高考数学复习考知识解析与专题练习10---函数的单调性与最值
- 格式:pdf
- 大小:392.87 KB
- 文档页数:19
1.已知函数f (x )=x 2-1x 2+1,则f (2)f ⎝⎛⎭⎫12=________.2.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,则f (72)=------------.一、选择题1.函数f (x )=3x 21-x +lg(3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 2.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式可取为( ) A.x 1+x 2 B .-2x 1+x 2 C.2x 1+x 2 D .-x 1+x 23.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )4.设函数f (x )=⎩⎪⎨⎪⎧1-x 2, x ≤1,x 2+x -2, x >1,则f ⎝⎛⎭⎫1f (2)的值为( )A.1516 B .-2716 C.89D .18 5.若函数f (x )=⎩⎨⎧1x,x <0⎝⎛⎭⎫13x,x ≥0则不等式|f (x )|≥13的解集为( )A .(-3,1)B .[-1,3]C .(-1,3]D .[-3,1] 二、填空题6.已知函数f (x )=x 2-2ax +a 2-1的定义域为A,2∉A ,则a 的取值范围是____________. 7.如果f [f (x )]=2x -1,则一次函数f (x )=_____________. 三、解答题9.如右图所示,在边长为4的正方形ABCD 上有一点P ,沿着折线BCDA 由B 点(起点)向A 点(终点)移动,设P 点移动的路程为x ,△ABP 的面积为y =f (x ).(1)求△ABP 的面积与P 移动的路程间的函数关系式; (2)作出函数的图象,并根据图象求y 的最大值.10.已知二次函数f (x )=ax 2+bx +c ,(a <0)不等式f (x )>-2x 的解集为(1,3). (1)若方程f (x )+6a =0有两个相等的实根,求f (x )的解析式; (2)若f (x )的最大值为正数,求实数a 的取值范围.第三部分 函数的值域与最值一、选择题1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3} D .{y |0≤y ≤3} 2.函数y =log 2x +log x (2x )的值域是( ) A .(-∞,-1] B .[3,+∞)C .[-1,3]D .(-∞,-1]∪[3,+∞)3.设f (x )=⎩⎨⎧x 2, ||x ≥1x , ||x <1,g (x )是二次函数,若f (g (x ))的值域是[)0,+∞,则g (x )的值域是( )A.(]-∞,-1∪[)1,+∞B.(]-∞,-1∪[)0,+∞ C .[0,+∞) D.[)1,+∞4.设函数f (x )=⎩⎪⎨⎪⎧-1,x >01,x <0,则(a +b )-(a -b )f (a -b )2(a ≠b )的值是( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数 5.函数y =a x 在[0,1]上的最大值与最小值的和为3,则a =________.6.若f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2对任意的非负实数x 成立,则f ⎝⎛⎭⎫12010+f ⎝⎛⎭⎫22010+f ⎝⎛⎭⎫32010+…+f ⎝⎛⎭⎫20092010=________. 7.对a ,b ∈R ,记max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥bb ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x ∈R )的最小值是________.8.若函数y =f (x )=12x 2-2x +4的定义域、值域都是闭区间[2,2b ],求b 的值.函数的单调性一、选择题1.已知f (x )=⎩⎪⎨⎪⎧(3-a )x -4a ,x <1,log ax , x ≥1,是(-∞,+∞)上的增函数,那么a 的取值范围是( ) A .(1,+∞) B .(-∞,3) C.⎣⎡⎭⎫35,3 D .(1,3)3.设f (x )是连续的偶函数,且当x >0时f (x )是单调函数,则满足f (x )=f ⎝ ⎛⎭⎪⎫x +3x +4的所有x 之和为( )A .-3B .3C .-8D .84.若不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,则a 的取值范围是( ) A .(0,+∞) B .[-2,+∞) C.⎣⎡⎭⎫-52,+∞ D .(-3,+∞) 5.若函数f (x )=x 2+ax(a ∈R ),则下列结论正确的是( )A .∀a ∈R ,f (x )在(0,+∞)上是增函数B .∀a ∈R ,f (x )在(0,+∞)上是减函数C .∃a ∈R ,f (x )是偶函数D .∃a ∈R ,f (x )是奇函数 二、填空题6.函数y =x 2+2x -3的递减区间是________.7.如果函数f (x )在R 上为奇函数,在(-1,0)上是增函数,且f (x +2)=-f (x ),则f ⎝⎛⎭⎫13,f ⎝⎛⎭⎫23,f (1)从小到大的排列是________.8.已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,则f (x )的定义域是________;(2)若f (x )在区间(]0,1上是减函数,则实数a 的取值范围是________. 三、解答题9.已知函数f (x )在(-1,1)上有定义,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.一、选择题1.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件2.若函数f (x ),g (x )分别是R 上的奇函数、偶函数,且满足f (x )-g (x )=e x ,则有( ) A .f (2)<f (3)<g (0) B .g (0)<f (3)<f (2) C .f (2)<g (0)<f (3) D .g (0)<f (2)<f (3)4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥04x -x 2,x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 二、填空题5.