高中物理动量定理试题经典及解析
- 格式:doc
- 大小:530.00 KB
- 文档页数:11
高中物理 选修 动量一、【动量、冲量、动量定理】1.课上老师做了这样一个实验:如图所示,用一象棋子压着一纸条,放在水平桌面上接近边缘处.第一次,慢拉纸条,将纸条抽出,棋子掉落在地上的P 点;第二次,将棋子、纸条放回原来的位置,快拉纸条,将纸条抽出,棋子掉落在地上的N 点.从第一次到第二次现象的变化,下列解释正确的是( )A .棋子的惯性变大了B .棋子受到纸条的摩擦力变小了C .棋子受到纸条的摩擦力的冲量变小了D .棋子离开桌面时的动量变大了解析:选C .两次拉动中棋子的质量没变,其惯性不变,故A 错误;由于正压力不变,则纸条对棋子的摩擦力没变,故B 错误;由于快拉时作用时间变短,摩擦力对棋子的冲量变小了,故C 正确;由动量定理可知,合外力的冲量减小,则棋子离开桌面时的动量变小,故D 错误.2.如图所示,是一种弹射装置,弹丸的质量为m ,底座的质量为M =3m ,开始时均处于静止状态,当弹簧释放将弹丸以对地速度v 向左发射出去后,底座反冲速度的大小为 14v ,则摩擦力对底座的冲量为( )A .0B .14m v ,方向向左C .14m v ,方向向右D .34m v ,方向向左 解析:选B .设向左为正方向,对弹丸,根据动量定理:I =m v ;则弹丸对底座的作用力的冲量为-m v ,对底座根据动量定理:I f +(-m v )=-3m ·v 4得:I f =+m v 4,正号表示方向向左;故选B .3.高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动.在启动阶段,列车的动能( ) A .与它所经历的时间成正比B .与它的位移成正比C .与它的速度成正比D .与它的动量成正比解析:选B .速度v =at ,动能E k =12m v 2=12ma 2t 2,与经历的时间的平方成正比,A 错;根据v 2=2ax ,动能E k =12m v 2=12m ·2ax =max ,与位移成正比,B 对;动能E k =12m v 2,与速度的平方成正比,C 错;动量p =m v ,动能E k =12m v 2=p 22m,与动量的平方成正比,D 错. 4.如图所示,质量为m 的物体,在大小确定的水平外力F 作用下,以速度v 沿水平面匀速运动,当物体运动到A 点时撤去外力F ,物体由A 点继续向前滑行的过程中经过B 点,则物体由A 点到B 点的过程中,下列说法正确的是( )A .v 越大,摩擦力对物体的冲量越大,摩擦力做功越多B .v 越大,摩擦力对物体的冲量越大,摩擦力做功与v 的大小无关C .v 越大,摩擦力对物体的冲量越小,摩擦力做功越少D .v 越大,摩擦力对物体的冲量越小,摩擦力做功与v 的大小无关解析:选D .由题知,物体所受的摩擦力F f =F ,且为恒力,由A 到B 的过程中,v 越大,所用时间越短,I f =Ft 越小;因为W f =F ·AB ,故W f 与v 无关.选项D 正确.5. (多选)如图所示,AB 为竖直固定的光滑圆弧轨道,O 为圆心,AO 水平,BO 竖直,轨道半径为R ,将质量为m 的小球(可视为质点)从A 点由静止释放,在小球从A 点运动到B 点的过程中( )A .小球所受合力的冲量水平向右B .小球所受支持力的冲量水平向右C .小球所受合力的冲量大小为m 2gRD .小球所受重力的冲量大小为零解析:选AC .在小球从A 点运动到B 点的过程中,小球在A 点的速度为零,在B 点的速度水平向右,由动量定理知,小球所受合力的冲量即重力和支持力的合力的冲量水平向右,A 正确,B 错误;在小球从A 点运动到B 点的过程中机械能守恒,故有mgR =12m v 2B,解得v B =2gR ,由动量定理知,小球所受合力的冲量大小为I =m 2gR ,C 正确;小球所受重力的冲量大小为I G =mgt ,大小不为零,D 错误.6.如图所示,在水平光滑的轨道上有一辆质量为300 kg ,长度为2.5 m 的装料车,悬吊着的漏斗以恒定的速率100 kg/s 向下漏原料,装料车以0.5 m/s 的速度匀速行驶到漏斗下方装载原料.(1)为了维持车速不变,在装料过程中需用多大的水平拉力作用于车上才行.(2)车装完料驶离漏斗下方仍以原来的速度前进,要使它在2 s 内停下来,需要对小车施加一个多大的水平制动力.解析:(1)设在Δt 时间内漏到车上的原料质量为Δm ,要使这些原料获得与车相同的速度,需加力为F ,根据动量定理,有F ·Δt =Δm ·v所以F =Δm Δt·v =100×0.5 N =50 N. (2)车装完料的总质量为M =m 车+Δm Δt·t =⎝⎛⎭⎫300+100×2.50.5kg =800 kg 对车应用动量定理,有F ′·t ′=0-(-M v )解得F ′=M v t ′=800×0.52N =200 N. 答案:(1)50 N (2)200 N7.第二届进博会于2019年11月在上海举办,会上展出了一种乒乓球陪练机器人,该机器人能够根据发球人的身体动作和来球信息,及时调整球拍将球击回.若机器人将乒乓球以原速率斜向上击回,球在空中运动一段时间后落到对方的台面上,忽略空气阻力和乒乓球的旋转.下列说法正确的是( )A .击球过程合外力对乒乓球做功为零B .击球过程合外力对乒乓球的冲量为零C .在上升过程中,乒乓球处于失重状态D .在下落过程中,乒乓球处于超重状态解析:选AC .球拍将乒乓球原速率击回,可知乒乓球的动能不变,动量方向发生改变,可知合力做功为零,冲量不为零.A 正确,B 错误;在乒乓球的运动过程中,加速度方向向下,可知乒乓球处于失重状态,C 正确,D 错误.8.如图所示,物体从t =0时刻开始由静止做直线运动,0~4 s 内其合外力随时间变化的关系图线为某一正弦函数,下列表述不正确的是( )A .0~2 s 内合外力的冲量一直增大B .0~4 s 内合外力的冲量为零C .2 s 末物体的动量方向发生变化D .0~4 s 内物体动量的方向一直不变解析:选C .根据F -t 图象面积表示冲量,可知在0~2 s 内合外力的冲量一直增大,A 正确;0~4 s 内合外力的冲量为零,B 正确;2 s 末冲量方向发生变化,物体的动量开始减小,但方向不发生变化,0~4 s 内物体动量的方向一直不变,C 错误,D 正确.9.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为 3 km/s ,产生的推力约为4.8×106 N ,则它在1 s 时间内喷射的气体质量约为( )A .1.6×102 kgB .1.6×103 kgC .1.6×105 kgD .1.6×106 kg解析:选B .设1 s 内喷出气体的质量为m ,喷出的气体与该发动机的相互作用力为F ,由动量定理Ft =m v 知,m =Ft v =4.8×106×13×103 kg =1.6×103 kg ,选项B 正确. 10.(多选)如图所示,用高压水枪喷出的强力水柱冲击右侧的煤层.设水柱直径为D ,水流速度为v ,方向水平,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.高压水枪的质量为M ,手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ.下列说法正确的是( )A .高压水枪单位时间喷出的水的质量为ρv πD 2B .高压水枪的功率为18ρπD 2v 3 C .水柱对煤层的平均冲力为14ρπD 2v 2 D .手对高压水枪的作用力水平向右解析:选BC .设Δt 时间内,从水枪喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ,ΔV =S v Δt =14πD 2v Δt ,单位时间喷出水的质量为Δm Δt =14ρv πD 2,选项A 错误.