高中数学易错、易混、易忘题分类汇编
- 格式:doc
- 大小:3.75 MB
- 文档页数:26
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =I 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =I知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当B φ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=I 求r 的取值范围。
高中数学教材易错易混知识点总结
高中数学教材中,有些知识点容易出现混淆或易错的情况,下面是一些具体的例子:
1. 函数中的自变量和函数值——在函数中,自变量是输入值,而函数值是输出的结果。
因此,在题目中应当清楚地区分清楚自变量和函数值,避免将两者混淆。
2. 向量的模和方向角——向量的模是向量的长度,而方向角是向量与某个标准方向的夹角。
在计算向量时,要注意区分开二者,避免混淆。
3. 三角函数中的“正弦角”和“余弦角”——正弦角指的是该角的正弦值,余弦角指的是该角的余弦值。
在题目中应当清楚地说明所要求的是哪一个,以避免混淆。
4. 平面向量和空间向量——平面向量与空间向量的概念不同,因此在计算过程中需要注意是否为平面向量或空间向量。
5. 图像对称和函数对称——在二次函数等函数的图像中,有关对称的问题,有的是关于 x 轴对称,有的是关于 y 轴对称。
在解题时需要认真分析,以免混淆。
总之,为了避免容易混淆的情况,在解题时需要认真分析、区分各种概念,尤其是需要注意相似、相同但概念不同的词语,以避免在解题时容易混淆。
高中数学易错、易混、易忘题分类汇编【易错点56】立体图形的截面问题。
例56、(2005哈师大附中、东北师大附中高三第二次联考)正方体ABCD --1111A B C D ,E 、F 分别是1AA 、1CC 的中点,p 是1CC 上的动点(包括端点),过E 、D 、P 作正方体的截面,若截面为四边形,则P 的轨迹是() A 、 线段1C F B 、线段CF C 、线段CF 和一点1C D 、线段1C F 和一点C 。
【易错点分析】学生的空间想象能力不足,不能依据平面的基本定理和线面平行定理作两平面的交线。
解析:如图当点P 在线段CF 上移动时,易由线面平行的性质定理知:直线DE 平行于平面11BB CC ,则过DE 的截面DEP 与平面11BB CC 的交线必平行,因此两平面的交线为过点P 与DE 平行的直线,由于点P 在线段CF 上故此时过P 与DE 平行的直线与直线1BB 的交点在线段1BB 上,故此时截面为四边形(实质上是平行四边形),特别的当P 点恰为点F 时,此时截面为1DEFB 也为平行四边形,当点P 在线段1C F 上时如图分别延长DE 、DP 交11A D 、11D C 于点H 、G 则据平面基本定理知点H 、G 既在平截面DEP 内也在平面1111A B C D 内,故GH 为两平面的交线,连结GH 分别交11A B 、11B C 于点K 、N (注也有可能交在两直线的延长线上),再分别连结EK 、KN 、PN 即得截面为DEKNP 此时为五边形。
故选CP FE D 1C 11A 1BD KN HGP FE D 1C 1B 1A 1BD A【知识点归类点拔】高考对用一平面去截一立体图形所得平面图形的考查实质上对学生空间想象能力及对平面基本定理及线面平行与面面平行的性质定理的考查。
考生往往对这一类型的题感到吃力,实质上高中阶段对作截面的方法无非有如下两种:一种是利有平面的基本定理:一个就是一条直线上有两点在一平面内则这条直线上所在的点都在这平面内和两平面相交有且仅有一条通过该公共点的直线(即交线)(注意该定理地应用如证明诸线共点的方法:先证明其中两线相交,再证明此交点在第三条直线上即转化为此点为两平面的公共点而第三条直线是两平的交线则依据定理知交点在第三条直线;诸点共线:即证明此诸点都是某两平面的共公点即这此点转化为在两平的交线上)据这两种定理要做两平面的交线可在两平面内通过空间想象分别取两组直线分别相交,则其交点必为两平面的公共点,并且两交点的连线即为两平的交线。
2019高考数学易忘、易错、易混知识点整理高中数学知识点有很多都是比较容易混淆的,很多考生的分数大多也丢在这些地方,为了大家以后取得更优异的成绩,小编特意为大家整理高考中易忘、易错、易混的知识点供大家参考。
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
高中数学易错、易混、易忘题分类汇编【易错点42】向量与解析几何的交汇例42、(03年新课程高考)已知常数a >0,向量c =(0,a),i=(1,0),经过原点O 以c +λi 为方向向量的直线与经过定点A(0,a )以i-2λc 为方向向量的直线相交于点P,其中λ∈R .试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由. 【易错点分析】此题综合程度较高,一方面学生对题意的理解如对方向向量的概念的理解有误,另一面在向量的问题情景下不能很好的结合圆锥曲线的定义来解答,使思维陷入僵局。
