开普勒第三定律的应用
- 格式:pdf
- 大小:70.51 KB
- 文档页数:2
应用一:开普勒三定律的应用开普勒行星运动三大定律基本内容: 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律): 对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律): 所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
的二次方的比值都相等。
实际应用:1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是 A 、速度最大的点是B 点 B 、速度最小的点是C 点 C 、m 从A 到B 做减速运动做减速运动 D 、m 从B 到A 做减速运动做减速运动2、 哈雷彗星最近出现的时间是1986年,天文学家哈雷预言,这颗彗星将每隔一定时间就会出现,请预算下一次飞近地球是哪一年?提供数据:(1)地球公转接近圆,地球公转接近圆,彗星的运动轨道则是一个非常扁彗星的运动轨道则是一个非常扁的椭圆;(2)彗星轨道的半长轴R 1约等于地球轨道半长轴R 2的18倍。
倍。
3、神舟七号沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的特殊椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R0,求飞船由A 点返回到地面B 点所需的时间。
点所需的时间。
4、两颗行星的质量分别为m 1和m 2,它们绕太阳运动的轨道半径分别为R 1和R 2,若m 1 = 2m 2 、R 1 = 4R 2,则它们的周期之比T 1:T 2是多少?是多少?5、2007年10月26日33分,嫦娥一号实施了第一次近地点火变轨控制,卫星进入了24小时周期椭圆轨道运动,此时卫星的近地点约为200km ,则卫星的远地点大约为(已知地球的半径为6.4×6.4×10103km ,近地环绕卫星周期约为1.5h ):A. 4.8×105km B . 3.6×104km 104km C. 7.0×104km D.1.2×D.1.2×105km 105km 8.太阳系八大行星公转轨道可近似看作圆轨道,“行星公转周期的平方”与“行星与太阳的平均距离的三次方”成正比。
典型例题关于开普勒的三大定律例1 月球环绕地球运动的轨道半径约为地球半径的60倍,运行周期约为27天。
应用开普勒定律计算:在赤道平面内离地面多少高度,人造地球卫星可以随地球一起转动,就像停留在无空中不动一样.分析:月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道的半径的三次方跟圆周运动周期的二次方的比值都是相等的.解:设人造地球卫星运行半径为R,周期为T,根据开普勒第三定律有:同理设月球轨道半径为,周期为,也有:由以上两式可得:在赤道平面内离地面高度:km点评:随地球一起转动,就好似停留在天空中的卫星,通常称之为定点卫星.它们离地面的高度是一个确定的值,不能随意变动。
利用月相求解月球公转周期例2 假设近似认为月球绕地球公转与地球绕日公转的轨道在同一平面内,且都为正圆.又知这两种转动同向,如下图,月相变化的周期为29.5天〔图是相继两次满月,月、地、日相对位置示意图〕.解:月球公转〔2π+〕用了29.5天.故转过2π只用天.由地球公转知.所以=27.3天.例3如下图,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,以下说法中正确的选项是哪个?〔〕A.B、C的线速度相等,且大于A的线速度B.B、C的周期相等,且大于A的周期C.B、C的向心加速度相等,且大于A的向心加速度D.假设C的速率增大可追上同一轨道上的B分析:由卫星线速度公式可以判断出,因而选项A是错误的.由卫星运行周期公式,可以判断出,应选项B是正确的.卫星的向心加速度是万有引力作用于卫星上产生的,由,可知,因而选项C是错误的.假设使卫星C速率增大,那么必然会导致卫星C偏离原轨道,它不可能追上卫星B,故D也是错误的.解:此题正确选项为B。
点评:由于人造地球卫星在轨道上运行时,所需要的向心力是由万有引力提供的,假设由于某种原因,使卫星的速度增大。
那么所需要的向心力也必然会增加,而万有引力在轨道不变的时候,是不可能增加的,这样卫星由于所需要的向心力大于外界所提供的向心力而会作离心运动。