函数f (x )=x 3+sin x +1(x ∈R ),若f (a )=2,则f (-a )的值为________.6设奇函数f (x )的定义域为[-5,5].若当x ∈[0,5]时,f (x )的图象如右图所示,则不等式f (x )<0的解是________.7.若f (x )=12x -1+a 是奇函数,则a =____________.三、解答题8.已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式;10.设f (x )是定义在R 上的奇函数,且对任意实数x 恒满足f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2. (1)求证:f (x )是周期函数. (2)当x ∈[2,4]时,求f (x )的解析式. (3)计算f (0)+f (1)+f (2)+…+f (2013).函数的图象一、选择题1.函数y =f (x )的图象与函数g (x )=log 2x (x >0)的图象关于原点对称,则f (x )的表达式为( ) A .f (x )=1log 2x(x >0) B .f (x )=log 2(-x )(x <0) C .f (x )=-log 2x (x >0) D .f (x )=-log 2(-x )(x <0) 2.函数y =e |ln x |-|x -1|的图象大致是( )3.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如下图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 1 4.函数f (x )=2|log 2x |-⎪⎪⎪⎪x -1x 的图象为( )二、填空题6. f (x )是定义域为R 的偶函数,其图象关于直线x =2对称,当x ∈(-2,2)时,f (x )=-x 2+1,则x ∈(-4,-2)时,f (x )的表达式为________.7.已知定义在区间[0,1]上的函数y =f (x )的图象如右图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论: ①f (x 2)-f (x 1)>x 2-x 1;②x 2f (x 1)>x 1f (x 2); ③f (x 1)+f (x 2)2<f⎝⎛⎭⎫x 1+x 22.其中正确结论的序号是________.(把所有正确结论的序号都填上)8.定义在R 上的函数f (x )满足f ⎝⎛⎭⎫x +52+f (x )=0,且函数f ⎝⎛⎭⎫x +54为奇函数,给出下列结论:①函数f (x )的最小正周期是52;②函数f (x )的图象关于点⎝⎛⎭⎫54,0对称; ③函数f (x )的图象关于直线x =52对称;④函数f (x )的最大值为f ⎝⎛⎭⎫52.其中正确结论的序号是________.(写出所有你认为正确的结论的符号)第九部分 一次函数与二次函数一、选择题1.一元二次方程ax 2+2x +1=0(a ≠0)有一个正根和一个负根的充分不必要条件是( ) A .a <0 B .a >0 C .a <-1 D .a >12.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+523.已知函数f (x )=ax 2-2ax +1(a >1),若x 1<x 2,且x 1+x 2=1+a ,则( ) A .f (x 1)>f (x 2) B .f (x 1)<f (x 2) C .f (x 1)=f (x 2)D .f (x 1)与f (x 2)的大小不能确定4. 右图所示为二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于( ) A.c a B .-c a C .±caD .无法确定5.关于x 的方程()x 2-12-||x 2-1+k =0,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中假命题的个数是( )A .0B .1C .2D .3 二、填空题6.若方程4()x 2-3x +k -3=0,x ∈[]0,1没有实数根,求k 的取值范围________.7.如果方程x 2+2ax +a +1=0的两个根中,一个比2大,另一个比2小,则实数a 的取值范围是________. 8.已知f (x )=x 2, g (x )是一次函数且为增函数, 若f [g (x )]=4x 2-20x +25, 则g (x )=____________. 三、解答题9.设二次函数f (x )=x 2+ax +a ,方程f (x )-x =0的两根x 1和x 2满足0<x 1<x 2<1. (1)求实数a 的取值范围; (2)试比较f (0)·f (1)-f (0)与116的大小,并说明理由.10.设函数f (x )=x 2+|x -2|-1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值.单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A 和集合B 都是实数集R ,映射f :A →B 是把集合A 中的元素x 对应到集合B 中的元素x 3-x +1,则在映射f 下象1的原象所组成的集合是( )A .{1}B .{0}C .{0,-1,1}D .{0,1,2}2.若不等式x 2-x ≤0的解集为M ,函数f (x )=ln(1-|x |)的定义域为N ,则M ∩N 为( ) A .[0,1) B .(0,1) C .[0,1] D .(-1,0] 3.函数y =log a (|x |+1)(a >1)的大致图象是( )4.已知函数f (x )=log a x ,其反函数为f -1(x ),若f -1(2)=9,则f (12)+f (6)的值为( )A .2B .1 C.12D.135.函数f (x )=(12)x 与函数g (x )=log 12|x |在区间(-∞,0)上的单调性为( )A .都是增函数B .都是减函数C .f (x )是增函数,g (x )是减函数D .f (x )是减函数,g (x )是增函数6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0.若f (a )=12,则a =( )A .