高中物理动量定理的技巧及练习题及练习题(含答案)含解析
- 格式:doc
- 大小:527.50 KB
- 文档页数:9
高中物理动量定理解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。
高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。
用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。
另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
高考物理动量定理解题技巧讲解及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。
(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v = 230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m3.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.4.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。
高考物理动量定理解题技巧讲解及练习题(含答案)含解析一、高考物理精讲专题动量定理1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N 【解析】(1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即2202v v aL -=可解得:221002v v L m a-==(2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:2Cv N mg m R-= 从B 运动到C 由动能定理可知:221122C B mgh mv mv =-解得;3900N N =故本题答案是:(1)100L m = (2)1800I N s =⋅ (3)3900N N =点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。
高中物理动量定理的基本方法技巧及练习题及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。
(2)若B 0=02c v l ,且粒子从0≤l ≤02T的任一时刻入射时,粒子离开磁场时的位置都不在y 轴上,求T 0的取值范围。
高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图1所示,水平面内的直角坐标系的第一象限有磁场分布,方向垂直于水平面向下,磁感应强度沿y 轴方向没有变化,与横坐标x 的关系如图2所示,图线是双曲线(坐标是渐近线);顶角θ=53°的光滑金属长导轨MON 固定在水平面内,ON 与x 轴重合,一根与ON 垂直的长导体棒在水平向右的外力作用下沿导轨MON 向右滑动,导体棒在滑动过程中始终保持与导轨良好接触,已知t =0时,导体棒位于顶角O 处;导体棒的质量为m =4kg ;OM 、ON 接触处O 点的接触电阻为R =0.5Ω,其余电阻不计,回路电动势E 与时间t 的关系如图3所示,图线是过原点的直线,求:(1)t =2s 时流过导体棒的电流强度的大小; (2)在1~2s 时间内导体棒所受安培力的冲量大小;(3)导体棒滑动过程中水平外力F (单位:N )与横坐标x (单位:m )的关系式. 【答案】(1)8A (2)8N s ⋅(3)32639F x =+【解析】 【分析】 【详解】(1)根据E-t 图象中的图线是过原点的直线特点,可得到t =2s 时金属棒产生的感应电动势为4V E =由欧姆定律得24A 8A 0.5E I R === (2)由图2可知,1(T m)x B =⋅ 由图3可知,E 与时间成正比,有E =2t (V )4EI t R== 因θ=53°,可知任意t 时刻回路中导体棒有效切割长度43x L = 又由F BIL =安所以163F t 安=即安培力跟时间成正比所以在1~2s 时间内导体棒所受安培力的平均值163233N 8N 2F +== 故8N s I F t =∆=⋅安(3)因为43vE BLv Bx ==⋅所以1.5(m/s)v t =可知导体棒的运动时匀加速直线运动,加速度21.5m/s a =又212x at =,联立解得 32639F x =+【名师点睛】本题的关键首先要正确理解两个图象的数学意义,运用数学知识写出电流与时间的关系,要掌握牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式.2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s×【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s5.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s (2)由动量定理得(F -mg )Δt =Δp 所以F =p t ∆∆+mg =20.2N +0.2×10N=12N ,方向竖直向上.6.如图所示,长为1m 的长木板静止在粗糙的水平面上,板的右端固定一个竖直的挡板,长木板与挡板的总质量为M =lkg ,板的上表面光滑,一个质量为m= 0.5kg 的物块以大小为 t 0=4m/s 的初速度从长木板的左端滑上长木板,与挡板碰撞后最终从板的左端滑离,挡板对物 块的冲量大小为2. 5N • s ,已知板与水平面间的动摩擦因数为μ= 0.5,重力加速度为g=10m/s 2,不计物块与挡板碰撞的时间,不计物块的大小。
