高中数学必修二公式必记
- 格式:doc
- 大小:92.00 KB
- 文档页数:4
高中数学必修二知识点梳理第一章空间几何体的表面积和体积公式总结1.表面积(1).棱柱S = 2 S底+ S侧(2).棱锥S = S底+ S侧(3).棱台S = S上底+ S下底+ S侧(4).圆柱S= 2 πr 2 +2πr l =2πr ( r + l )(5).圆锥S = S底+ S侧=πr 2 +πr l =πr ( r + l )(6).圆台S = S上底+ S下底+ S侧=π(r2 + r´2 + rl +r´l) (7).球 S= 4πR22.体积(1).柱体V = S h(2).锥体V = S h/3(3).台体V =( S + √S ´S + S´) h/3(4).球V = 4/3πR3第二章点直线平面之间位置关系的判定,性质及其推论1.直线与平面平行的判定平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行2.平面与平面平行的判定一个平面内的两条相交直线与另一个平面平行,则这两个平面平行推论如果一个平面内有两条相交直线与另一个平面内的两条相交直线平行,则这两个平面平行3.直线与平面平行的性质一条直线与一个平面平行,则过这条直线的任意平面与此平面的交线与该直线平行4.平面与平面平行的性质如果两个平面平行,两个平面同时和第三个平面相交,那么它们的交线平行推论夹在两个平行平面间的平行线段相等5.直线与平面垂直的判定一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直6.平面与平面垂直的判定一个平面过另一平面的垂线,则这两个平面垂直7.直线与平面垂直的性质垂直与同一平面的两条直线平行8.平面与平面垂直的性质两个平面垂直,则一个平面内垂直与交线的直线与另外一个平面垂直推论如果两个平面相互垂直,那么经过第一个平面的一点且垂直于第二个平面的直线在第一个平面内一.直线方程(一).两条直线1.l1∥l2 => k1 = k2或k1 k2不存在2. k1 = k2 => l1∥l2或l1 l2重合3.A,B,C三点共线 k AB = k AC(k存在)4. l1⊥l2 => k1 · k2 = -1 或k1 k2有一不存在,有一为05. k1 · k2 = -1 => l1⊥l2(二).直线方程1.点斜式方程: y–y0 =k (x–x0)2.两点式方程:(y–y1)/(y2–y1)=(x–x1)/(x2–x1)3.截距式方程:x/a +y/b = 14 .斜截式方程:y= k x + b5.一般式方程: Ax + By + C = 0二.距离公式1.两点之间距离公式:d = √【(x2 –x1)2 + (y2–y1)2】2.点到直线的距离公式:d = ∣Ax0 + By0 + C∣/√(A2 + B2)3.两条平行线间的距离公式: d =∣C2– C1∣/√(A2 + B2)]一.圆的方程1.圆的标准方程(x - a)2 +(y - b)2 = r2 (圆心坐标(a ,b),半径为r)2.圆的一般方程x2 + y2 + Dx +Ey +F = 0 => (x+D/2)2+(y+E/2)2 = (D2+E2-4F)/4(1). D2+E2-4F > 0 ,圆心(-D/2 ,- E/2)半径√(D2+E2-4F)/2(2). D2+E2-4F = 0 表示一点(3). D2+E2-4F < 0 不表示任何图形二.直线,圆位置关系1.直线与圆的位置关系(1).直线与圆无公共点⇔ d > r ⇔相离⇔联立方程无解(2).直线与圆只有一个公共点⇔ d = r ⇔相切⇔联立方程有一解(3).直线与圆有两个公共点⇔ d < r ⇔相交⇔联立方程有两解2.圆与圆的位置关系(1).外离⇔ d>R+r(2).外切⇔ d = R+r(3).相交⇔∣R-r∣ < d < R+r(4).内切⇔ d =∣R-r∣(5).内含⇔ d<∣R-r∣。
高中数学必修二知识点总结及公式大全高中数学是培养学生逻辑思维和抽象能力的重要学科。
《必修二》作为高中数学课程的重要组成部分,涉及了许多核心知识点和基础公式。
本文将为您详细总结《必修二》的知识点,并整理出一份公式大全,帮助您更好地掌握这门学科。
一、高中数学必修二知识点总结1.函数概念与性质- 函数的定义、表示方法、分类- 函数的性质(单调性、奇偶性、周期性、对称性等)- 反函数及其求法2.指数函数与对数函数- 指数函数的定义、性质、图像- 对数函数的定义、性质、图像- 指数方程与对数方程的解法3.三角函数- 角度制与弧度制互换- 三角函数的定义、图像、性质- 三角恒等变换- 三角方程与不等式的解法4.数列- 等差数列与等比数列的定义、性质、求和公式- 数列的通项公式与求和公式- 数列的极限5.平面向量- 向量的定义、表示、线性运算- 向量的坐标表示与几何表示- 向量的数量积与垂直关系- 向量的平行四边形法则与三角形法则6.解析几何- 直线方程的求法(点斜式、截距式、一般式等)- 圆的方程与性质- 常见图形的面积、周长、体积计算二、高中数学必修二公式大全1.函数类- y=f(x) 的反函数:y=f^(-1)(x)- 幂函数:y=x^a(a 为常数)- 指数函数:y=a^x(a>0 且a≠1)- 对数函数:y=log_a(x)(a>0 且a≠1)2.