解析:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i =(1,0),c=(0,a), ∴c +λi=(λ,a),i -2λc=(1,-2λa)因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-.消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-.整理得 .1)2()2(81222=-+aay x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E和F;(ii)当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点;(iii)当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点.【知识点归类点拔】本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力。
在高考中向量与圆锥曲线的结合是成为高考命题的主旋律,在解题过程中一方面要注意在给出的向量问题情景中转化出来另一方面也要注意应用向量的坐标运算来解决解析几何问题如:线段的比值、长度、夹角特别是垂直、点共线等问题,提高自已应用向量知识解决解析几何问题的意识。
高考数学易错题型全归纳
高考数学易错题型有很多,这里列出了一些常见的类型:
1. 集合问题:这类问题通常涉及对集合的理解,如交集、并集、补集等。
学生容易混淆这些概念,导致错误。
2. 函数性质理解:对于函数的单调性、奇偶性、周期性等性质,学生可能理解不透彻,导致在判断或应用时出错。
3. 等差数列和等比数列的性质理解:等差数列和等比数列是高中数学的重点内容,但学生容易在理解其性质和应用上出错。
4. 三角函数的性质:三角函数具有多种性质,如周期性、单调性、奇偶性等,学生可能对其中某些性质掌握不够,导致解题出错。
5. 立体几何中的空间想象:立体几何需要学生有一定的空间想象能力,对于空间中点、线、面的关系能够准确判断。
但学生往往由于缺乏这种能力而出错。
6. 解析几何中的问题:解析几何涉及直线、圆、椭圆等图形,学生可能在理解这些图形的性质和应用上出错。
7. 概率和统计问题:概率和统计是高考数学的必考内容,学生需要掌握各种概率和统计的基本概念和方法,一旦混淆就可能导致错误。
8. 不等式的性质和应用:不等式是高中数学的重要内容,但学生可能对不等式的性质和应用掌握不够,导致解题出错。
9. 数列的通项和求和公式:数列的通项和求和公式是高考数学的常见考点,学生需要准确理解和掌握这些公式,否则在解题时容易出现错误。
以上只是高考数学中可能出现的一些易错题型,实际上还有很多其他的问题,学生在备考时应全面复习,熟练掌握各种知识点,以应对各种题型。
高中数学易错、易混、易忘备忘录1.在应用条件A ∪B =B⇔A ∩B =A⇔AB时,易忽略A是空集Φ的情况2.求解与函数有关的问题易忽略定义域优先的原则 3 根据定义证明函数的奇偶性时,易忽略检验函数定义域是否关于原点对称 4 求反函数时,易忽略求反函数的定义域 5 单调区间不能用集合或不等式表示. 6 用基本不等式求最值时,易忽略验证“一正二定三等”这一条件7 你知道函数(0,0)b y ax a b x =+>>的单调区间吗?(该函数在(,)-∞+∞和上单调递增;在[和(0上单调递减)这可是一个应用广泛的函数!(其在第一象限的图像就象“√”,特命名为:对勾函数) 是奇函数,图像关于原点对称.8 解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀 9 用判别式判定方程解的个数(或交点的个数)时,易忽略讨论二次项的系数是否为0 尤其是直线与圆锥曲线相交时更易忽略 10 等差数列中的重要性质:若m+n=p+q,则m n p q a a a a +=+;(反之不成立)等比数列中的重要性质:若m+n=p+q,则m n p a a a a = (反之不成立) 11 用等比数列求和公式求和时,易忽略公比q=1的情况 12 已知n S 求n a 时, 易忽略n =1的情况 13 等差数列的一个性质:设n S 是数列{n a }的前n 项和, {n a }为等差数列的充要条件是:2n S an bn =+(a, b 为常数)其公差是2a 14 你知道怎样的数列求和时要用“错位相减”法吗?(若n n n c a b =其中{n a }是等差数列,{n b }是等比数列,求{n c }的前n 项的和)15 你还记得裂项求和吗?(如111(1)1n n n n =-++) 16 在解三角问题时,你注意到正切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?17 你还记得三角化简的通性通法吗?( 异角化同角,异名化同名,高次化低次)18 你还记得在弧度制下弧长公式和扇形面积公式吗?1(||,2l r S lr α==扇形) 19 在三角中,你知道1等于什么吗?