高中物理动量定理解题技巧及经典题型及练习题( 含答案 ) 及解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。
某型“礼花”底座仅0.2s 的发射时间,就能将质量为 m=5kg 的礼花弹竖直抛上 180m 的高空。
(忽略发射底座高度,不计空气阻力, g 取 10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1: 4,且炸裂时有大小为E=9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少?【答案】 (1)1550N; (2)900m【解析】【分析】【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F,设礼花弹上升时间为t,则:h 1gt 2 2解得t 6s对礼花弹从发射到抛到最高点,由动量定理Ft 0mg(t t0 )0其中t00.2s解得F 1550N(2)设在最高点爆炸后两块质量分别为m1、 m2,对应的水平速度大小分别为v1、 v2,则:在最高点爆炸,由动量守恒定律得m1v1m2 v2由能量守恒定律得E 1m1v121m2v22 22其中m11m24 m m1m2联立解得v1120m/sv230m/s 之后两物块做平抛运动,则竖直方向有h 1gt 2 2水平方向有s v1t v2t由以上各式联立解得s=900m2.质量为 m 的小球,从沙坑上方自由下落,经过时间t1到达沙坑表面,又经过时间t2停在沙坑里.求:⑴沙对小球的平均阻力F;⑵小球在沙坑里下落过程所受的总冲量I.mg(t1t 2 )【答案】 (1)(2) mgt1t2【解析】试题分析:设刚开始下落的位置为A,刚好接触沙的位置为B,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t1 +t2,而阻力作用时间仅为t2,以竖直向下为正方向,有:mg(t 1+t2)-Ft2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t1时间内只有重力的冲量,在t2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有:mgt 1-I=0,∴I=mgt1方向竖直向上考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.3.如图所示,足够长的木板端, A、 B、C 的质量分别为A 和物块m、2m 和C置于同一光滑水平轨道上,物块 B 置于 A 的左3m,已知 A、 B 一起以 v0的速度向右运动,滑块C向左运动,A、C 碰后连成一体,最终A、B、 C 都静止,求:(i) C 与 A 碰撞前的速度大小(i i )A、 C 碰撞过程中 C 对 A 到冲量的大小.【答案】( 1) C 与 A 碰撞前的速度大小是v0;(2) A、 C 碰撞过程中 C 对 A 的冲量的大小是3mv0.2【解析】【分析】【详解】试题分析:①设 C 与 A 碰前速度大小为v1,以A碰前速度方向为正方向,对A、 B、 C 从碰前至最终都静止程由动量守恒定律得:(m 2m) v0-3mv1 ?0解得: v1v0.②设 C 与 A 碰后共同速度大小为v2,对A、C在碰撞过程由动量守恒定律得:mv0-3mv1( m 3m)v2在 A、 C 碰撞过程中对 A 由动量定理得:I CA mv2- mv0解得: I CA 3mv0 2即A、 C 碰过程中 C 对 A 的冲量大小为3mv0.方向为负.2考点:动量守恒定律【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以 v0=6.0m/s 的初速度沿斜面上滑。
高中物理动量定理的基本方法技巧及练习题及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.滑冰是青少年喜爱的一项体育运动。
如图,两个穿滑冰鞋的男孩和女孩一起在滑冰场沿直线水平向右滑行,某时刻他们速度均为v0=2m/s,后面的男孩伸手向前推女孩一下,作用时间极短,推完后男孩恰好停下,女孩继续沿原方向向前滑行。