开普勒三大定律的运用开普勒的三大定律是描述行星运动规律的基本法则,为天文学和物理学的发展做出了重要贡献。
这三大定律为人们理解和预测天体运动提供了重要依据,也被广泛应用于航天工程、卫星轨道设计等领域。
下面将介绍开普勒三大定律的具体内容及其在现代科学中的应用。
一、第一定律:行星轨道定律第一定律又称为椭圆轨道定律,它指出:每颗行星绕太阳运行的轨道是一个椭圆,太阳在椭圆的一个焦点上。
这意味着行星不是沿着圆形轨道运行的,而是按照椭圆轨道运动,其中太阳位于椭圆的一个焦点上,并非在中心位置。
在现代科学中,第一定律的应用非常广泛。
例如,天文学家通过观测行星的轨道形状和运行轨道来确认行星的轨道规律,从而推断出行星的性质和运动状态。
此外,在航天领域,工程师们设计人造卫星的轨道时也会考虑到椭圆轨道定律,以确保卫星运行的稳定性和可靠性。
二、第二定律:面积定律第二定律也被称为面积速度定律,它描述了行星在轨道上与太阳连线所扫过的面积相等的定律。
换句话说,当行星接近太阳时,它的速度会增加,而当行星离开太阳时,它的速度会减慢。
在现代科学中,第二定律广泛应用于卫星定位、导航系统等领域。
例如,通过分析人造卫星在轨道上扫过的面积和时间的关系,科学家们可以更准确地计算卫星的位置和速度,从而实现卫星导航系统的精确定位。
三、第三定律:调和定律第三定律也称为周期定律,它指出行星绕太阳运行的周期的平方与行星与太阳平均距离的立方成正比。
换句话说,行星绕太阳运行的周期和它与太阳的距离之间存在确定的数学关系。
在现代科学中,第三定律的应用也非常广泛。
例如,在航天工程中,工程师们可以通过利用第三定律来计算不同卫星的轨道周期,以确保卫星运行的稳定和协调。
此外,天文学家还可以利用第三定律来预测行星和卫星的运动规律,帮助科学家们更深入地探索宇宙的奥秘。
综上所述,开普勒的三大定律在现代科学中发挥着重要的作用。
通过运用这三大定律,科学家们可以更好地理解和预测天体运动规律,促进航天工程、卫星导航等领域的发展,为人类探索宇宙奠定了重要基础。
万有引力及天体运动一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点C 、m 从A 到B 做减速运动D 、m 从B 到A 做减速运动 二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用地上:忽略地球自转可得: 2)计算重力加速度地球上空距离地心r=R+h 处 方法:在质量为M ’,半径为R ’的任意天体表面的重力加速度''g方法:(3)计算天体的质量和密度利用自身表面的重力加速度:天上:利用环绕天体的公转: 等等(注:结合 得到中心天体的密度)(4)双星:两者质量分别为m 1、m 2,两者相距L特点:距离不变,向心力相等,角速度相等,周期相等。
双星轨道半径之比:双星的线速度之比:三、宇宙航行1、人造卫星的运行规律2Mm F G r =11226.6710/G N m kg -=⨯⋅122m mF G r =2R Mm Gmg =2''''''R m M G mg =mg R MmG =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2')(h R Mm G mg +=122121m m v v R R ==22(1) :M m GM v G m v r r r==卫地地卫由得rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 2、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 脱离速度 第三宇宙速度:V 3=16.7km/s 逃逸速度注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度(环绕速度) 3、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。
开普勒三大定律相关的应用与实例
开普勒三大定律是描述物体运动的重要理论,它们分别是:
1.物体在匀加速直线运动中,路程与时间成正比。
2.在匀加速直线运动中,物体的加速度是恒定的。
3.任意两个天体之间的引力关系是相互的,且它们之间的引力大小与质量
成正比,距离的平方成反比。
这些定律在物理学中有广泛的应用,例如:
1.在空间飞行中,可以利用开普勒三大定律来规划飞行轨迹,使飞船能够
在最短的时间内到达目的地。
2.在地球物理学中,可以利用开普勒三大定律来解释地球与其他天体之间
的引力关系,从而推测出地球的轨道。
3.在电磁学中,可以利用开普勒三大定律来解释电磁波的传播规律。
4.在医学中,可以利用开普勒三大定律来解释人体内物质的运动规律,从
而辅助医生进行诊断。
开普特第三定律
开普勒第三定律,又称开普勒和谐定律,是德国天文学家约翰尼斯·开普勒提出的行星运动三定律之一。
该定律指出,绕太阳做椭圆轨道运动的各行星,轨道半长轴的立方和公转周期的平方成正比,比值叫作开普勒常数。
开普勒第三定律的数学表达式如下:
a³/T² =k
其中,a 表示轨道半长轴,T 表示公转周期,k 为开普勒常数。
该定律为后来英国物理学家艾萨克·牛顿提出万有引力定律建立了非常重要的实验观测基础。
开普勒第三定律在天文、地球物理等领域具有广泛的应用,对于研究天体运动和宇宙探索具有重要意义。
开普勒第三定律的发现过程:
开普勒于1600年成为了天文学家第谷的助手,在位于布拉格的天文台工作。
第谷去世后,开普勒接替他成为圣罗马帝国的皇家数学家,并开始研究第谷留下的天文观测数据。
在1618年发表的《世界的和谐》一书中,开普勒提出了行星运动的三定律,其中第三定律
即开普勒和谐定律。
发现开普勒第三定律的意义:
开普勒第三定律的提出,揭示了行星运动规律的普遍性,即行星绕太阳的轨道半长轴的三次方与公转周期的二次方成正比。
这一规律为后来科学家研究天体运动提供了重要的理论基础。
牛顿在开普勒定律的基础上,结合自己的力学理论,提出了万有引力定律,进一步揭示了天体运动背后的物理规律。
此外,开普勒第三定律在地球物理学、行星科学等领域也有广泛应用,有助于研究地球及其他行星的地质结构、气候特征等现象。
同时,该定律在航天器轨道设计、太空探测等方面具有重要意义,为人类探索宇宙提供了科学依据。
开普勒第3定律公式全文共四篇示例,供读者参考第一篇示例:开普勒第三定律是开普勒行星运动定律中的一条基本定律,也称为"距离-周期关系定律"。
在这个定律中,开普勒明确了一个行星绕太阳公转的周期与其轨道半长轴的立方成正比的关系。
这个定律被数学公式表示为:T^2 = k*a^3T是行星绕太阳公转一圈所需时间的平方,a是行星绕太阳公转轨道的长半轴(即半径),k是一个常数,也称为开普勒定数。
开普勒第三定律是天文学中非常重要的定律之一,它可以帮助我们计算不同行星绕太阳公转的周期,从而更深入地研究宇宙中行星的运动规律。
下面我们将详细介绍开普勒第三定律公式及其应用。
我们来解释一下公式中的各个参数。
T代表的是行星绕太阳公转的周期,通常以地球的公转周期作为标准来衡量其他行星的周期。
a代表的是行星绕太阳公转轨道的长半轴,也就是轨道半径。
k是开普勒定数,对于太阳系内的不同行星,这个常数是不同的。
根据开普勒第三定律公式,我们可以通过测量行星公转周期和轨道半径来计算开普勒定数k的数值。
在数学计算中,我们也可以通过已知的开普勒定数来推导其他行星的周期和轨道半径。
这个公式为我们研究太阳系内各个行星的运动规律提供了极大的便利。
开普勒第三定律公式的应用不仅仅局限于太阳系内的行星运动,它同样适用于其他天体之间的运动关系。
通过这个公式,我们可以研究卫星绕行星公转的周期和轨道大小,进一步了解卫星的运动规律和轨道特性。
除了天文学领域,开普勒第三定律公式在航天工程和导航系统中也具有重要意义。
通过这个公式,科学家和工程师可以精确计算人造卫星绕地球公转的周期和轨道参数,确保卫星运行轨道的稳定和预测其未来位置。
开普勒第三定律公式是天文学和航天领域的重要工具之一,它为我们解释和预测行星和卫星的运动规律提供了有力支持。
借助这个公式,我们可以更深入地了解宇宙中的运动规律,并为人类探索宇宙提供重要的参考依据。
【2000字】第二篇示例:开普勒第三定律,又称开普勒定律之一、调和定律,是德国天文学家约翰内斯·开普勒在1609年提出的一个重要天文定律。
开普勒第三定律在电学中的一个应用及证明开普勒第三定律是物理学中一项重要的定律,它的定义是:“任何物体以规律的恒定速率旋转,它的磁力矩和力矩之间的比率是一个定值”。
在电学中,开普勒第三定律有多种应用,包括电动机、发电机、电场计算等。
本文将介绍其中一个应用,即在计算发电机电场的情况下,开普勒第三定律可以用于证明该电场衰减。
一、开普勒第三定律及其在电学中的应用
1、什么是开普勒第三定律?