(这些统称为1的代换) 常数 “1”的种种代换有着广泛的应用20 0 与实数0有区别,0 的模为数0,它不是没有方向,而是方向不定 可以看成与任意向量平行,但与任意向量都不垂直 21 0= ,则0a b ⋅= ,但0a b ⋅= 不能得到0a = 或b = a b ⊥ 有a b ⋅=22 b = 时,有a c b c ⋅=⋅ 反之a c b c ⋅=⋅ 不能推出a b =23一般地()()a b c a b c ⋅⋅≠⋅⋅24 使用正弦定理时易忘比值还等于2R ::sin :sin :sin b c A B C = 25 两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>o11a b ⇒<,a<b<o1a b ⇒> 26 分式不等式的一般解题思路是什么?(移项通分、零点分段) 27 解指对数不等式应该注意什么问题?(指数函数与对数函数的单调性, 对数的真数大于零 )28 在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底或)讨论完之后,要写出:综上所述,原不等式的解是…… 29常用放缩技巧:211111111(1)(1)1n n n n n n n n n -=<<=-++-- k k k k k k k k k +-=+-<<++=-+1112111130用直线的点斜式、斜截式设直线的方程时, 易忽略斜率不存在的情况31直线的倾斜角、到的角、与的夹角的取值范围依次是[0,),(0,),(0,2πππ 32 函数的图象的平移、方程的平移以及点的平移公式易混:33sin sin()3x x x y x y x πππ→-=−−−−−−→=-沿轴向右平移① 22sin 2sin ,sin 2y y y y x y x y x →-=−−−−−→-==+沿轴向上平移②即 212sin sin 2x x x y x y x →=−−−−−−−→=沿轴缩短到原来的③ 1221sin sin 2x x x y x y x →=−−−−−−−→=沿轴伸长到原来的倍④ 2121sin 2sin ,sin 2y y y y x y x y x →=−−−−−−−→==沿轴缩短到原来的⑤即 1221sin sin ,2sin 2y y y y x y x y x →=−−−−−−−→==沿轴伸长到原来的倍⑥即 33 定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清)34 直线在坐标轴上的截距可正,可负,也可为0 35 处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别式 一般来说,前者更简捷 36处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系 37 在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形 38 还记得圆锥曲线方程中的a,b,c,p ,ca a c 2,的意义吗? 39 离心率的大小与曲线的形状有何关系?(圆扁程度,张口大小)等轴双曲线的离心率是多少? 40 在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式的限制 (求交点,弦长,中点,斜率,对称,存在性问题都在下进行) 41 椭圆中,注意焦点、中心、短轴端点所组成的直角三角形 (a,b,c ) 42 通径是抛物线的所有焦点弦中最短的弦 (通径是过焦点,且垂直于x 轴的弦) 43 你知道椭圆、双曲线标准方程中a,b,c 之间关系的差异吗?45作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见 46 求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 47 求多面体体积的常规方法是什么?(割补法、等积变换法) 48 两条异面直线所成的角的范围:0°<α≤90°直线与平面所成的角的范围:0o≤α≤90°二面角的平面角的取值范围:0°≤α≤180° 49 二项式()n a b +展开式的通项公式中a与b的顺序不变 50 二项式系数与展开式某一项的系数易混, 第r+1项的二项式系数为r n C 51 二项式系数最大项与展开式中系数最大项易混 二项式系数最大项为中间一项或两项;展开式中系数最大项的求法为用解不等式组112r r r r T T T T +++≥⎧⎨≥⎩来确定r 52 解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 53 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法或看为若干个恰好 54 二项式展开式的通项公式、n 次独立重复试验中事件A 发生k 次的概率与二项分布的分布列三者易记混通项公式:1r n r r r n T C a b -+= (它是第r+1项而不是第r项)事件A 发生k 次的概率:()(1)k k nn n P k C p p -=- 其中k=0,1,2,3,…,n,且0<p<1,p+q=155 常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x sin )'(cos -=x x )'(ln = xx a a log 1)'(log = x x e e =)'( a a a x x ln )'(= 2();u u v uv uv u v uv v v '''-⎛⎫'''=+= ⎪⎝⎭,(())u x f u x f u '''=⋅高中数学重要基础知识记忆检查一、幂函数、指数函数和对数函数1、由n 个元素组成的集合,其非空真子集个数为 。