-1 B. 2C .-1或 2D .1或- 27.设函数f (x )=-x 2+4x 在[m ,n ]上的值域是[-5,4],则m +n 的取值所组成的集合为( )A .[0,6]B .[-1,1]C .[1,5]D .[1,7]8.方程(12)|x |-m =0有解,则m 的取值范围为( )A .0<m ≤1B .m ≥1C .m ≤-1D .0≤m <19.定义在R 上的偶函数f (x )的部分图象如右图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是( )A .y =x 2+1 B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0,x 3+1,x <0, D .y =⎩⎪⎨⎪⎧e x ,x ≥0,e -x ,x <010.设a =log 0.70.8,b =log 1.10.9,c =1.10.9,那么( )A .a <b <cB .a <c <bC .b <a <cD .c <a <b11.中国政府正式加入世贸组织后,从2000年开始,汽车进口关税将大幅度下降.若进口一辆汽车20XX 年售价为30万元,五年后(20XX 年)售价为y 万元,每年下调率平均为x %,那么y 和x 的函数关系式为( )A .y =30(1-x %)6B .y =30(1+x %)6C .y =30(1-x %)5D .y =30(1+x %)512.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)(f (x 2)-f (x 1))>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n )二、填空题(13.函数f (x )=11-ex 的定义域是________.14.若x ≥0,则函数y =x 2+2x +3的值域是________. 15.设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图象为如图所示的线段AB ,则在区间[1,2]上f (x )=______.16.设函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设f (x )=a ·2x -12x +1是R 上的奇函数.(1)求a 的值;(2)求f (x )的反函数f -1(x ).18.(本小题满分12分)已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明.19.(本小题满分12分)已知函数f (x )=3x ,且f (a +2)=18,g (x )=3ax -4x 的定义域为区间[-1,1]. (1)求g (x )的解析式; (2)判断g (x )的单调性.21.(本小题满分12分)设函数f (x )=x 2+x -14.(1)若函数的定义域为[0,3],求f (x )的值域;(2)若定义域为[a ,a +1]时,f (x )的值域是[-12,116],求a 的值.22.(本小题满分12分)已知函数f (x )=(13)x ,函数y =f -1(x )是函数y =f (x )的反函数.(1)若函数y =f -1(mx 2+mx +1)的定义域为R ,求实数m 的取值范围; (2)当x ∈[-1,1]时,求函数y =[f (x )]2-2af (x )+3的最小值g (a ).。
专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212ab c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100B .b -a =ea 增大a 增大C .28ln 2ab <D .ln6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <- C .01b a << D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x x f x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( )A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a <<B.b a <Ca b <D.a b <<例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1C .2D .a 例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0,∞+的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为( )A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( ).A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则( )A.sin sin a b > B .11a b> C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则( ) A .a c <B .b a <C .c a <D .a b <例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2x f x x x -=+-的零点,则020e ln xx -+=_______.【过关测试】一、单选题 1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)( ) A .1393.1610s ⨯ B .1391.5810s ⨯ C .1401.5810s ⨯D .1403.1610s ⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为( ) A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则( ) A .111x y z+=B .111y z x+= C .112x y z += D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ( )A .是奇函数,且在0,1上单调递增B .是奇函数,且在0,1上单调递减C .是偶函数,且在0,1上单调递增D .