Δt 时间内水枪喷出的水的动能E k =12Δm v 2=18ρπD 2v 3Δt ,由动能定理知高压水枪在此期间对水做功为W =E k =18ρπD 2v 3Δt ,高压水枪的功率P =W Δt =18ρπD 2v 3,选项B 正确.考虑一个极短时间Δt ′,在此时间内喷到煤层上水的质量为m ,设煤层对水柱的作用力为F ,由动量定理,F Δt ′=m v ,Δt ′时间内冲到煤层水的质量m =14ρπD 2v Δt ′,解得F =14ρπD 2v 2,由牛顿第三定律可知,水柱对煤层的平均冲力为F ′=F =14ρπD 2v 2,选项C 正确.当高压水枪向右喷出高压水流时,水流对高压水枪的作用力向左,由于高压水枪有重力,根据平衡条件,手对高压水枪的作用力方向斜向右上方,选项D 错误.11.质量相等的A 、B 两物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用而从静止开始做匀加速直线运动.经过时间t 0和4t 0速度分别达到2v 0和v 0时,分别撤去F 1和F 2,两物体都做匀减速直线运动直至停止.两物体速度随时间变化的图线如图所示.设F 1和F 2对A 、B 两物体的冲量分别为I 1和I 2,F 1和F 2对A 、B 两物体做的功分别为W 1和W 2,则下列结论正确的是( )A .I 1∶I 2=12∶5,W 1∶W 2=6∶5B .I 1∶I 2=6∶5,W 1∶W 2=3∶5C .I 1∶I 2=3∶5,W 1∶W 2=6∶5D .I 1∶I 2=3∶5,W 1∶W 2=12∶5解析:选C .由题可知,两物体匀减速运动的加速度大小都为v 0t 0,根据牛顿第二定律,匀减速运动中有F f =ma ,则摩擦力大小都为m v 0t 0.由题图可知,匀加速运动的加速度分别为2v 0t 0、v 04t 0,根据牛顿第二定律,匀加速运动中有F -F f =ma ,则F 1=3m v 0t 0,F 2=5m v 04t 0,故I 1∶I 2=F 1t 0∶4F 2t 0=3∶5;对全过程运用动能定理得:W 1-F f x 1=0,W 2-F f x 2=0,得W 1=F f x 1,W 2=F f x 2,图线与时间轴所围成的面积表示运动的位移,则位移之比为6∶5,整个运动过程中F 1和F 2做功之比为W 1∶W 2=x 1∶x 2=6∶5,故C 正确. 12. 2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如图所示,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点.质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s.取重力加速度g =10 m/s 2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量I 的大小;(3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小.解析:(1)根据匀变速直线运动公式,有L =v 2B -v 2A 2a=100 m. (2)根据动量定理,有I =m v B -m v A =1 800 N ·s.(3)运动员经过C 点时的受力分析如图所示.运动员在BC 段运动的过程中,根据动能定理,有mgh =12m v 2C -12m v 2B 根据牛顿第二定律,有F N -mg =m v 2C R解得F N =3 900 N.答案:(1)100 m (2)1 800 N ·s (3)受力图见解析 3 900 N二、【动量守恒定律】1.(多选)如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下滑()A.在下滑过程中,小球和槽之间的相互作用力对槽不做功B.在下滑过程中,小球和槽组成的系统水平方向动量守恒C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球能回到槽上高h处解析:选BC.在下滑过程中,小球和槽之间的相互作用力对槽做功,选项A错误;在下滑过程中,小球和槽组成的系统在水平方向所受合外力为零,系统在水平方向动量守恒,选项B正确;小球与槽组成的系统动量守恒,球与槽的质量相等,小球沿槽下滑,球与槽分离后,小球与槽的速度大小相等,小球被弹簧反弹后与槽的速度相等,故小球不能滑到槽上,选项D错误;小球被弹簧反弹后,小球和槽在水平方向不受外力作用,故小球和槽都做匀速运动,选项C正确.2.有一个质量为3m的爆竹斜向上抛出,到达最高点时速度大小为v0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m,速度大小为v,方向水平向右,则另一块的速度是()A.3v0-v B.2v0-3vC.3v0-2v D.2v0+v解析:选C.在最高点水平方向动量守恒,由动量守恒定律可知,3m v0=2m v+m v′,可得另一块的速度为v′=3v0-2v,对比各选项可知,答案选C.3.如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上.现把小球从与O点等高的地方释放(小球不会与杆相撞),小车向左运动的最大位移是()A.2LMM+m B.2LmM+mC.MLM+m D.mLM+m解析:选B .分析可知小球在下摆过程中,小车向左加速,当小球从最低点向上摆动过程中,小车向左减速,当小球摆到右边且与O 点等高时,小车的速度减为零,此时小车向左的位移达到最大,小球相对于小车的位移为2L .小球和小车组成的系统在水平方向上动量守恒,设小球和小车在水平方向上的速度大小分别为v 1、v 2,有m v 1=M v 2,故ms 1=Ms 2,s 1+s 2=2L ,其中s 1代表小球的水平位移大小,s 2代表小车的水平位移大小,因此s 2=2Lm M +m,选项B 正确.4.如图所示,B 、C 、D 、E 、F ,5个小球并排放置在光滑的水平面上,B 、C 、D 、E ,4个球质量相等,而F 球质量小于B 球质量,A 球的质量等于F 球质量.A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后( )A .3个小球静止,3个小球运动B .4个小球静止,2个小球运动C .5个小球静止,1个小球运动D .6个小球都运动 解析:选A .因A 、B 质量不等,M A <M B .A 、B 相碰后A 速度向左运动,B 向右运动.B 、C 、D 、E 质量相等,弹性碰撞后,不断交换速度,最终E 有向右的速度,B 、C 、D 静止.E 、F 质量不等,M E >M F ,则E 、F 都向右运动.所以B 、C 、D 静止;A 向左,E 、F 向右运动.故A 正确,B 、C 、D 错误.5.如图所示,两辆质量均为M 的小车A 和B 置于光滑的水平面上,有一质量为m 的人静止站在A 车上,两车静止.若这个人自A 车跳到B 车上,接着又跳回A 车并与A 车相对静止.则此时A 车和B 车的速度之比为( )A .M +m mB .m +M MC .M M +mD .m M +m 解析:选C .规定向右为正方向,则由动量守恒定律有:0=M v B -(M +m )v A ,得v A v B=M M +m,故C 正确. 6.如图所示,光滑水平轨道右边与墙壁连接,木块A 、B 和半径为0.5 m 的14光滑圆轨道C 静置于光滑水平轨道上,A 、B 、C 质量分别为1.5 kg 、0.5 kg 、4 kg.