高考数学易忘、易错、易混知识点整理高中数学知识点有专门多差不多上比较容易混淆的,专门多考生的分数大多也丢在这些地点,为了大伙儿以后取得更优异的成绩,小编专门为大伙儿整理高考中易忘、易错、易混的知识点供大伙儿参考。
1.进行集合的交、并、补运算时,不要忘了全集和空集的专门情形,不要不记得了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情形3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判定充分与必要条件?5.你明白“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判定函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地把握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范畴(恒成立问题).这几种差不多应用你把握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用把握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范畴。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.24.解决一些等比数列的前项和问题,你注意到要对公比及两种情形进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
一、集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。
2.在应用条件时,易忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法。
11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题)。
这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。
若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二、不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”。
19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”。
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集有多少个【易错点分析】此题由条件A B B =I 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =I 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=I 求r 的取值范围。
高中高考数学易错易混易忘题分类汇总及解析“会而不对,对而不全”一直以来成为制约学生数学成绩提高的重要因素,成为学生挥之不去的痛,如何解决这个问题对决定学生的高考成败起着至关重要的作用。
本文结合笔者的多年高三教学经验精心挑选学生在考试中常见的66个易错、易混、易忘典型题目,这些问题也是高考中的热点和重点,做到力避偏、怪、难,进行精彩剖析并配以近几年的高考试题作为相应练习,一方面让你明确这样的问题在高考中确实存在,另一方面通过作针对性练习帮你识破命题者精心设计的陷阱,以达到授人以渔的目的,助你在高考中乘风破浪,实现自已的理想报负。
【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1、 设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =I ,求实数a 组成的集合的子集有多少个?【易错点分析】此题由条件A B B =I 易知B A ⊆,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a 值产生漏解现象。
解析:集合A 化简得{}3,5A =,由A B B =I 知B A ⊆故(Ⅰ)当B φ=时,即方程10ax -=无解,此时a=0符合已知条件(Ⅱ)当Bφ≠时,即方程10ax -=的解为3或5,代入得13a =或15。
综上满足条件的a 组成的集合为110,,35⎧⎫⎨⎬⎩⎭,故其子集共有328=个。