三角函数类- 正弦函数:y=sin(x)- 余弦函数:y=cos(x)- 正切函数:y=tan(x)- 三角恒等变换公式(和差公式、倍角公式、半角公式等)3.数列类- 等差数列通项公式:a_n=a_1+(n-1)d- 等差数列求和公式:S_n=n/2(a_1+a_n)- 等比数列通项公式:a_n=a_1q^(n-1)- 等比数列求和公式:S_n=a_1(1-q^n)/(1-q)(q≠1)4.向量类- 向量加法:A+B=(a_x+b_x, a_y+b_y)- 向量减法:A-B=(a_x-b_x, a_y-b_y)- 向量数量积:A·B=a_xb_x+a_yb_y- 向量模长:|A|=√(a_x^2+a_y^2)5.解析几何类- 点斜式直线方程:y-y_1=k(x-x_1)- 截距式直线方程:x/a+y/b=1- 圆的标准方程:(x-a)^2+(y-b)^2=r^2总结:本文为您详细总结了高中数学必修二的知识点,并整理了一份公式大全。
公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.〔奇变偶不变〕然后在前面加上把α看成锐角时原函数值的符号。
1高中数学-必修二6.2.1两角和/差的三角比公式-知识点1、熟记两角和与差的余弦、正弦、正切公式.2、题型:给角求值。
要点:①把非特殊角转化为特殊角的和或差,然后正用公式求值,比如sin75°=sin(45°+30°)=426+;sin15°=cos(45°-30°)= 426-;②利用诱导公式,构造两角和或差的三角比公式的结构形式,然后逆用公式求值,比如sin460°×sin(-160°)+cos560°×cos(-280°)。
3、题型:给值求值。
例如:已知tan α=1/2,sin(α+β)=-2/10,其中,α,β∈(0,π),求cos β的值。
要点:①把所求角分解成两个已知角的和或差,常见角的变换有:2α+β=(α+β)+α;2α-β=(α-β)+α;2βα+=(2βα-)-(βα-2);2βα-=(2βα+)-(βα+2);(απ+4)+(βπ+4)=2π+(βα+);(απ+4)+(βπ-4)=2π+(βα-)。
②在求三角比的时候,经常要对角的范围进行压缩。
比如这道题,由α,β的范围得α+β∈(0,2π),但sin(α+β)<0,则α+β∈(π,2π),又tan α>0,所以α∈(0,π/2),所以α+β∈(π,3π/2)。
4、题型:给值求角。
例如:已知α,β均为锐角,且cos α=25/5,cos β= 10/10,求α-β的值。
要点与给值求值题型相同(分解所求角和压缩角的范围)。
2 5、两角和与差的正切公式的变形:①tan α+tan β=tan(α+β)(1-tan αtan β);tan αtan β=1-β)+tan(αtan β+tan α;②tan α-tan β=tan(α-β)(1+tan αtan β); tan αtan β=β)-tan(αtan β-tan α-1。
第一部分立体几何1、常见基本函数的导数(1)常函数:0)()(='⇒=x f C x f (2)幂函数:1)()(-='⇒=αααx x f x x f (3)正弦函数:x x f x x f cos )(sin )(='⇒= (4)余弦函数:x x f x x f sin )(cos )(-='⇒= (5)指数函数1:a a x f a x f x x ln )()(='⇒= (6)指数函数2:x x e x f e x f ='⇒=)()( (7)对数函数1:ax x f x x f a ln 1)(log )(='⇒= (8)对数函数2:xx f x x f 1)(ln )(='⇒= 2、导数运算公式:(1)和的导数:)()(])()([x g x f x g x f '±'⇒'±(2)积的导数:)()()()(])()([x g x f x g x f x g x f '+'⇒'(3)商的导数:)()()()()(])()([2x g x g x f x g x f x g x f '-'⇒' 3、导数的意义:(1)导数值就是曲线在该点的斜率:)(0x f k '=; (2)位移的导数就是瞬时速度:)(t s v '=瞬 (3)速度的导数就是瞬时加速度:)(t v a '=瞬4、曲线的切线方程:))((000x x x f y y -'=-5、导数与单调性:(1)增区间x I x f ⇒⎩⎨⎧>'0)(范围; (2)减区间x I x f ⇒⎩⎨⎧<'0)(范围; 求单调区间步骤:求定义域→求导函数→分类求交集;6、利用单调性求参数范围 (1)求定义域: (2)求导函数:(3)由函数的单调性写出导函数的符号;①若)(x f 在区间D 上是单调递增函数0)(≥'⇒x f 在D 上恒成立; ②若)(x f 在区间D 上是单调递减函数0)(≤'⇒x f 在D 上恒成立; (4)分离参数①max )()(x a x a ϕϕ≥⇒≥; ②min )()(x a x a ϕϕ≤⇒≤; 例、已知函数xx a x x f 2ln )(2++=在[)+∞,1单调递增函数,求实数a 的取值范围。