是偶函数,且在0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点 A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为( ) A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是( ) A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( )A b a <<B .b a <C a b <D .a b <<二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是( ) A .11a b+的最小值是4 B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是( ) A .2ab bc ac +=B .ab bc ac +=C .4949b b a c ⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是( )A .()(lg f x x =B .()2f x x ax =+C .()21xaf x e =-- D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为( )AB C D三、填空题13.(2022·天津·二模)已知()4log 41log x y +=+2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论: ①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--; ④函数()y f x =在()(),1k k k +∈Z 上单调递减. 其中所有正确结论的序号为______. 四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1axf x x -=-在其定义域上是奇函数,a 为常数. (1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M . (1)当t e =时,求切线l 的方程;(2)O为坐标原点,记AMO的面积为S,求面积S以t为自变量的函数解析式,写出其定义域,并求单调增区间.专题10 对数与对数函数【考点预测】 1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log N a ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象【方法技巧与总结】 1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)【题型归纳目录】题型一:对数运算及对数方程、对数不等式 题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域)) 题型四:对数函数中的恒成立问题 题型五:对数函数的综合问题 【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++; (2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45. 【答案】(1)7;(2)109;(3)2a bb+-. 【解析】(1)利用对数恒等式和对数的运算法则计算即可; (2)利用指对互化可得实数x 的值;(3)先求出a ,再利用换底公式结合对数的运算法则求得结果.【详解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;a 增大a 增大(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷1818181818log 5log 9log 18log 18log 92a bb++=+--.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35 【答案】(1)18;(2)21a bb ++. 【解析】 【分析】(1)首先根据题意得到原式()()()2352log 53log 23log 3=-⋅⋅-,再利用换底公式化简即可得到答案.(2)首先根据题意得到3log 7b =,3log 52=a ,再利用换底公式化简即可得到答案. 【详解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅=(2)由37b =得到3log 7b =, 由9log 5=a ,得到31log 52=a ,即3log 52=a . 33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.【点睛】本题主要考查对数的换底公式,同时考查指数、对数的互化公式,属于中档题.例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c+=;(2)若60a =3,60b =5,求12(1)12a bb ---的值. 【答案】(1)详见解析;(2)2. 【解析】【分析】(1)设3461a b c k ===>,应用指对数的互化有346log ,log ,log a k b k c k ===,进而应用换底公式及对数的运算性质分别求21a b +、2c,即可证结论;(2)应用指对数互化有6060log 3,log 5a b ==,应用对数的运算性质求12(1)a bb ---,进而可求12(1)12a b b ---的值.【详解】(1)设346a b c k ===,则1k >. ∴346log ,log ,log a k b k c k ===,∴3421212log 3log 4log 9log 4log 362log 6log log k k k k k k a b k k+=+=+=+==, 而6222log 6log k c k==, ∴212a b c+=. (2)由题设知:6060log 3,log 5a b ==,得606011log 5log 12b -=-=,60606011log 3log 5log 4a b --=--=, ∴60121260log 42log 21log 22(1)2log 122a b b --===-, 则121log 22(1)12122a b b ---==.