【知识点归类点拔】(1)在应用条件A ∪B =B⇔A ∩B =A⇔AB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:(){}22,|4A x y x y =+=,()()(){}222,|34B x y x y r =-+-=,其中0r >,若A B φ=I 求r 的取值范围。
高中数学易混、易忘题分类汇编【易错点42】向量与解析几何的交汇例42、(03年新课程高考)已知常数a>0,向量c=(0,a ),i=(1,0),经过原点O 以c+λi 为方向向量的直线与经过定点A (0,a )以i -2λc 为方向向量的直线相交于点P ,其中λ∈R .试问:是否存在两个定点E 、F ,使得|PE|+|PF|为定值.若存在,求出E 、F 的坐标;若不存在,说明理由. 【易错点分析】此题综合程度较高,一方面学生对题意的理解如对方向向量的概念的理解有误,另一面在向量的问题情景下不能很好的结合圆锥曲线的定义来解答,使思维陷入僵局。
解析:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值.∵i=(1,0),c=(0,a ), ∴c+λi=(λ,a ),i -2λc=(1,-2λa )因此,直线OP 和AP 的方程分别为 ax y =λ 和 ax a y λ2-=-.消去参数λ,得点),(y x P 的坐标满足方程222)(x a a y y -=-.整理得 .1)2()2(81222=-+aay x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ;(ii )当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点;(iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点.【知识点归类点拔】本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力。
在高考中向量与圆锥曲线的结合是成为高考命题的主旋律,在解题过程中一方面要注意在给出的向量问题情景中转化出来另一方面也要注意应用向量的坐标运算来解决解析几何问题如:线段的比值、长度、夹角特别是垂直、点共线等问题,提高自已应用向量知识解决解析几何问题的意识。
【练42】(1)(2005全国卷1)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线。
(Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM∈+=μλμλ,证明22μλ+为定值。
答案:(1)6e =2)22μλ+=1(2) (02年新课程高考天津卷)已知两点M (-1,0),N (1,0),且点P 使MP ·MN ,PM ·PN ,NM ·NP 成公差小于零的等差数列(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(,o o x y ),记θ为PM 与PN的夹角,求tan θ;答案:①点P 的轨迹是以原点为圆心,3为半径的右半圆②tan θ=|y 0|(3)(2001高考江西、山西、天津)设坐标原点为O ,抛物线y 2=2x 与过焦点的直线交于A 、B 两点,则OB OA ⋅等于( )A.43 B.-43C.3D.-3答案:B【易错点43】解析几何与向量的数量积的性质如涉及模、夹角等的结合。
例43、已知椭圆C :22142x y +=上动点P 到定点(),0M m ,其中02m <<的距离PM 的最小值为1.(1)请确定M 点的坐标(2)试问是否存在经过M 点的直线l ,使l 与椭圆C 的两个交点A 、B 满足条件OA OB AB+=(O 为原点),若存在,求出l 的方程,若不存在请说是理由。
【思维分析】此题解题关键是由条件OA OB AB+=知0OA OB ∙=从而将条件转化点的坐标运算再结合韦达定理解答。
解析:设(),p x y ,由22142x y +=得22214x y ⎛⎫=- ⎪⎝⎭故()222214x PMx m ⎛⎫=-+- ⎪⎝⎭()2221212242x x m m ⎛⎫+-=-+- ⎪⎝⎭由于02m <<且22x -≤≤故当022m <≤时,2PM 的最小值为221m-=此时1m =,当224m <<时,2x =取得最小值为22421m m -++=解得1,3m =不合题意舍去。
综上所知当1m =是满足题意此时M 的坐标为(1,0)。
(2)由题意知条件OA OB AB +=等价于0OA OB ∙=,当l 的斜率不存在时,l 与C 的交点为61,2⎛⎫± ⎪ ⎪⎝⎭,此时0OA OB ∙≠ ,设l 的方程为()1y k x =-,代入椭圆方程整理得()2222124240k x k x k +-++=,由于点M 在椭圆内部故0∆>恒成立,由0OA OB ∙= 知12120x x y y +=即()()222122110k x x k x k +-++=,据韦达定理得2122412k x x k +=+,21222412k x x k-=+代入上式得()()()2222221244120k k k k k k +--⨯++=得24k =-不合题意。