已知男孩、女孩质量均为m=50kg,假设男孩在推女孩过程中消耗的体内能量全部转化为他们的机械能,求男孩推女孩过程中:(1)女孩受到的冲量大小;(2)男孩消耗了多少体内能量?【答案】(1) 100N•s (2) 200J【解析】 【详解】(1)男孩和女孩之间的作用力大小相等,作用时间相等, 故女孩受到的冲量等于男孩受到的冲量,对男孩,由动量定理得:I =△P =0-mv 0=-50×2=-100N•s , 所以女孩受到的冲量大小为100N•s ; (2)对女孩,由动量定理得100=mv 1-mv 0,故作用后女孩的速度1100502m/s 4m/s 50v +⨯== 根据能量守恒知,男孩消耗的能量为221011125016504200J 222E mv mv =-⋅=⨯⨯-⨯=;3.一质量为m 的小球,以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv 0 【解析】 【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v ,由题意知v 的方向与竖直线的夹角为30°,且水平分量仍为v 0,由此得v =2v 0.碰撞过程中,小球速度由v 变为反向的34v ,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I =m 3()4v -m ·(-v ) 解得I =72mv 0.4.在某次短道速滑接力赛中,质量为50kg 的运动员甲以6m/s 的速度在前面滑行,质量为60kg 的乙以7m/s 的速度从后面追上,并迅速将甲向前推出,完成接力过程.设推后乙的速度变为4m/s ,方向向前,若甲、乙接力前后在同一直线上运动,不计阻力,求: ⑴接力后甲的速度大小;⑵若甲乙运动员的接触时间为0.5s ,乙对甲平均作用力的大小.【答案】(1)9.6m/s ;(2)360N ; 【解析】 【分析】 【详解】(1)由动量守恒定律得+=+m v m v m v m v ''甲甲乙乙甲甲乙乙 =9.6/v m s '甲; (2)对甲应用动量定理得-Ft m v m v '=甲甲甲甲 =360F N5.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F ; (3)求物块在反向运动过程中克服摩擦力所做的功W . 【答案】(1)0.32μ=(2)130F N =(3)9W J = 【解析】(1)由动能定理,有:2201122mgs mv mv μ-=-可得0.32μ=. (2)由动量定理,有'F t mv mv ∆=-可得130F N =. (3)'2192W mv J ==. 【考点定位】本题考查动能定理、动量定理、做功等知识6.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法. 【答案】(1)(2)(3)增大S 可以通过减小q 、U 或增大m 的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】试题分析:(1)根据动能定理有解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv 电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.7.如图所示,木块A 和四分之一光滑圆轨道B 静置于光滑水平面上,A 、B 质量m A =m B =2.0kg 。
高中物理动量定理的技巧及练习题及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。
现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。
若忽略空气阻力,重力加速度为g 。
(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。
请通过计算,说明你的观点。
【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L =-当2HL =时小球抛的最远2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。
已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。
求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。
求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。
【答案】(1)6.0m/s 2(2)18J (3)20N·s ,方向竖直向下。
【解析】 【详解】(1)设物体运动的加速度为a ,物体所受合力等于重力沿斜面向下的分力为:F=mg sin θ根据牛顿第二定律有:F=ma ;解得:a =6.0m/s 2(2)物体沿斜面上滑到最高点时,克服重力做功达到最大值,设最大值为v m ;对于物体沿斜面上滑过程,根据动能定理有:2120m W mv -=-解得W =18J ;(3)物体沿斜面上滑和下滑的总时间为:02262s 6v t a ⨯=== 重力的冲量:20N s G I mgt ==⋅方向竖直向下。
4.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。
(1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。
(2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。
请运用所学物理知识分析说明这样做的道理。
【答案】详情见解析 【解析】 【详解】(1)根据牛顿第二定律F ma =,加速度定义0i v v a t-=解得 0=-i Ft mv mv即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理0=-i Ft mv mv在动量变化相等的情况下,作用时间越长,作用力越小。
充满气体的塑料袋富有弹性,在碰撞时,容易发生形变,延缓作用过程,延长作用时间,减小作用力,从而能更好的保护快递物品。
5.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。
一质量为60kg 的运动员在高度为80h m =,倾角为30θ=︒的斜坡顶端,从静止开始沿直线滑到斜面底端。
下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问:(1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率;(3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。
【答案】(1)40/m s (2)41.210W ⨯(3)34.810N s ⨯⋅ 方向为竖直向下 【解析】 【分析】(1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可;(3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】(1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212mgh mv = 到达底端时的速率为:40/v m s =;(2)滑雪者由滑到斜面底端时重力的瞬时功率为:4sin 30 1.210G P mg v W =⋅⋅︒=⨯;(3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动根据牛顿第二定律0sin 30mg ma =,可以得到:2sin 305/a g m s =︒=根据速度与时间关系可以得到:08v t s a-== 则重力的冲量为:34.810G I mgt N s ==⨯⋅,方向为竖直向下。
【点睛】本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。
6.在水平地面的右端B 处有一面墙,一小物块放在水平地面上的A 点,质量m =0.5 kg ,AB 间距离s =5 m ,如图所示.小物块以初速度v 0=8 m/s 从A 向B 运动,刚要与墙壁碰撞时的速度v 1=7 m/s ,碰撞后以速度v 2=6 m/s 反向弹回.重力加速度g 取10 m/s 2.求: (1) 小物块与地面间的动摩擦因数μ;(2) 若碰撞时间t =0.05 s ,碰撞过程中墙面对小物块平均作用力F 的大小.【答案】(1)0.15 (2)130 N 【解析】 【详解】(1)从A 到B 过程,由动能定理,有:-μmgs =12mv 12-12mv 02 可得:μ=0.15.(2)对碰撞过程,规定向左为正方向,由动量定理,有:Ft =mv 2-m (-v 1) 可得:F =130 N.7.如图所示,一个质量m =4kg 的物块以速度v =2m/s 水平滑上一静止的平板车上,平板车质量M =16kg ,物块与平板车之间的动摩擦因数μ=0.2,其它摩擦不计(取g=10m/s 2),求:(1)物块相对平板车静止时,物块的速度;(2)物块相对平板车上滑行,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s (2)0.8m 【解析】(1)物块与平板车组成的系统动量守恒,以物块与普遍车组成的系统为研究对象,以物块的速度方向为正方向,由动量守恒定律得()mv M m v =+',解得0.4/v m s '=; (2)对物块由动量定理得mgt mv mv μ-='-,解得0.8t s =; 物块在平板车上做匀减速直线运动,平板车做匀加速直线运动, 由匀变速运动的平均速度公式得,对物块12v v s t +'=,对平板车22v s t '=, 物块在平板车上滑行的距离12s s s ∆=-,解得0.8s m ∆=, 要使物块在平板车上不滑下,平板车至少长0.8m .8.质量为2kg 的球,从4.05m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达到的最大高度为3.2m ,如果球从开始下落到弹起并达到最大高度所用时间为1.75s ,不考虑空气阻力(g 取10m/s 2),求小球对钢板的作用力的大小和方向. 【答案】700N 【解析】 【详解】物体从下落到落地过程中经历的时间为1t ,从弹起到达到最高点经历的时间为2t ,则有:21112h gt =,22212h gt = 可得:1122 4.05s 0.9s 10h t g ⨯===, 2222 3.2s 0.8s 10h t g ⨯=== 球与钢板作用的时间:12 1.750.90.8s 0.05s t t t t ∆=--=--=总 由动量定理对全过程可列方程:00mgt F t -∆=-总 可得钢板对小球的作用力210 1.75N 700N 0.05mgt F t ⨯⨯===∆总,方向竖直向上.9.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。
为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。
利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】【解析】 【分析】根据“粒子器壁各面碰撞的机会均等”即相等时间内与某一器壁碰撞的粒子为该段时间内粒子总数的,一个粒子每与器壁碰撞一次给器壁的冲量是,据此根据动量定理求与某一个截面碰撞时的作用力F ; 【详解】一个粒子每与器壁碰撞一次给器壁的冲量是:在时间内能达到面积为S 容器壁上的粒子所占据的体积为:由于粒子有均等的概率与容器各面相碰,即可能达到目标区域的粒子数为:根据动量定理得:考虑单位面积,整理可以得到:根据牛顿第三定律可知,单位面积所受粒子的压力大小为。
【点睛】本题的关键是建立微观粒子的运动模型,然后根据动量定理列式求解平均碰撞冲力,要注意粒子的运动是无规则的。
10.电磁弹射在电磁炮、航天器、舰载机等需要超高速的领域中有着广泛的应用,图1所示为电磁弹射的示意图.为了研究问题的方便,将其简化为如图2所示的模型(俯视图).发射轨道被简化为两个固定在水平面上、间距为L 且相互平行的金属导轨,整个装置处于竖直向下、磁感应强度为B 的匀强磁场中.发射导轨的左端为充电电路,已知电源的电动势为E ,电容器的电容为C ,子弹载体被简化为一根质量为m 、长度也为L 的金属导体棒,其电阻为r .金属导体棒,其电阻为r .金属导体棒垂直放置于平行金属导轨上,忽略一切摩擦阻力以及导轨和导线的电阻.(1)发射前,将开关S 接a ,先对电容器进行充电. a .求电容器充电结束时所带的电荷量Q ;b .充电过程中电容器两极板间的电压y 随电容器所带电荷量q 发生变化.请在图3中画出u-q 图像;并借助图像求出稳定后电容器储存的能量E 0;(2)电容器充电结束后,将开关b ,电容器通过导体棒放电,导体棒由静止开始运动,导体棒离开轨道时发射结束.电容器所释放的能量不能完全转化为金属导体棒的动能,将导体棒离开轨道时的动能与电容器所释放能量的比值定义为能量转化效率.若某次发射结束时,电容器的电量减小为充电结束时的一半,不计放电电流带来的磁场影响,求这次发射过程中的能量转化效率η.【答案】(1)a .Q CE =;b .;2012E CE =(2)223B L C mη=【解析】(1)a 、根据电容的定义Q C U=电容器充电结束时其两端电压U 等于电动势E ,解得电容器所带电荷量Q CE = b 、根据以上电容的定义可知qu C=,画出q-u 图像如图所示:有图像可知,稳定后电容器储存的能量0E 为图中阴影部分的面积012E EQ =,将Q 代入解得2012E CE =(2)设从电容器开始放电至导体棒离开轨道时的时间为t ,放电的电荷量为Q ∆,平均电流为I ,导体棒离开轨道时的速度为v根以导体棒为研究对象,根据动量定理0BLIt mv =-,(或BLi t m v ∑∆=∑∆), 据电流定义可知It Q =∆(或i t Q ∑∆=∆) 根据题意有1122Q Q CE ∆==,联立解得2BLCE v m= 导体棒离开轨道时的动能()22128kBLCE E mv m == 电容器释放的能量222113228E CE CU CE ∆=-=联立解得能量转化效率223k E B L CE mη==∆11.某汽车制造商研制开发了发动机额定功率P=30 kW 的一款经济实用型汽车,在某次性能测试中,汽车连同驾乘人员的总质量m=2000kg ,在平直路面上以额定功率由静止启动,行驶过程中受到大小f=600 N 的恒定阻力. (1)求汽车的最大速度v ;(2)若达到最大速度v 后,汽车发动机的功率立即改为P′=18 kW ,经过一段时间后汽车开始以不变的速度行驶,求这段时间内汽车所受合力的冲量I.【答案】(1)50/m s (2)44.010/kg m s -⨯⋅ 方向与初速度的方向相反 【解析】 【详解】(1)汽车匀速运动时,牵引力等于阻力,有:F=f=600N 根据 P=Fv 代入数据解得:v=50m/s (2)设功率改为 P′=18kW 时,则有:P v F'='=30m/s 根据动量定理得:I=mv′−mv代入数据得:I=−4.0×104kg·m/s,负号表示方向与初速度的方向相反 【点睛】(1)汽车匀速运动时,牵引力等于阻力,根据P=Fv 求解速度;(2)根据P=Fv 求出功率改为P′=18kW 的速度,然后根据动量定理求出合外力的冲量.12.一质量为100g 的小球从1.25m 高处自由下落到一厚软垫上.若小球从接触软垫到小球陷至最低点经历了0.02s ,则这段时间内软垫对小球的平均作用力是多大?(不计空气阻力,g =10m/s 2) 【答案】26N 【解析】设小球刚落到软垫瞬间的速度为v .对小球自由下落的过程,由机械能守恒可得: mgh=12mv 2;有:/5/v s m s =选取小球接触软垫的过程为研究过程,取向下为正方向.设软垫对小球的平均作用力为F ,由动量定理有:(mg-F )t=0-mv 得:0.150.110260.02mv F mg N t ⨯=+=⨯+= 点睛:本题是缓冲类型,往往根据动量定理求解作用力,要注意研究过程的选取,本题也可以选取小球从开始下落到最低点整个过程研究,比较简单.。