现让A 以6 m/s 的速度水平向右运动,之后与墙壁碰撞,碰撞时间为0.3 s ,碰后速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,已知g =10 m/s 2,求:(1)A 与墙壁碰撞过程中,墙壁对木块A 平均作用力的大小;(2)AB 第一次滑上圆轨道所能达到的最大高度h .解析:(1)A 与墙壁碰撞过程,规定水平向左为正方向,对A 由动量定理有:Ft =m A v 2-m A (-v 1)解得F =50 N.(2)A 与B 碰撞过程,对A 、B 系统,水平方向动量守恒有:m A v 2=(m B +m A )v 3AB 第一次滑上圆轨道到最高点的过程,对A 、B 、C 组成的系统,水平方向动量守恒,且最高点时,三者速度相同,有:(m B +m A )v 3=(m B +m A +m C )v 4由能量关系:12(m B +m A )v 23=12(m B +m A +m C )v 24+(m B +m A )gh 解得h =0.3 m.答案:(1)50 N (2)0.3 m7.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A .给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,A 始终没有滑离木板B . 在小木块A 做加速运动的时间内,木板速度大小可能是( )A .1.8 m/sB .2.4 m/sC .2.8 m/sD .3.0 m/s解析:选B .A 先向左减速到零,再向右做加速运动,在此期间,木板做减速运动,最终它们保持相对静止,设A 减速到零时,木板的速度为v 1,最终它们的共同速度为v 2,取水平向右为正方向,则M v -m v =M v 1,M v 1=(M +m )v 2,可得v 1=83m/s ,v 2=2 m/s ,所以在小木块A 做加速运动的时间内,木板速度大小应大于2.0 m/s 而小于83m/s ,只有选项B 正确.8.(多选)质量为M 、内壁间距为L 的箱子静止于光滑的水平面上,箱子中间有一质量为m 的小物块,小物块与箱子底板间的动摩擦因数为μ.初始时小物块停在箱子正中间,如图所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性的,则整个过程中,系统损失的动能为( )A .12m v 2 B .mM 2(m +M )v 2 C .12NμmgL D .N μmgL解析:选BD .设系统损失的动能为ΔE ,根据题意可知,整个过程中小物块和箱子构成的系统满足动量守恒和能量守恒,则有m v =(M +m )v t (①式)、12m v 2= 12(M +m )v 2t +ΔE (②式), 由①②联立解得ΔE =Mm 2(M +m )v 2,可知选项A 错误,B 正确;又由于小物块与箱壁碰撞为弹性碰撞,则损耗的能量全部用于摩擦生热,即ΔE =NμmgL ,选项C 错误,D 正确.9.(多选)如图甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的x -t 图象.已知m 1=0.1 kg.由此可以判断( )A .碰前m 2静止,m 1向右运动B .碰后m 2和m 1都向右运动C .m 2=0.3 kgD .碰撞过程中系统损失了0.4 J 的机械能解析:选AC .由x -t 图象的斜率得到,碰前m 2的位移不随时间而变化,处于静止状态.m 1速度大小为v 1=ΔxΔt =4 m/s ,方向只有向右才能与m 2相撞,故A 正确;由题图乙读出,碰后m 2的速度为正方向,说明向右运动,m 1的速度为负方向,说明向左运动,故B 错误;由题图乙求出碰后m 2和m 1的速度分别为v 2′=2 m/s ,v 1′=-2 m/s ,根据动量守恒定律得,m 1v 1=m 1v 1′+m 2v 2′,代入解得,m 2=0.3 kg ,故C 正确;碰撞过程中系统损失的机械能为ΔE =12m 1v 21-12m 1v 1′2-12m 2v 2′2,代入解得,ΔE =0 J ,故D 错误. 10.(多选)质量为M 的小车置于光滑的水平面上,左端固定一根水平轻弹簧,质量为m 的光滑物块放在小车上,压缩弹簧并用细线连接物块和小车左端,开始时小车与物块都处于静止状态,此时物块与小车右端相距为L ,如图所示,当突然烧断细线后,以下说法正确的是( )A .物块和小车组成的系统机械能守恒B .物块和小车组成的系统动量守恒C .当物块速度大小为v 时,小车速度大小为m M vD .当物块离开小车时,小车向左运动的位移为mML解析:选BC .弹簧推开物块和小车的过程,若取物块、小车和弹簧组成的系统为研究对象,则无其他力做功,机械能守恒,但选物块和小车组成的系统,弹力做功属于系统外其他力做功,弹性势能转化成系统的机械能,此时系统的机械能不守恒,A 选项错误;取物块和小车的系统,外力的和为零,故系统的动量守恒,B 选项正确;由物块和小车组成的系统动量守恒得:0=m v -M v ′,解得v ′=mM v ,C 选项正确;弹开的过程满足反冲原理和“人船模型”,有v v ′=M m ,则在相同时间内x x ′=M m ,且x +x ′=L ,联立得x ′=mLM +m ,D 选项错误.11.(多选)如图所示,在光滑的水平面上有一静止的物体M ,物体M 上有一光滑的半圆弧轨道,最低点为C ,A 、B 为同一水平直径上的两点,现让小滑块m 从A 点由静止下滑,则( )A.小滑块m到达物体M上的B点时小滑块m的速度不为零B.小滑块m从A点到C点的过程中物体M向左运动,小滑块m从C点到B点的过程中物体M向右运动C.若小滑块m由A点正上方h高处自由下落,则由B点飞出时做竖直上抛运动D.物体M与小滑块m组成的系统机械能守恒,水平方向动量守恒解析:选CD.物体M和小滑块m组成的系统机械能守恒,水平方向动量守恒,D正确;小滑块m滑到右端两者水平方向具有相同的速度:0=(m+M)v,v=0,可知小滑块m 到达物体M上的B点时,小滑块m、物体M的水平速度为零,故当小滑块m从A点由静止下滑,则能恰好到达B点,当小滑块由A点正上方h高处自由下落,则由B点飞出时做竖直上抛运动,A错误,C正确;小滑块m从A点到C点的过程中物体M向左加速运动,小滑块m从C点到B点的过程中物体M向左减速运动,选项B错误.12.如图所示,水平固定的长滑竿上套有两个质量均为m的薄滑扣(即可以滑动的圆环)A 和B,两滑扣之间由不可伸长的柔软轻质细线相连,细线长度为l,滑扣在滑竿上滑行时所受的阻力大小恒为滑扣对滑竿正压力大小的k倍.开始时两滑扣可以近似地看成挨在一起(但未相互挤压).今给滑扣A一个向左的水平初速度使其在滑竿上开始向左滑行,细线拉紧后两滑扣以共同的速度向前滑行,继续滑行距离l2后静止,假设细线拉紧过程的时间极短,重力加速度为g.求:(1)滑扣A的初速度的大小;(2)整个过程中仅仅由于细线拉紧引起的机械能损失.解析:(1)设滑扣A的初速度为v0,细线拉紧前瞬间滑扣A的速度为v1,滑扣A的加速度大小a=kg,由运动学公式得v21-v20=-2al,细线拉紧后,A、B滑扣的共同速度为v2,由动量守恒定律得,m v1=2m v2,细线拉紧后滑扣继续滑行的加速度大小也为a,由运动学公式得0-v 22=-2a ·l2. 联立解得v 2=kgl ,v 1=2kgl ,v 0=6kgl . (2)由能量守恒定律得ΔE =12m v 20-kmgl -k ·2mg ·12l , 解得ΔE =kmgl .答案:(1)6kgl (2)kmgl三、【“三大观点”解答力学综合问题】1.