高中数学必修二公式汇总与整理一、不等式的性质1.两个实数a与b之间的大小关系2.不等式的性质3.绝对值不等式的性质(1)如果a>0,那么(2)|a?b|=|a|?|b|.(3)|a|-|b|≤|a±b|≤|a|+|b|.(4)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.二、不等式的证明1.不等式证明的依据(2)不等式的性质(略)(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)2.不等式的证明方法(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法.用比较法证明不等式的步骤是:作差——变形——判断符号.(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.三、解不等式1.解不等式问题的分类(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化为一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解无理不等式;④解指数不等式;⑤解对数不等式;⑥解带绝对值的不等式;⑦解不等式组.2.解不等式时应特别注意下列几点:(1)正确应用不等式的基本性质.(2)正确应用幂函数、指数函数和对数函数的增、减性.(3)注意代数式中未知数的取值范围.3.不等式的同解性(5)|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)(6)|f(x)|>g(x)①与f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②与g(x)<0同解.(9)当a>1时,af(x)>ag(x)与f(x)>g(x)同解,当0<a<1时,af(x)>ag(x)与f(x)<g(x)同四、《不等式》解不等式的途径,利用函数的性质。
必修二数学必背公式知识点_高中数学知识点必修二数学必背公式知识点空间几何一、立体几何常用公式S(圆柱全面积)=2πr(r+L);V(圆柱体积)=Sh;S(圆锥全面积)=πr(r+L);V(圆锥体积)=1/3Sh;S(圆台全面积)=π(r^2+R^2+rL+RL);V(圆台体积)=1/3[s+S+√(s+S)]h;S(球面积)=4πR^2;V(球体积)=4/3πR^3。
二、立体几何常用定理(1)用一个平面去截一个球,截面是圆面。
(2)球心和截面圆心的连线垂直于截面。
(3)球心到截面的距离d与球的半径R及截面半径r有下面关系:r=√(R^2—d^2)。
(4)球面被经过球心的平面载得的圆叫做大圆,被不经过球心的载面截得的圆叫做小圆。
(5)在球面上两点之间连线的最短长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,这个弧长叫做两点间的球面距离。
高二必修二数学复习知识点1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高二数学必修二重要知识归纳空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
高中数学必修2知识点总结高中数学必修二知识点总结1. 一元二次方程一元二次方程的标准形式为ax^2+bx+c=0,并且a≠0。
求解一元二次方程的方法是配方法、公式法和因式分解法。
2. 三角函数常用的三角函数有正弦函数、余弦函数、正切函数和余切函数。
三角函数的定义域和值域以及其性质和图像都是必须掌握的。
3. 三角恒等式包括正弦、余弦和正切等三角函数的恒等式,例如正弦函数的和差公式、倍角公式、半角公式等。
三角恒等式是解决三角函数问题的重要工具。
4. 二次函数的图像和性质二次函数的标准形式为y=ax^2+bx+c,其中a≠0。
二次函数的图像是一个开口朝上或开口朝下的抛物线,其对称轴为x=-b/2a。
必须掌握二次函数的顶点、零点、对称轴等性质,这些性质是判断图像和求解问题的重要方法。
5. 平面向量平面向量包括向量的定义、向量之间的运算、向量的坐标表示等。
向量的运算包括向量的加法、减法、数量积和向量积。
向量的坐标表示是将向量投影在坐标轴上来表示的。
6. 点、直线、平面和空间几何点、直线、平面和空间几何的基本概念和性质是必须掌握的,例如点的坐标、直线的一般式方程、平面的法向量等。
此外,必须掌握两条直线和两个平面之间的位置关系、垂直平分线以及中垂线等概念。
7. 三视图和轴测图三视图是立体图形的三个视图,包括正视图、左视图和俯视图。
轴测图是用于三维图形表示的一种图形表示方法,包括斜二测和等轴测。
8. 四边形和圆的性质四边形和圆的主要性质包括四边形内角和定理、对角线定理、圆的周长和面积计算公式、圆内部和圆外部点与圆的位置关系等。
9. 三角形和圆的性质三角形和圆的主要性质包括三角形内角和、三角形的面积计算公式、圆心角和圆弧、圆的切线和切点等。
10. 函数及其应用函数的概念和图像、定义域和值域、单调性等性质必须掌握。
函数的应用包括函数的极值、最大值和最小值等问题。
以上是高中数学必修二知识点的总结,这些知识点是高中数学教育的重点和难点,学好这些知识点对于提高数学成绩和发展数学思维能力都具有重要的意义。
高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
姓名:
第一章部分知识总结
1什么是正4棱锥,正5棱柱,正4面体?
2 圆锥的表面积,体积公式:
3 圆台的表面积,体积公式:
4 球的表面积体积公式:
5 圆柱的表面积体积公式:
6 棱长为a 的正方体的外接球的半径:内切球的半径:
7 正弦定理:余弦定理:
8 三角形外接圆的半径:内切圆的半径:
9 用斜二测画法的到的三角形的直观图的面积是原图的倍,为什么?
第二章部分知识总结
1 tan2ɑ= cos2ɑ= = = sin2ɑ=
Sin(α+β)= cos(α+β)=
Tan(α+β)=
2 ①如何求两条异面直线所成的
②如何证明多点共线
③如何证明三线交于一点
3三个平面可以把空间分成多少个部分?(画图)
4 三个平面两两相交,有几种情况(画图)?
5用图形和符号语言叙述
ⅰ直线与平面平行的判定:ⅱ平面与平面平行的判定:
ⅲ直线与平面平行的性质:ⅳ平面与平面平行的性质:
ⅴ直线与平面垂直的判定:ⅵ平面与平面垂直的性质:
ⅶ直线与平面垂直的性质ⅷ平面与平面垂直的判定
6.侧棱相等的三棱锥顶点在地面的射影是底面三角形的心
侧棱两两相互垂直的三棱锥顶点在地面的射影是底面三角形的心,为什么?(画图)三棱锥的顶点到底面三角形各边的距离相等,顶点在底面的射影为底面三角形的心
7简答下列问题
①证明直线与直线平行有哪些方法?②证明直线与直线垂直有哪些方法?
③证明直线与平面平行有哪些方法?④证明平面与平面平行有哪些方法?
⑤证明平面与平面垂直有哪些方法?⑥证明直线与平面垂直有哪些方法?
⑦如何求二面角的大小??
8.ɑ与β的交线为m ,ɑ,β都与平面γ垂直。
则直线m与平面γ的位置关系是:
第三章部分知识总结
1. tan o 30= tan o 60= tan o 45= tan o 150= tan o 120= tan o 135= tan(Ω-α)=
2.AB k =
3.23
-+x y 的几何意义是:
4.对于两条不重合的直线1l ,`2l ,其斜率分别为1k ,2k (即存在斜率)有 1l ∥`2l 《=》 1l ⊥`2l 《=》
5.①直线的点斜式: ②直线的斜截距式:
③直线的两点式: ④直线的斜截式:
⑤直线的一般式:
⑥过(1,2)斜率不存在的直线方程
过(1,2)和y 轴平行的直线方程:
6.直线方程:ax+(1-a)y=3 则该直线过定点:
7.画出两类在坐标轴上的截距相等的直线:
8.直线1l 方程:y=kx+b 。
若该直线不过第一象限。
则K ,b 应该满足什么条件?
9. 直线1l 方程:1A x+1B y+1C =0 直线`2l 方程:2A x+2B y+2C =0(A,B 不同时为0)
1l ∥`2l 《=》
1l ⊥`2l 《=》
10. 1l :4x+y-2=0 点A (1,1)关于1l 的对称点'
A 的坐标:
11.AB中点坐标为:
AB距离公式为:
12.点到直线的距离公式为:
13.两平行线之间的距离公式为:
14.如图8所示,在正方体ABCD—A1B1C1D1中,E是棱DD1的中点.
图8
(1)求直线BE和平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.。