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则( ) A .a +b =100 B .b -a =e C .28ln 2ab < D .ln6b a ->【答案】D 【解析】 【分析】利用指数和对数互化,得到a ,b 后逐项判断. 【详解】对于A ,由e 4a =,e 25b =,得ln 4a =,ln 25b =,所以ln 4ln 25ln100a b +=+=,故A 错误;对于B ,25ln 25ln 4ln4b a -=-=,故B 错误; 对于C ,2ln 4ln 252ln 2ln168ln 2ab =⨯>⨯=,故C 错误;对于D ,25ln 25ln 4lnln 64b a -=-=>,故D 正确. 故选:D .例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=( ) A .2 B .4 C .6 D .8【答案】C 【解析】 【分析】 根据y x x y =得到lg lg x xy y =,再利用换底公式得到2x y=,利用lg 2lg x y =,即2x y =,求出4x =,2y =,所以6x y +=.【详解】由y x x y =,得lg lg y x x y =,lg lg x xy y=. 由log 4y x x y +=,lg log lg y x x y =,所以lg 4lg x x y y+=, 所以4x xy y +=,解得:2x y=,则lg 2lg x y =,即2x y =, 所以4x =,2y =,所以6x y +=, 故选:C.例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞【答案】C 【解析】 【分析】由二次函数的性质判断()f x 区间单调性,根据解析式知()f x 恒过(4,2)且(0)2f =,进而确定区间值域,再由对数函数性质求2log y x =的对应区间值域,即可得不等式解集. 【详解】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减, 由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >,所以2()log f x x >的解集为(0,4). 故选:C例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.【答案】12x x ⎧⎫>⎨⎬⎩⎭【解析】 【分析】 分1x ≤、12x <≤和2x >,依次解不等式,再取并集即可.【详解】当1x ≤时,不等式()(1)f x f x <-为2211(1)x x -<--,解得112x <≤; 当12x <≤时,不等式()(1)f x f x <-为212log 1(1)x x <--,易知21122log log 10,1(1)0x x <=--≥,解得12x <≤;当2x >时,不等式()(1)f x f x <-为1122log log (1)x x <-,解得2x >;综上,解集为:12x x ⎧⎫>⎨⎬⎩⎭.故答案为:12x x ⎧⎫>⎨⎬⎩⎭.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可) 【答案】12log x,(log a x ,(0<a <1)都对)【解析】 【分析】满足第一个条件,表示函数是单调递减函数,第二个条件正好是符合对数的运算性质; 【详解】对于条件①,不妨设12x x <,则210x x ->,∵()()21210f x f x x x -<-,∴()()210f x f x -<∴12()()f x f x >,∴()f x 为()0,+∞上的单调递增函数,对于条件②,刚好符合对数的运算性质,故这样的函数可以是一个单调递减的对数函数. 故答案为:12log x.(log ax ,(0<a <1)都对)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值. 【答案】(1)9x =或181x =;(2)2a =. 【解析】 【分析】(1)根据给定条件求出m 值,并代入方程,再解方程即得.(2)由给定解集借助对数函数单调性求出()f x 范围,换元借助一元二次不等式即可得解. 【详解】(1)由已知得()31f =,即log 31m =,则3m =,于是得()3log f x x =, 方程222()(1)()10()2()80f x m f x m f x f x +-+-=⇔+-=, 从而得()2f x =或()4f x =-,即3log 2x =或3log 4x =-,9x =或181x =, 所以原方程的根为9x =或181x =; (2)依题意,函数()3log f x x =中,1,93x ⎛⎫∈ ⎪⎝⎭,从而得()3log 1,2x ∈-.又()()()()3310log 1log 0f x a f x x x a +⋅->⇔+⋅-<⎡⎤⎡⎤⎣⎦⎣⎦,令3log x t =, 即一元二次不等式()()10t t a +⋅-<的解集为()1,2-,因此有-1,2是关于t 的方程()()10t t a +⋅-=的两根,则2a =, 所以实数a 的值为2.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b >【答案】C 【解析】 【分析】结合函数()f x 的图象可得1a >和10b -<<,然后逐项分析即可求出结果. 【详解】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11b a a <<,且101a<<,所以01b a <<,故C 正确; 因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为( ) A.3-B .1C . 3+D .2+【答案】C 【解析】 【分析】由对数函数的性质,可得()2,1A --,可得21m n +=,再根据基本不等式“1”的用法,即可求出结果.【详解】解:因为函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点()2,1A --,所以210m n --+=,即21m n +=, 所以()1111223n m m n m n m n m n⎛⎫+=++=++ ⎪⎝⎭, 又0mn >,所以0,0n mm n>>所以2333n m m n ++≥=,当且仅当2n m m n =,即1n =时取等号.故选:C.