(多选)质量为M 和m 0的滑块用轻弹簧连接,以恒定的速度v 沿光滑水平面运动,与位于正对面的质量为m 的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列情况可能发生的是( )A .M 、m 0、m 速度均发生变化,分别为v 1、v 2、v 3,而且满足(M +m 0)v =M v 1+m 0v 2+m v 3B .m 0的速度不变,M 和m 的速度变为v 1和v 2,而且满足M v =M v 1+m v 2C .m 0的速度不变,M 和m 的速度都变为v ′,且满足M v =(M +m )v ′D .M 、m 0、m 速度均发生变化,M 、m 0速度都变为v 1,m 的速度变为v 2,且满足(M +m 0)v =(M +m 0)v 1+m v 2解析:选BC .在M 与m 碰撞的极短时间内,m 0的速度来不及改变,故A 、D 均错误;M 与m 碰撞后可能同速,也可能碰后不同速,故B 、C 均正确.2.(多选)如图所示,在光滑的水平面上,有一质量为M 的木块正以速度v 向左运动,一颗质量为m (m <M )的弹丸以速度v 向右水平击中木块并最终停在木块中.设弹丸与木块之间的相互作用力大小不变,则在相互作用过程中( )A .弹丸和木块的速率都是越来越小B .弹丸在任一时刻的速率不可能为零C .弹丸对木块一直做负功,木块对弹丸先做负功后做正功D .弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等解析:选CD .弹丸击中木块前,由于m <M ,两者速率相等,所以两者组成的系统总动量向左,弹丸水平击中木块并停在木块中的过程,系统的动量守恒,由动量守恒定律可知,弹丸停在木块中后它们一起向左运动,即弹丸开始时向右运动,后向左运动,故弹丸的速率先减小后增大,木块的速率一直减小,由以上分析知,弹丸的速率在某一时刻可能为零,故A 、B 错误;木块一直向左运动,弹丸对木块一直做负功,弹丸先向右运动后向左运动,则木块对弹丸先做负功后做正功,故C 正确;由牛顿第三定律知,弹丸对木块的水平作用力与木块对弹丸的水平作用力大小相等,相互作用的时间相等,由冲量的定义式I =Ft 知,弹丸对木块的水平冲量与木块对弹丸的水平冲量大小相等,故D 正确.3.(多选)如图所示,水平光滑轨道宽度和轻弹簧自然长度均为d ,m 2的左边有一固定挡板.m 1由图示位置静止释放,当m 1与m 2相距最近时m 1的速度为v 1,则在以后的运动过程中( )A .m 1的最小速度是0B .m 1的最小速度是m 1-m 2m 1+m 2v 1C .m 2的最大速度是v 1D .m 2的最大速度是2m 1m 1+m 2v 1解析:选BD .由题意结合题图可知,当m 1与m 2相距最近时,m 2的速度为0,此后,m 1在前,做减速运动,m 2在后,做加速运动,当再次相距最近时,m 1减速结束,m 2加速结束,因此此时m 1速度最小,m 2速度最大,在此过程中系统动量守恒和机械能守恒,m 1v 1=m 1v 1′+m 2v 2,12m 1v 21=12m 1v 1′2+12m 2v 22,可解得v 1′=m 1-m 2m 1+m 2v 1,v 2=2m 1m 1+m 2v 1,B 、D 选项正确.4.如图所示,一小车置于光滑水平面上,小车质量m 0=3 kg ,AO 部分粗糙且长L =2 m ,物块与AO 部分间动摩擦因数μ=0.3,OB 部分光滑.水平轻质弹簧右端固定,左端拴接物块b ,另一小物块a ,放在小车的最左端,和小车一起以v 0=4 m/s 的速度向右匀速运动,小车撞到固定竖直挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点,质量均为m =1 kg ,碰撞时间极短且不粘连,碰后以共同速度一起向右运动.(g 取10 m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离; (3)当物块a 相对小车静止时在小车上的位置到O 点的距离. 解析:(1)对物块a ,由动能定理得 -μmgL =12m v 21-12m v 2代入数据解得a 与b 碰前a 的速度v 1=2 m/s ;a 、b 碰撞过程系统动量守恒,以a 的初速度方向为正方向, 由动量守恒定律得:m v 1=2m v 2 代入数据解得v 2=1 m/s.(2)当弹簧恢复到原长时两物块分离,物块a 以v 2=1 m/s 的速度在小车上向左滑动,当与小车同速时,以向左为正方向,由动量守恒定律得m v 2=(m 0+m )v 3, 代入数据解得v 3=0.25 m/s.对小车,由动能定理得μmgs =12m 0v 23 代入数据解得,同速时小车B 端到挡板的距离s =132 m.(3)由能量守恒得μmgx =12m v 22-12(m 0+m )v 23 解得物块a 与车相对静止时与O 点的距离:x =0.125 m. 答案:(1)1 m/s (2)132m (3)0.125 m5.如图甲所示,质量m 1=4 kg 的足够长的长木板静止在光滑水平面上,质量m 2=1 kg 的小物块静止在长木板的左端.现对小物块施加一水平向右的作用力F ,小物块和长木板运动的速度—时间图象如图乙所示.2 s 后,撤去F ,g 取10 m/s 2.求:(1)小物块与长木板之间的动摩擦因数μ; (2)水平力的大小F ;(3)撤去F 后,小物块和长木板组成的系统损失的机械能ΔE . 解析:(1)由题图可知:长木板的加速度a 1=12m/s 2=0.5 m/s 2由牛顿第二定律可知:小物块施加给长木板的滑动摩擦力F f =m 1a 1=2 N 小物块与长木板之间的动摩擦因数:μ=F fm 2g =0.2.(2)由题图可知,小物块的加速度a 2=42 m/s 2=2 m/s 2由牛顿第二定律可知:F -μm 2g =m 2a 2 解得F =4 N.(3)撤去F 后,小物块和长木板组成的系统动量守恒,以向右为正方向,最终两者以相同速度(设为v )运动m 1v 1+m 2v 2=(m 1+m 2)v 代入数据解得v =1.6 m/s 则系统损失的机械能ΔE =⎝⎛⎭⎫12m 1v 21+12m 2v 22-12()m 1+m 2v 2=3.6 J.答案:(1)0.2 (2)4 N (3)3.6 J6.如图所示,质量为m 1=0.5 kg 的小物块P 置于台面上的A 点并与水平弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量M =1 kg 的长木板静置于水平面上,其上表面与水平台面相平,且紧靠台面右端.木板左端放有一质量m 2=1 kg 的小滑块Q .现用水平向左的推力将P 缓慢推至B 点(弹簧仍在弹性限度内),撤去推力,此后P 沿台面滑到边缘C 时速度v 0=10 m/s ,与小车左端的滑块Q 相碰,最后物块P 停在AC 的正中点,滑块Q 停在木板上.已知台面AB 部分光滑,P 与台面AC 间的动摩擦因数μ1=0.1,A 、C 间距离L =4 m .滑块Q 与木板上表面间的动摩擦因数μ2=0.4,木板下表面与水平面间的动摩擦因数μ3=0.1(g 取10 m/s 2),求:(1)撤去推力时弹簧的弹性势能; (2)长木板运动中的最大速度;。
(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。
高二物理动量守恒定律试题答案及解析1.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
若小车不动,A、B两个动量相等,由于不知道两个质量大小,所以不能确定两个的速度,A不对。
若小车向左运动,A、B总动量向右,所以A动量大于B动量,故C正确。
若小车向右运动,A、B总动量向左,B动量大于A动量,D错。
【考点】动量守恒2.如图所示,在光滑水平面上,有一质量为M="3" kg的薄板和质量为m="1" kg的物块.都以v="4" m/s的初速度朝相反方向运动,它们之间有摩擦,薄板足够长,当薄板的速度为2.4 m/s时,物块的运动情况是( )A.做加速运动B.做减速运动C.做匀速运动D.以上运动都可能【答案】A【解析】开始阶段,m向右减速,M向左减速,根据系统的动量守恒定律得:当m的速度为零时,.规定向右为正方向,根据动量守恒定律得:,代入解得:设此时M的速度为v1.此后m将向右加速,M继续向左减速;当两者速度达到相同时,设共同速度为.规定向右为正方向,由动量守恒定律得:,代入解得:.两者相对静止后,一起向右做匀速直线运动.由此可知当M的速度为时,m处于向右加速过程中.故A正确.【考点】考查了动量守恒定律的应用3.如图所示,质量为m的铅弹以大小为初速度射入一个装有砂子的总质量为M的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)弹和砂车的共同速度;(2)弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为的砂子时砂车的速度【答案】(1) (2)【解析】:(1)以铅球、砂车为系统,水平方向动量守恒,,得球和砂车的共同速度.(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为的砂子时砂车的速度为,砂子漏出后做平抛运动,水平方向的速度仍为,由,得.【考点】考查了动量守恒定律的应用4.(6分)如图所示,木板A质量mA =1 kg,足够长的木板B质量mB=4 kg,质量为mC=1kg的木块C置于木板B上,水平面光滑, B、C之间有摩擦,开始时B、C均静止,现使A以v=12 m/s的初速度向右运动,与B碰撞后以4 m/s速度弹回. 求:(1)B运动过程中的最大速度大小.(2)C运动过程中的最大速度大小.【答案】(1)4 m/s.;(2)3.2 m/s.【解析】(1)A与B碰后瞬间, C的运动状态未变, B速度最大. 由A、B系统动量守恒(取向右为正方向)有: mA v+0=-mAvA+mBvB代入数据得: vB=4 m/s.(2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度,二者共速后, C速度最大,由B、C系统动量守恒,有mB vB+0=(mB+mC)vC,代入数据得: vC=3.2 m/s.【考点】动量守恒定律的应用。
高中物理-动量守恒定律经典例题详解一 动量 冲量 动量定理1.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量答案B [解析] 由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球的动量变化率,减小了球对手的冲击力,选项B 正确.二 动量守恒定律2. 一弹丸在飞行到距离地面5 m 高时仅有水平速度v =2 m/s ,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1,不计质量损失,重力加速度g 取10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是A BC D答案B [解析] 弹丸在爆炸过程中,水平方向的动量守恒,有m 弹丸v 0=34m v 甲+14m v 乙,解得4v 0=3v 甲+v 乙,爆炸后两块弹片均做平抛运动,竖直方向有h =12gt 2,水平方向对甲、乙两弹片分别有x 甲=v 甲t ,x 乙=v 乙t ,代入各图中数据,可知B 正确.3.如图所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1) 碰撞前瞬间A 的速率v ;(2) 碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .[答案] (1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m . (1)根据机械能守恒定律有mgR =12m v 2解得碰撞前瞬间A 的速率有v =2gR =2 m/s.(2)根据动量守恒定律有m v =2m v ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有12(2m )v ′2=μ(2m )gl 解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m . 4.质量为2 kg 的小车以2 m/s 的速度沿光滑的水平面向右运动,若将质量为0 .5 kg 的砂袋以3 m/s 的水平速度迎面扔上小车,则砂袋与小车一起运动的速度的大小和方向是( )A .1.0 m/s ,向右B .1.0 m/s ,向左C .2.2 m/s ,向右D .2.2 m/s ,向左答案D [解析] 忽略空气阻力和分离前后系统质量的变化,卫星和箭体整体分离前后动量守恒,则有(m 1+m 2)v 0=m 1v 1+m 2v 2,整理可得v 1=v 0+m 2m 1(v 0-v 2),故D 项正确. 5.冰壶运动深受观众喜爱,图X291甲为2014年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图乙.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图丙中的哪幅图( )图X291答案B [解析] 两个质量相等的冰壶发生正碰,碰撞前后都在同一直线上,选项A 错误;碰后冰壶A 在冰壶B 的左边,选项C 错误;碰撞过程中系统的动能可能减小,也可能不变,但不能增大,所以选项B 正确,选项D 错误.6.下图X292是“牛顿摆”装置,5个完全相同的小钢球用轻绳悬挂在水平支架上,5根轻绳互相平行,5个钢球彼此紧密排列,球心等高.用1、2、3、4、5分别标记5个小钢球.当把小球1向左拉起一定高度,如图甲所示,然后由静止释放,在极短时间内经过小球间的相互碰撞,可观察到球5向右摆起,且达到的最大高度与球1的释放高度相同,如图乙所示.关于此实验,下列说法中正确的是()图X292A.上述实验过程中,5个小球组成的系统机械能守恒,动量守恒B.上述实验过程中,5个小球组成的系统机械能不守恒,动量不守恒C.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球4、5一起向右摆起,且上升的最大高度高于小球1、2、3的释放高度D.如果同时向左拉起小球1、2、3到相同高度(如图丙所示),同时由静止释放,经碰撞后,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同答案D[解析] 5个小球组成的系统发生的是弹性正碰,系统的机械能守恒,系统在水平方向的动量守恒,总动量并不守恒,选项A、B错误;同时向左拉起小球1、2、3到相同的高度,同时由静止释放并与4、5碰撞后,由机械能守恒和水平方向的动量守恒知,小球3、4、5一起向右摆起,且上升的最大高度与小球1、2、3的释放高度相同,选项C错误,选项D正确.三动量综合问题7. 如图所示,水平地面上静止放置一辆小车A,质量m A=4 kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量m B =2 kg.现对A施加一个水平向右的恒力F=10 N,A运动一段时间后,小车左端固定的挡板与B发生碰撞,碰撞时间极短,碰后A、B粘合在一起,共同在F的作用下继续运动,碰撞后经时间t=0.6 s,二者的速度达到v t=2 m/s.求:(1)A开始运动时加速度a的大小;(2)A、B碰撞后瞬间的共同速度v的大小;(3)A的上表面长度l.