开普勒第三定律又被称为开普勒定律,据该定律规定,任何物体以规律的恒定速率旋转,它的磁力矩和力矩之间的比率是一个定值。
2、开普勒第三定律在电学中的应用
开普勒第三定律可以用来计算发电机的电场衰减,也可以用于计算电动机或变压器的工作原理,还可用于计算电流、电压等电学参数之间的关系。
二、在发电机电场的情况下,如何证明该电场衰减的原理
1、首先,可以将该电动机的电压与相对应的磁力矩做对比。
通常情况下,电压V与电机的磁力矩T之间的比率是一定的,而当调节磁力矩
T的大小时,由开普勒第三定律可知,电压V也会相应地衰减。
2、其次,我们可以根据发电机的原理,使用一定操作可以使发电机产生电流,其中包括使用一组磁铁和电流交换,是让发电机把可转换的磁能转换为可见的热量和动能。
在此情况下,发电机的磁力矩也会随着电场的大小而改变,它的变化情况满足开普勒第三定律。
因此,我们可以根据此定律证明发电机的电场随着磁力矩变化而衰减。
三、结论
综上所述,开普勒第三定律可以用于电学领域,在计算发电机电场时尤其有用。
根据开普勒第三定律,我们可以证明发电机电场随着磁力矩变化而衰减,这表明开普勒第三定律在电学中也有重要应用。
万有引力及天体运动一.开普勒行星运动三大定律 1、开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
2、开普勒第二定律(面积定律):对于每一个行星而言,太阳和行星的联线在相等的时间内扫过相等的面积。
3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
1、如图所示是行星m 绕恒星M 运动的情况示意图,则下面的说法正确的是: A 、速度最大的点是B 点 B 、速度最小的点是C 点C 、m 从A 到B 做减速运动D 、m 从B 到A 做减速运动 二、万有引力定律1、万有引力定律的建立①太阳与行星间引力公式 ②月—地检验③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。
即: ②适用条件(Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。
(Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。
③运用地上:忽略地球自转可得: 2)计算重力加速度地球上空距离地心r=R+h 处 方法:在质量为M ’,半径为R ’的任意天体表面的重力加速度''g方法:(3)计算天体的质量和密度利用自身表面的重力加速度:天上:利用环绕天体的公转: 等等(注:结合 得到中心天体的密度)(4)双星:两者质量分别为m 1、m 2,两者相距L特点:距离不变,向心力相等,角速度相等,周期相等。
双星轨道半径之比:双星的线速度之比:三、宇宙航行1、人造卫星的运行规律2Mm F G r =11226.6710/G N m kg -=⨯⋅122m mF G r =2R Mm Gmg =2''''''R m M G mg =mg R MmG =2r T m r m r v m r Mm G 222224πω===334R M πρ⋅=2')(h R Mm G mg +=122121m m v v R R ==22(1) :M m GM v G m v r r r==卫地地卫由得rTm r m r v m r Mm G 222224πω===332T=2.GM GM GM r M v a G r r rωπ=== , , ,例.两颗人造卫星A 、B 绕地球作圆周运动,周期之比为T A :T B =1:8,则轨道半径之比和运动速率之比分别为( ) 2、宇宙速度第一宇宙速度:V 1=7.9km/s 第二宇宙速度:V 2=11.2km/s 脱离速度 第三宇宙速度:V 3=16.7km/s 逃逸速度注:(1)宇宙速度均指发射速度(2)第一宇宙速度为在地面发射卫星的最小速度,也是环绕地球运行的最大速度(环绕速度) 3、地球同步卫星(通讯卫星)(1)运动周期与地球自转周期相同,且T=24h ;(2)运转角速度等于地球自转的角速度,周期等于地球自转的周期; (3)同步卫星高度不变,运行速率不变(因为T 不变); (4)同步卫星的轨道平面必须与赤道平面平行,在赤道正上方。