(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则( )A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤【答案】BCD 【解析】 【分析】对于A 结合对数型函数图像相关知识求解;对于B 运用定义法判断()f x 是否在R 上是奇函数;对于C 运用定义法判断函数单调性;对于D 通过作差法并对式子变形即可判断. 【详解】对于A ,由图像可知,函数()()log a g x x k =+(0a >且1a ≠)在()2,-+∞上单调递增,所以1a >,因为()g x 经过()1,0-,所以()()1log 10a g k -=-+=,所以01a k =-+,2k =,故A 错误.对于B ,()x x f x a a -=-,定义域R 关于原点对称,()()x xf x a a f x --=-=-,所以()f x 在R 上是奇函数,故B 正确.对于C ,对于()x xf x a a -=-,由题意不妨令1212,,x x x R x R >∈∈,则()()()()()121212121212121212111x x x x x x x x x x x x x x x x a a a a a f x f x a a a a a a a a ++++--⎛⎫⎛⎫-=---=-+=⎪ ⎪⎝⎭⎝⎭,因为1212,,x x x R x R >∈∈,1a >,所以12121210,0,0x x x x x x a a a a +++>>->,即()()12f x f x >,所以()f x 在R 上是单调递增函数,故C 正确.对于D ,()()()()()()()()()2222222x x x x x x x x x x x x x x a a a a a a a a a a a a a x f a f x --------=---=---+--=-()()()()22322221111112x x x x x x xx xxxa a a a a a a a a aa----+-⎛⎫⎛⎫--=⎪-==⎪⎝⎭⎝⎭,因为1a >,0x ≥,所以()3210,010,xxxa a a +≥>->,所以()()23101x x xa a a-+-≤,当且仅当0x =时等号成立,即当0x ≥时,()()22f x f x ≤成立,故D 正确.故选:BCD例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______. 【答案】ln 31[,)3e【解析】 【分析】由分段函数解析式,结合导数研究|()|f x 的性质,再将问题转化为|()|f x 与(1)y a x =+有3个不同交点,应用数形结合的思想有(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点,最后由导数求它们相切或(1)y a x =+过(2,ln 3)时参数a 的值,即可知a 的取值范围. 【详解】由题设,20x -≤<上239()2()48f x x =--+,故值域为[14,0]-且单调递增;02x ≤≤上()f x '=101x -<+,故()f x 值域为[ln 3,0]-且单调递减; ∴|()|f x 在20x -≤<上值域为[0,14]且单调递减;在02x ≤≤上值域为[0,ln 3]且单调递增; 要使()g x 与x 轴有3个不同的交点,即|()|f x 与(1)y a x =+有3个不同交点,它们的图象如下:∴由图知:要使函数图象有3个交点,则(1)y a x =+与|()|f x 在02x ≤≤上至少有2个交点, 由02x ≤≤,1()|()|ln1g x f x x ==-+,则1()|()|1g x f x x '==+,此时,若|()|f x 与(1)y a x =+相切时,切点为(,(1))m a m +, ∴111ln (1)1a m a m m ⎧=⎪⎪+⎨⎪-=+⎪+⎩,可得1e a =,当(1)y a x =+过(2,ln 3)时,有3ln3a =,得ln 33a =, ∴ln 313ea ≤<. 故答案为:ln 31[,)3e【点睛】关键点点睛:根据已知研究|()|f x 的性质,并将问题转化为|()|f x 与(1)y a x =+的交点问题,应用导数的几何意义、数形结合的思想求参数范围.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2∞⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】先求出函数的定义域,再利用复合函数单调性法则“同增异减”即可求解.【详解】函数()22log 43y x x=+-的定义域为()1,4-.要求函数()22log 43y x x =+-的一个单调增区间,只需求243y x x =+-的增区间,只需32x <. 所以312x -<<. 所以函数()22log 43y x x =+-的一个单调增区间是31,2⎛⎫- ⎪⎝⎭. 故选:C例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】分函数()f x 在R 上的单调递减和单调递增求解. 【详解】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a aa ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数,综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则( ) Ab a << B.b a < Ca b < D.a b <<【答案】A 【解析】 【分析】对33log log 4log log 3a b a b -=-利用换底公式等价变形,得333311log log log log -<-b a b a,结合1y x x=-的单调性判断b a <,同理利用换底公式得343411log log log log b a b a ->-,即34log log b a >,再根据对数运算性质得4log log log a =>3log y x =单调性,b >解. 【详解】由33log log 4log log 3a b a b -=-可得333343111log log log log log log b a a b a a-=-<-, 因为1y x x=-在(,0),(0,)-∞+∞上单调递增,且3log a ,3log (0,)b ∈+∞,所以33log log b a <,即b a <, 其次,343411log log log log b a b a->-,所以34log log b a >,又因为4log log log a =>3log y x =单调递增,所以由3log log b >b >b a <. 