综上知这样的直线不存在。
【知识点归类点拔】在解题过程中要注意将在向量给出的条件转化向量的坐标运算,从而与两交点的坐标联系起来才自然应用韦达定理建立起关系式。
此题解答具有很强的示范性,请同学们认真体会、融会贯通。
【练43】已知椭圆的焦点在x 轴上,中心在坐标原点,以右焦点2F 为圆心,过另一焦点1F 的圆被右准线截的两段弧长之比2:1,)2,1P 为此平面上一定点,且121PF PF ∙=.(1)求椭圆的方程(2)若直线()10y kx k =+>与椭圆交于如图两点A 、B ,令()()120f k AB F F k =∙>。
求函数()f k 的值域答案:(1)22142x y +=(2)()0,8 [易错点44]牢记常用的求导公式,求复合函数的导数要分清函数的复合关系. 例44、函数1cos x y x e -=⋅ 的导数为 。
[易错点分析]复合函数对自变量的导数等于已知函数对中间变量的导数,乘以中间变量对自变量的导数,即x u x y y u '''=⋅。
解析:()()1cos 1cos 1cos 1cos 1cos 1cos x x x x x y e x e e xe x e -----'''=+=+-=+1cos sin x xe x -()1cos 1sin x x x e -=+【知识点归类点拨】掌握复合函数的求导方法关键在于分清函数的复合关系,适当选定中间变量,分步计算中的每一步都要明确是对哪个变量求导,而其中要特别注意的是中间变量的系数。
[练习44](2003年江苏,21)已知0a,n 为正整数。
设()ny x a =-,证明()1n y n x a -'=-;(1) 设()()nn n f x x x a =--,对任意na ≥,证明()()()111n n f n n f n +''++解析:证明:(1)()()0,nnn kkk n k x a C a x -=-=-∑()()()1111111nnn kn kn kk k k nn k k y kCa xnC a x n x a -------=='∴=-=-=-∑∑(2)对函数()()nn n f x x x a =--求导数:()11n n n f nx n x a --'=--,()()11.n n n f n n n n a --'⎡⎤∴=--⎣⎦当0x a ≥ 时,()0n f x '()()nn n a x x x a ∴≥=--n 当时,f 是关于x 的增函数因此,当na ≥时,()()()11nnnn n n a n n a +-+--- 。
()()()()()()()()11111111n n n n n n n f n n n n a n n n a n n n n a -+'⎡⎤⎡⎤⎡⎤∴+=++-+-+--+--⎣⎦⎣⎦⎣⎦()()1n n f n '=+即对任意n a ≥,()()()111n n f n n f n +''++ .【易错点45】求曲线的切线方程。
例45、(2005高考福建卷)已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x . (Ⅰ)求函数)(x f y =的解析式;【思维分析】利用导数的几何意义解答。
解析:(Ⅰ)由)(x f 的图象经过P (0,2),知d=2,所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++='由在))1(,1(--f M 处的切线方程是076=+-y x ,知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即.3,0,32.121,623-==⎩⎨⎧=-=-⎩⎨⎧=+-+-=+-∴c b c b c b c b c b 解得即故所求的解析式是.233)(23+--=x x x x f 【知识点归类点拔】导数的几何意义:函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步: (1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为))(('000x x x f y y -=-特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x=。
利用导数的几何意义作为解题工具,有可能出现在解析几何综合试题中,复习时要注意到这一点.【练45】(1)(2005福建卷)已知函数bx ax x f +-=26)(的图象在点M (-1,f(x))处的切线方程为x +2y+5=0.(Ⅰ)求函数y=f(x)的解析式;答案:362)(2+-=x x x f (2)(2005高考湖南卷)设0≠t,点P (t ,0)是函数c bx x g ax x x f +=+=23)()(与的图象的一个公共点,两函数的图象在点P 处有相同的切线.(Ⅰ)用t 表示a ,b ,c ;答案:.3t ab c-==故2t a -=,t b =,.3t c -=【易错点46】利用导数求解函数的单调区间及值域。