答案(1)2.5 m/s2(2)1 m/s(3)0.45 m[解析] (1)以A为研究对象,由牛顿第二定律有F=m A a①代入数据解得a=2.5 m/s2②(2)对A、B碰撞后共同运动t=0.6 s的过程,由动量定理得Ft=(m A+m B)v t-(m A+m B)v③代入数据解得v =1 m/s ④(3)设A 、B 发生碰撞前,A 的速度为v A ,对A 、B 发生碰撞的过程,由动量守恒定律有m A v A =(m A +m B )v ⑤A 从开始运动到与B 发生碰撞前,由动能定理有Fl =12m A v 2A ⑥ 由④⑤⑥式,代入数据解得l =0.45 m ⑦8.如图所示,质量分别为m A 、m B 的两个弹性小球A 、B 静止在地面上,B 球距地面的高度h =0.8 m ,A 球在B 球的正上方,先将B 球释放,经过一段时间后再将A 球释放,当A 球下落t =0.3 s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零,已知m B =3m A ,重力加速度大小g 取10 m/s 2,忽略空气阻力及碰撞中的动能损失.求:(1)B 球第一次到过地面时的速度; (2)P 点距离地面的高度.答案解:(ⅰ)设B 球第一次到达地面时的速度大小为v B ,由运动学公式有v B =2gh ①将h =0.8 m 代入上式,得v 1=4 m/s.②(ⅱ)设两球相碰前后,A 球的速度大小分别为v 1和v ′1(v ′1=0),B 球的速度分别为v 2和v ′2,由运动学规律可得v 1=gt ③由于碰撞时间极短,重力的作用可以忽略,两球相碰前后的动量守恒,总动能保持不变,规定向下的方向为正,有m A v 1+m B v 2=m B v ′2④12m A v 21+12m B v 22=12m v ′22⑤ 设B 球与地面相碰后速度大小为v ′B ,由运动学及碰撞的规律可得v ′B =v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v ′2B -v 222g⑦联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m .⑧9. 一中子与一质量数为A (A >1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( )A.A +1A -1B.A -1A +1C.4A(A +1)2 D.(A +1)2(A -1)2答案A [解析] 本题考查完全弹性碰撞中的动量守恒、动能守恒.设碰撞前后中子的速率分别为v 1,v ′1,碰撞后原子核的速率为v 2,中子的质量为m 1,原子核的质量为m 2,则m 2=Am 1.根据完全弹性碰撞规律可得m 1v 1=m 2v 2+m 1v ′1,12m 1v 21=12m 2v 22+12m 1v ′21,解得碰后中子的速率v ′1=⎪⎪⎪⎪⎪⎪m 1-m 2m 1+m 2v 1=A -1A +1v 1,因此碰撞前后中子速率之比v 1v ′1=A +1A -1,A 正确.10.如图X296所示,竖直平面内的光滑水平轨道的左边与墙壁对接,右边与一个足够高的14光滑圆弧轨道平滑相连,木块A 、 B 静置于光滑水平轨道上,A 、B 的质量分别为1.5kg 和0.5 kg.现让A 以6 m/s 的速度水平向左运动,之后与墙壁碰撞,碰撞的时间为0.3 s ,碰后的速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,g 取10 m/s 2,求:(1)在A 与墙壁碰撞的过程中,墙壁对A 的平均作用力的大小; (2)A 、B 滑上圆弧轨道的最大高度.图X296答案(1)50 N (2)0.45 m[解析] (1)设水平向右为正方向,当A 与墙壁碰撞时根据动量定理有 Ft =m A v ′1-m A ·(-v 1) 解得F =50 N.(2)设碰撞后A 、B 的共同速度为v ,根据动量守恒定律有 m A v ′1=(m A +m B )vA 、B 在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(m A +m B )v 2=(m A +m B )gh 解得h =0.45 m.四 力学观点的综合应用11.如图的水平轨道中,AC 段的中点B 的正上方有一探测器,C 处有一竖直挡板,物体P 1沿轨道向右以速度v 1与静止在A 点的物体P 2碰撞,并接合成复合体P ,以此碰撞时刻为计时零点,探测器只在t 1=2 s 至t 2=4 s 内工作.已知P 1、P 2的质量都为m =1 kg ,P 与AC 间的动摩擦因数为μ=0.1,AB 段长L =4 m ,g 取10 m/s 2,P 1、P 2和P 均视为质点,P 与挡板的碰撞为弹性碰撞.(1)若v 1=6 m/s ,求P 1、P 2碰后瞬间的速度大小v 和碰撞损失的动能ΔE ;(2)若P 与挡板碰后,能在探测器的工作时间内通过B 点,求v 1的取值范围和P 向左经过A 点时的最大动能E .答案(1)3 m/s 9 J (2)10 m/s ≤v 1≤14 m/s 17 J [解析] (1)P 1、P 2碰撞过程动量守恒,有m v 1=2m v解得v =v 12=3 m/s碰撞过程中损失的动能为ΔE =12m v 21-12(2m )v 2解得ΔE =9 J.(2)由于P 与挡板的碰撞为弹性碰撞.故P 在AC 间等效为匀减速运动,设P 在AC 段加速度大小为a ,碰后经过B 点的速度为v 2 ,由牛顿第二定律和运动学规律,得μ(2m )g =2ma3L =v t -12at 2v 2=v -at解得v 1=2v =6L +μgt 2t v 2=6L -μgt 22t由于2 s ≤t ≤4 s 所以解得v 1的取值范围10 m/s ≤v 1≤14 m/sv 2的取值范围1 m/s ≤v 2≤5 m/s所以当v 2=5 m/s 时,P 向左经过A 点时有最大速度 v 3=v 22-2μgL则P 向左经过A 点时有最大动能E =12(2m )v 23=17 J. 12. 冰球运动员甲的质量为80.0 kg.当他以5.0 m/s 的速度向前运动时,与另一质量为100 kg 、速度为3.0 m/s 的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1 )碰后乙的速度的大小; (2)碰撞中总机械能的损失. [答案] (1)1.0 m/s (2)1400 J[解析] (1)设运动员甲、乙的质量分别为m 、M ,碰前速度大小分别为v 、V ,碰后乙的速度大小为V ′.由动量守恒定律有m v -MV =MV ′①代入数据得V ′=1.0 m/s ②(2)设碰撞过程中总机械能的损失为ΔE ,应有12m v 2+12MV 2=12MV ′2+ΔE ③ 联立②③式,代入数据得ΔE =1400 J ④。
高二物理动量试题答案及解析1.如图所示,一质量M=2kg的带有弧形轨道的平台置于足够长的水平轨道上,弧形轨道与水平轨道平滑连接,水平轨道上静置一小球B。
从弧形轨道上距离水平轨道高h=0.3m处由静止释放一质量mA=1kg的小球A,小球A沿轨道下滑后与小球B发生弹性正碰,碰后小球A被弹回,且恰好追不上平台。
已知所有接触面均光滑,重力加速度为g=10m/s2。
求小球B的质量。
【答案】3kg【解析】设小球A下滑到水平轨道上时的速度大小为v1,平台水平速度大小为v,由动量守恒律有:由能量守恒定律有mA gh=mAv12+Mv2联立解得:v1=2m/s,v=1m/s小球A、B碰后运动方向相反,设小球A、B的速度大小分别为v1’和v2,由题意知:v1’=1m/s由动量守恒定律得:由能量守恒定律有:联立解得:mB=3kg【考点】动量守恒定律及能量守恒定律.2.如图甲所示,在光滑水平面上的两小球发生正碰.小球的质量分别为m1和m2.图乙为它们碰撞前后的s-t(位移时间)图象.已知m1=0.1㎏.由此可以判断()A.碰前m2静止,m1向右运动B.碰后m2和m1都向右运动C.m2=0.3kgD.碰撞过程中系统损失了0.4J的机械能【答案】AC【解析】由图象可知m2前2s的位移随时间不变,说明静止,m1想要与m2发生碰撞只能向右运动,所以向右运动为正方向,A项正确;位移时间图象中斜率代表速度,碰后m1的斜率为负值,说明向左运动,所以B项错误;根据图中的斜率可以算出,,,根据动量守恒定律,得出,所以C项正确;碰撞过程中损失的能量为,所以D项错误。
【考点】本题考查了动量守恒定律3.如图所示,一水平方向足够长的传送带以恒定的速率v1沿顺时针方向转动,传送带右端有一个与传送带等高的光滑水平面。
一物体以恒定速率v2沿直线向左滑向传送带后,经过一段时间又返回光滑水平面,速度为v2′,则下列说法中正确的是A.只有v1= v2时,才有v2′= v1B.若v1< v2时,则v2′= v1C.若v1> v2时,则v2′= v1D.不管v2多大,总有v2′= v2【答案】B【解析】由于传送带足够长,物体减速向左滑行,直到速度减为零,然后物体会在滑动摩擦力的作用下向右加速,分三种情况讨论:①如果v1>v2,物体会一直加速,速度大小增大到等于v2时,根据对称性,物体恰好离开传送带,有v′2=v2;②如果v1=v2,物体同样会一直加速,当速度大小增大到等于v2时,物体恰好离开传送带,有v′2=v2;③如果v1<v2,物体会先在滑动摩擦力的作用下加速,当速度增大到等于传送带速度时,物体还在传送带上,之后不受摩擦力,故物体与传送带一起向右匀速运动,有v′2=v1;故B正确,ACD错误.故选B【考点】牛顿第二定律的应用.【名师】本题考查了牛顿第二定律的综合应用问题;解题的关键是对于物体返回的过程分析,物体可能一直加速,也有可能先加速后匀速运动,根据传送带和物体初速度的关系分别进行讨论分析解答;此题是典型题,应熟练掌握.4.一中子与一质量数为A (A>1)的原子核发生弹性正碰.若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为()A.B.C.D.【答案】A【解析】中子与原子核发生弹性正碰,动量守恒、机械能守恒,根据动量守恒和机械能守恒定律求出碰撞前后中子的速率之比.解:设中子的质量为m,因为发生的是弹性正碰,动量守恒,机械能守恒,规定初速度的方向为正方向,有:mv1=mv2+Amv,联立两式解得:.故A正确,B、C、D错误.故选:A.【点评】解决本题的关键知道弹性碰撞的过程中动量守恒、机械能守恒,与非弹性碰撞不同,非弹性碰撞机械能不守恒.5.在光滑水平面上有一个静止的质量为M的木块,一颗质量为m的子弹以初速度v水平射入木块而没有穿出,子弹所受阻力可认为恒定。
高中物理动量守恒定律试题经典及分析一、高考物理精讲专题动量守恒定律1. 水平搁置长为 L=4.5m 的传递带顺时针转动,速度为v=3m/s ,质量为 m 2=3kg 的小球被长为 l 1m 的轻质细线悬挂在 O 点,球的左边沿恰于传递带右端 B 对齐;质量为 m 1=1kg的物块自传递带上的左端A 点以初速度 v 0=5m/s 的速度水平向右运动,运动至B 点与球 m 2发生碰撞,在极短的时间内以碰撞前速率的1反弹,小球向右摇动一个小角度即被取走。
2已知物块与传递带间的滑动摩擦因数为μ,取重力加快度 g10m/s 2 。
求:( 1)碰撞后瞬时,小球遇到的拉力是多大?( 2)物块在传递带上运动的整个过程中,与传递带间摩擦而产生的内能是多少?【答案】( 1) 42N ( 2)【分析】【详解】解:设滑块 m1与小球碰撞前向来做匀减速运动,依据动能定理:m gL = 1mv 2 1 m v 2121 121 0解之可得: v 1 =4m/s因为 v 1v ,说明假定合理m 1v 1 = 12滑块与小球碰撞,由动量守恒定律: 2m 1v 1+m 2v 2解之得: v 2 =2m/s碰后,对小球,依据牛顿第二定律:F m 2 gm 2 v 22l小球遇到的拉力:F 42N(2)设滑块与小球碰撞前的运动时间为t 1 ,则 L1v 0 v 1 t 12解之得: t 1 1s在这过程中,传递带运转距离为: S 1 vt 1 3m 滑块与传递带的相对行程为:X 1LX 1设滑块与小球碰撞后不可以回到传递带左端,向左运动最大时间为 t 2则依据动量定理:m 1 gt 2m 11v 12解之得: t2 2s滑块向左运动最大位移: x m11v1 t 2=2m22因为 x m L ,说明假定建立,即滑块最后从传递带的右端走开传递带1再考虑到滑块与小球碰后的速度2 v1< v ,说明滑块与小球碰后在传递带上的总时间为2t2在滑块与传递带碰撞后的时间内,传递带与滑块间的相对行程X 22vt212m所以,整个过程中,因摩擦而产生的内能是Q m1 g x1 x22.以下图,质量M=1kg 的半圆弧形绝缘凹槽搁置在圆滑的水平面上,凹槽部分嵌有cd 和 ef 两个圆滑半圆形导轨, c 与 e 端由导线连结,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行 ce 由静止着落,并恰巧从 ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触优秀。
高中物理动量定理解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l ,2l )射出磁场,求B 0大小。
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理动量守恒定律试题经典及解析一、高考物理精讲专题动量守恒定律1.如图所示,光滑水平直导轨上有三个质量均为m的物块A、B、C,物块B、C静止,物块B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C 碰撞过程时间极短.那么从A开始压缩弹簧直至与弹簧分离的过程中,求.(1)A、B第一次速度相同时的速度大小;(2)A、B第二次速度相同时的速度大小;(3)弹簧被压缩到最短时的弹性势能大小【答案】(1)v0(2)v0(3)【解析】试题分析:(1)对A、B接触的过程中,当第一次速度相同时,由动量守恒定律得,mv0=2mv1,解得v1=v0(2)设AB第二次速度相同时的速度大小v2,对ABC系统,根据动量守恒定律:mv0=3mv2解得v2=v0(3)B与C接触的瞬间,B、C组成的系统动量守恒,有:解得v3=v0系统损失的机械能为当A、B、C速度相同时,弹簧的弹性势能最大.此时v2=v0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。
2.如图所示,固定的凹槽水平表面光滑,其内放置U形滑板N,滑板两端为半径R=0.45m 的1/4圆弧面.A和D分别是圆弧的端点,BC段表面粗糙,其余段表面光滑.小滑块P1和P2的质量均为m.滑板的质量M=4m,P1和P2与BC面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P2向左滑行距离:22222.25m2vsa'==所以P1、P2静止后距离:△S=L-S1-S2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.3.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解4.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于450.【答案】最多碰撞3次【解析】解:设小球m的摆线长度为l小球m在下落过程中与M相碰之前满足机械能守恒:①m和M碰撞过程是弹性碰撞,故满足:mv0=MV M+mv1 ②③联立②③得:④说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:mv1=MV M1+mv2 ⑤⑥解得:⑦整理得:⑧故可以得到发生n 次碰撞后的速度:⑨而偏离方向为450的临界速度满足:⑩联立①⑨⑩代入数据解得,当n=2时,v 2>v 临界 当n=3时,v 3<v 临界即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°. 考点:动量守恒定律;机械能守恒定律. 专题:压轴题.分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n 次后的速度表达式,再根据机械能守恒定律求出碰撞n 次后反弹的最大角度,结合题意讨论即可.点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n 次反弹后的速度和最大角度,再结合题意求解.5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
高中物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。
求: (1)物块的最大速度v 1; (2)木板的最大速度v 2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。
【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。
高中物理动量守恒定律试题(有答案和解析)含解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ;(2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地?【答案】(1)1m (2)428225t s = 【解析】 【分析】根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122mgL mv mv μ=- 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:2201211()(cos53)22mv m M v mg R R =++- 联立解得:1R m =(2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有:2200311(cos53)22mv mv mg R R =+- 解得:322/v m s =物块从C 抛出后,在竖直方向的分速度为:38sin 532/5y v v m s =︒= 这时离体面的高度为:cos530.4h R R m =-︒=212y h v t gt -=-解得:4282t s +=2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理动量定理基础题(含答案)一、单选题1.如图所示,质量为m 的小滑块沿倾角为θ的粗糙斜面向上滑动,经过时间1t 速度为零然后下滑,经过时间2t 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终恒定。
在整个过程中,重力对滑块的总冲量为( )A .()12sin mg t t θ+B .()12sin mg t t θ-C .()12mg t t +D .()12cos mg t t θ+2.人从高处跳到地面,为了安全,一般都是让脚尖先着地,接着让整个脚底着地,并让人下蹲,这样做是为了( )A .减小人受到的冲量B .增大人受到的冲量C .延长与地面的作用时间,从而减小人受到的作用力D .延长与地面的作用时间,从而减小人动量的变化3.“守株持兔"是众所周知的寓言故事.假设兔子质量为3kg ,以10m /s 的速度奔跑,撞树后几乎不反弹、作用时间约为0.02s ,则兔子受到的平均撞击力大小为( ) A .1.5N B .15N C .150N D .1500N 4.如图,质量2kg m =的木块放在水平地面上,与地面间的动摩擦因数0.2μ=,木块在5N F =的水平恒力作用下由静止开始向右运动了10s ,210m/s =g ,在这10s 内,下列说法正确的是( )A .重力的冲量为0B .摩擦力的冲量为40N s -⋅C .物体动量的变化为20kg m/s ⋅D .合外力的冲量为50N·s5.如图,一物体静止在水平地面上,受到与水平方向成θ角的恒定拉力F 作用时间t 后,物体仍保持静止。
以下说法中正确的是( )A .物体的动量变化量为FtB .物体所受重力的冲量大小为0C .物体所受摩擦力的冲量大小为cos Ft θD .物体所受拉力F 的冲量大小是cos Ft θ二、多选题6.质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。
高中物理动量定理试题经典及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
⾼中物理总复习--动量定理含解析⾼中物理总复习--动量定理含解析⼀、⾼考物理精讲专题动量定理1.质量为m 的⼩球,从沙坑上⽅⾃由下落,经过时间t 1到达沙坑表⾯,⼜经过时间t 2停在沙坑⾥.求:⑴沙对⼩球的平均阻⼒F ;⑵⼩球在沙坑⾥下落过程所受的总冲量I .【答案】(1)122()mg t t t (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对⼩球⽤动量定理:重⼒作⽤时间为t 1+t 2,⽽阻⼒作⽤时间仅为t 2,以竖直向下为正⽅向,有: mg(t 1+t 2)-Ft 2=0, 解得:⽅向竖直向上⑵仍然在下落的全过程对⼩球⽤动量定理:在t 1时间内只有重⼒的冲量,在t 2时间内只有总冲量(已包括重⼒冲量在内),以竖直向下为正⽅向,有: mgt 1-I=0,∴I=mgt 1⽅向竖直向上考点:冲量定理点评:本题考查了利⽤冲量定理计算物体所受⼒的⽅法.2.如图所⽰,⾜够长的⽊板A 和物块C 置于同⼀光滑⽔平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B ⼀起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成⼀体,最终A 、B 、C 都静⽌,求:(i )C 与A 碰撞前的速度⼤⼩(ii )A 、C 碰撞过程中C 对A 到冲量的⼤⼩.【答案】(1)C 与A 碰撞前的速度⼤⼩是v 0;(2)A 、C 碰撞过程中C 对A 的冲量的⼤⼩是32mv 0.【解析】【分析】【详解】试题分析:①设C 与A 碰前速度⼤⼩为1v ,以A 碰前速度⽅向为正⽅向,对A 、B 、C 从碰前⾄最终都静⽌程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =.②设C 与A 碰后共同速度⼤⼩为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =-解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量⼤⼩为032mv .⽅向为负.考点:动量守恒定律【名师点睛】本题考查了求⽊板、⽊块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应⽤动量守恒定律即可正确解题;解题时要注意正⽅向的选择.3.⼀个质量为60千克的蹦床运动员从距离⽔平蹦床⽹⾯上3.2⽶的⾼处⾃由下落,触⽹后沿竖直⽅向蹦回到离⽔平⽹⾯5⽶⾼处.已知运动员与⽹接触的时候为1.2秒。