故选:A例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是( ) A .0 B .1 C .2 D .a【答案】C 【解析】【分析】根据对数函数的单调性可求出结果. 【详解】∵0<a <1,∴f (x )=log ax 在[a 2,a ]上是减函数, ∴f (x )max =f (a 2)=log aa 2=2. 故选:C例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .⎫⎪⎪⎝⎭B .C .⎛ ⎝⎭D .)+∞【答案】A 【解析】 【分析】根据对数函数的性质可得()()0,11,a ∈+∞且23410x ax -+->,则0∆>,即可求出a 的大致范围,再令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,对a 分两种情况讨论,结合二次函数、对数函数的单调性判断即可; 【详解】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得a >a <()1,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =,若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫ ⎪⎝⎭上单调递减,根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递减,在22,3a x ⎛⎫ ⎪⎝⎭上单调递增,所以函数在23a x =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是( ) A .1116a ≤< B .1116a << C .1016a <≤D .1016a <<【答案】A 【解析】 【分析】根据对数函数的图象与性质,分1a >和01a <<两种情况分类讨论,结合函数的单调性,列出不等式,即可求解. 【详解】当1a >时,由1(0,)2x ∈,可得log 0a x <,则log 0a x ->,又由20x >,此时不等式2log 0a x x -<不成立,不合题意;当01a <<时,函数log a y x =在1(0,)2上单调递减,此时函数log a y x =-在1(0,)2上单调递增,又由2yx 在1(0,)2上单调递增,要使得不等式2log 0a x x -<在1(0,)2内恒成立,可得211()log 022a -≤,解得1116a ≤<.故选:A.例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A 【解析】根据题意,先求得12a =,把不等式()()1122log 4log 2x x t t ⋅<-在[]1,2x ∈上恒成立,转化为402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立,结合指数幂的运算性质,即可求解. 【详解】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,可得函数y 的最大值为116,当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a =时,函数y 有最大值,即12411416a a -+⎛⎫= ⎪⎝⎭,解得12a =; 当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a ⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <; 由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122xxf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A. 例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________. 【答案】13,4∞⎛⎤- ⎥⎝⎦【解析】 【分析】将问题转化为在对应区间上max max ()()f x g x ≥,结合对勾函数、对数函数的性质求()f x 、()g x 的区间最值,即可求a 的范围. 【详解】若()f x 在[3,4]上的最大值max ()f x ,()g x 在[4,8]上的最大值max ()g x , 由题设,只需max max ()()f x g x ≥即可.在[3,4]上,9()6f x x x =+≥=当且仅当3x =时等号成立, 由对勾函数的性质:()f x 在[3,4]上递增,故max 25()4f x =. 在[4,8]上,()g x 单调递增,则max ()3g x a =+, 所以2534a ≥+,可得134a ≤.故答案为:13,4∞⎛⎤- ⎥⎝⎦.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围. 【答案】12ea ≥. 【解析】 【分析】把不等式作等价变形,构造函数()ln g x x x =+,借助其单调性可得2e x a x ≥,分离参数构造函数并求出最大值作答. 【详解】函数()ln f x x x =-定义域为(0,)+∞,则(0,)∀∈+∞x :222()e ln 0e ln l 2n e ln ln x x x f x a a a a x a a x x x x++≥⇔+≥⇔+≥+++22e e )n ln(l x x a a x x ⇔≥++,令()ln g x x x =+,函数()g x 在(0,)+∞上单调递增,则有原不等式等价于()()2e xg a g x ≥22e e x xx a x a ⇔≥⇔≥, 令2()e x x h x =,0x >,求导得:212()exx h x -'=,当102x <<时,()0h x '>,当12x >时,()0h x '<, 因此,函数()h x 在1(0,)2上单调递增,在1(,)2+∞上单调递减,当12x =时,max 11()()22eh x h ==,则12ea ≥, 所以实数a 的取值范围是12ea ≥. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.例23.(2022·全国·高三专题练习)已知函数()log (0,1)xa f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +. (1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围. 【答案】(1)2;(2)1,5⎡⎫+∞⎪⎢⎣⎭【解析】 【分析】(1)根据指对数函数的单调性得函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,进而得260+-=a a ,解方程得2a =;(2)根据题意,将问题转化为对于任意的[2,)x ∈+∞,1()k f x ≥恒成立,进而求函数的最值即可. 【详解】解:(1)因为函数,log (0,1)xa y a y x a a ==>≠在[1,2]上的单调性相同, 所以函数()log (0,1)xa f x a x a a =+>≠在[1,2]上是单调函数,所以函数()f x 在[1,2]上的最大值与最小值之和为2log 26log 2a a a a ++=+,所以260+-=a a ,解得2a =和3a =-(舍) 所以实数a 的值为2.(2)由(1)得2()2log x f x x =+,因为对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,所以对于任意的[2,)x ∈+∞,1()k f x ≥恒成立, 当[2,)x ∈+∞时,2()2log x f x x =+为单调递增函数, 所以()()25f x f ≥=,所以11()5f x ≤,即15k ≥ 所以实数k 的取值范围1,5⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的[2,)x ∈+∞,1()k f x ≥恒成立求解.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.【答案】(1)13a =;(2)()1,11,82⎛⎫⋃ ⎪⎝⎭. 【解析】 【分析】(1)由()32f =可求得log 3a 的值,进而可求得实数a 的值;(2)由()6f x >可得出log 3a x <-或log 1>a x ,分01a <<、1a >两种情况讨论,可得出关于实数a 的不等式,由此可解得实数a 的取值范围. (1)解:因为()32f =,所以()2log 32log 332a a ++=,所以()2log 310a +=,所以log 31a =-,解得13a =.(2)解:由()6f x >,得()2log 2log 30a a x x +->,即()()log 3log 10a a x x +->,即log 3a x <-或log 1>a x .当01a <<时,log 12log log 8a a a x ≤≤,则log 83a <-或log 121a >,因为log 12log 10a a <=,则log 121a >不成立,由log 83a <-可得318a ⎛⎫< ⎪⎝⎭,得112a <<;当1a >时,log 8log log 12a a a x ≤≤,则log 123a <-或log 81a >,因为log 12log 10a a >=,则log 123a <-不成立,所以log 81a >,解得18a <<. 综上,a 的取值范围是()1,11,82⎛⎫⋃ ⎪⎝⎭.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =. (1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;。
高考数学二轮复习考点知识讲解与提升练习考点知识05 函数的单调性与最值1. (2022年浙江卷第7题)已知825,log 3ab ==,则34a b -=() A. 25B. 5C. 259 D. 53【答案】C【解析】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa b b b -====. 故选:C.2. (2022年 新高考1卷第7题)设0.110.1e ,ln 0.99a b c ===-,,则() A. a b c << B. c b a << C. c a b << D. a c b << 【答案】C【解析】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >, 所以1()(0)010f f -<=,所以91ln+01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x x x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)xg x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.3. (2022年北京卷第14题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为________;a 的最大值为___________. 【答案】 ①. 0(答案不唯一) ②. 1 【解析】若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若0a <时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求; 若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min20(02)(){(2)(2)a f x a a <<=-≥ ∴210a -+≥或2212a a -+≥-(),解得01a <≤, 综上可得01a ≤≤;故答案为:0(答案不唯一),1【易错点1】求函数的单调区间,应先确定函数的定义域,忽略定义域研究函数的单调性是常见的错误.【易错点2】有多个单调区间应分开写,不能用符号“∪”联结,也不能用“或”联结,只能用“逗号”或“和”联结.1.下列函数中,定义域是R 且为增函数的是A .x y e -=B .3y x =C .ln y x =D .y x = 【答案】B【解析】四个函数的图象如下显然B 成立.【名师点睛】本题考查函数的定义域以及单调性的判定,涉及指数、对数、幂函数的性质,属于基础题.根据题意,依次分析选项中函数的定义域以及单调性,即可得答案.2.函数()22312x x f x --⎛⎫=⎪⎝⎭的单调递减区间是A .(),-∞+∞B .(),1-∞C .()3,+∞D .()1,+∞ 【答案】D【解析】设t =x 2﹣2x ