 2的系数相同且不为零;②没有 xy 项; ③D 2 E24 F 0( 3)二元二次方程 Ax 2BxyCy 2DxEy F0 表示圆的等价条件是:①AC0;② B0;③ D 224 AF0 .E11.圆的弦长的求法: ( 1)几何法:当直线和圆相交时,设弦长为 l ,弦心距为 d ,半径为 r ,则:“半弦长 2+弦心距 2=半径 2”—— ( l) 2d 2 r 2 ;2( 2)代数法:设 l 的斜率为 k , l 与圆交点分别为 A ( x 1 ,y 1 ), B ( x 2 ,y 2 ) ,则|AB|2x B | 11 y B | 1 k| x A2| yAk(其中 | x 1 x 2 |,| y 1 y 2 |的求法是将直线和圆的方程联立消去 y 或 x ,利用韦达定理求解)12.点与圆的位置关系:① P 在在圆外 d② P 在在圆内 d③ P 在在圆上 d 13.直线与圆的位置关系:点 P ( x 0 , y 0 ) 与圆 ( x a )2( y b ) 2 r 2 的位置关系有三种r ( x 0 a ) 2 ( y 0 b ) 2 r 2 .r ( x a ) 2 ( y b ) 2 r 2.0 0r ( x 0 a ) 2 ( y 0 b ) 2 r 2 .【 P 到圆心距离d( a x0 ) 2 ( b y0 ) 2 】0 与圆 ( x a ) 2 2 2的位置关系有三种 ( dAa Bb C直线 Ax By C ( y b ) rA 2): B 2圆心到直线距离为 d ,由直线和圆联立方程组消去x (或y)后,所得一元二次方程的判别式为.d r 相离0 ; d r 相切0 ; d r 相交0 .14.两圆位置关系:设两圆圆心分别为O1, O2 ,半径分别为 r1 , r2, O1 O 2 dd r1 r2 外离 4 条公切线;d r1 r 2 内含无公切线;d r1 r2 外切 3 条公切线; d r1 r 2 内切1条公切线;r1 r 2 d r1 r 2 相交 2 条公切线.15.圆系方程:x2 y 2 Dx Ey F 0 ( D 2 E 2 4 F 0 )( 1)过直线l:Ax By C 0与圆 C : x2 y 2 Dx Ey F 0 的交点的圆系方程:x 2 y 2 Dx Ey F ( Ax By C ) 0 , λ是待定的系数.(2)过圆C1: x 2 y 2 D 1 x E 1 y F 1 0 与圆 C 2: x 2 y 2 D 2 x E 2 y F 2 0 的交点的圆系方程:x 2 y 2 D 1 x E 1 y F 1 ( x 2 y 2 D 2 x E 2 y F 2 ) 0 , λ是待定的系数.特别地,当 1 时, x 2 y 2 D 1 x E 1 y F 1 ( x2 y 2 D 2 x E 2 y F 2 ) 0 就是( D 1 D 2 ) x ( E 1 E 2 ) y ( F1 F 2 ) 0 表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:( 1)过圆x2 y 2 r 2上的点 P ( x0 , y 0 ) 的切线方程为: x0 x y 0 y r2.( 2)过圆( x a) 2 ( y b ) 2 r 2上的点P ( x0, y0)的切线方程为: ( x a )( x 0 a ) ( y b )( y 0 b ) r2.( 3)当点P ( x0, y0)在圆外时,可设切方程为y y 0 k ( x x 0 ) ,利用圆心到直线距离等于半径,即 d r ,求出 k ;或利用0 ,求出 k .若求得k 只有一值,则还有一条斜率不存在的直线x x0 .17.把两圆x2 y 2 D 1 x E 1 y F 1 0 与 x 2 y 2 D 2 x E 2 y F 2 0 方程相减即得相交弦所在直线方程 : ( D 1 D 2 ) x ( E 1 E 2 ) y ( F1 F 2 ) 0 .18.对称问题:( 1)中心对称:① 点关于点对称:点A( x1 , y1 ) 关于M ( x 0 , y 0 ) 的对称点 A ( 2 x0 x1 , 2 y 0 y1 ) .② 直线关于点对称:法 1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法 2:求出一个对称点,在利用l 1 // l 2由点斜式得出直线方程.(2)轴对称:①点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.AA ⊥l kA A · 1k l .点 A 、 A 关于直线l对称AA 中点在上A A中点坐标满足l方程l②直线关于直线对称:(设 a , b 关于 l 对称)法 1:若a , b相交,求出交点坐标,并在直线 a 上任取一点,求该点关于直线l 的对称点.若a // l ,则 b // l ,且 a , b 与 l 的距离相等.法2:求出 a 上两个点 A , B关于l的对称点,在由两点式求出直线的方程.( 3)点 ( a, b) 关于 x 轴对称: ( a,- b) 、关于 y 轴对称: (- a, b) 、关于原点对称:(- a,- b) 、点( a, b) 关于直线 y=x 对称: ( b, a) 、关于 y= - x 对称: (- b,- a) 、关于 y = x + m 对称: ( b - m、 a +m) 、关于 y= - x+m 对称: (- b+m、 - a+m ) .19.若A ( x1 ), C ( x 3 , y 3 ) ,则△ABC的重心G的坐标是x x x y y y, y1 ), B ( x2 , y 2 1 2 3 , 1 2 3 .3 320.各种角的范围:直线的倾斜角 0 180 两条相交直线的夹角0 90两条异面线所成的角0 90。
最新高二数学解析几何知识点1.直线的方程与性质:-直线的斜率与倾斜角的关系;-直线与坐标轴的交点;-点斜式方程、两点式方程和截距式方程的相互转化;-直线的平行和垂直关系。
2.圆的方程与性质:-圆的标准方程和一般方程;-圆心和半径的计算;-相交圆的位置关系;-弦长和弧长的计算。
3.圆的切线与法线:-切线和法线的斜率和倾斜角的计算;-切线和法线方程的推导和计算。
4.二次曲线的方程与性质:-椭圆的标准方程和一般方程;-椭圆的中心、焦点、准线、长轴和短轴的计算;-抛物线的标准方程和一般方程;-抛物线的焦点、准线、顶点和焦半径的计算;-双曲线的标准方程和一般方程;-双曲线的中心、焦点、准线、焦半径和渐近线的计算。
5.直线与圆的位置关系:-相离、相切和相交的判定方法;-相交点的个数和位置的计算。
6.圆与圆的位置关系:-相离、相切和相交的判定方法;-相交弦的位置和切点的计算。
7.三角形的重心、外心、垂心和内心:-重心的定义、性质和计算;-外心的定义、性质和计算;-垂心的定义、性质和计算;-内心的定义、性质和计算。
8.三角形的相似与全等:-三角形相似的判定条件;-三角形相似的性质和计算;-三角形全等的判定条件;-三角形全等的性质和计算。
9.三角形的中位线、高线、角平分线和垂直平分线:-三角形中位线的性质和计算;-三角形高线的性质和计算;-三角形角平分线的性质和计算;-三角形垂直平分线的性质和计算。
10.空间几何图形的性质与计算:-二面角、二面立体角的计算;-空间直线和平面的位置关系;-空间直线的方程和性质;-平面与平面的位置关系。
11.球面的方程与性质:-球面的标准方程和一般方程;-球心和半径的计算;-球面的切线和切点的计算。
12.圆锥曲线的方程与性质:-椭圆锥的方程和性质;-抛物线锥的方程和性质;-双曲线锥的方程和性质;-非退化圆锥曲线的判定条件。
13.空间向量的内积和外积:-空间向量的定义、表示和性质;-空间向量的数量积和向量积的定义和性质;-向量的投影和模长计算;-向量的夹角和垂直判定。
第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。
数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。
记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。
可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。
(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。
从点A 到点B的向量,记作AB 。
线段AB 的长叫做向量AB 的长度,记作|AB|。
我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。
例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。
注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。
③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。
(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。
对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。
已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。
人教B 版高中数学必修2解析几何公式+知识点
一、直线与方程
(1)直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
tan k =
当[90,0∈时,0≥k ; 当()
180,90∈α时,0<k ; 当 90=α时,k 不存在。
②过两点的直线的斜率公式:)(211
212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x (老师推荐!)
注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。
②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b
③两点式:
112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b
+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。
⑤一般式:0=++C By Ax (A ,B 不全为0)
注意:○
1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)
(二)过定点的直线系
(ⅰ)斜率为k 的直线系:
()00x x k y y -=-,直线过定点()00,y x ;
(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为
()()0222111=+++++C y B x A C y B x A λ(λ为参数)
,其中直线2l 不在直线系中。
(6)两直线平行与垂直
当111:b x k y l +=,222:b x k y l +=时,
212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨⎧=++=++0
0222111C y B x A C y B x A 的一组解。
方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
(8)两点间距离公式:设1122(,),A x y B x y ,()
是平面直角坐标系中的两个点,
则||AB =
(9)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2
200B A C By Ax d +++=
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解。
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;
(2)一般方程022=++++F Ey Dx y x 当042
2>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42
122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:
(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d
⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<
(2)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,先将方程联立消元,得到一个一元二
次方程之后,令其中的判别式为∆,则有
相离与C l ⇔<∆0;相切与C l ⇔=∆0;相交与C l ⇔>∆0
注:如果圆心的位置在原点,可使用公式200r yy xx =+去解直线与圆相切的问题,其中()00,y x 表
示切点坐标,r 表示半径。
(3)过圆上一点的切线方程:
①圆x 2+y 2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为200r yy xx =+ (课本命题).
②圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 2 (课本命题的推广).
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+-
两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条;
当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。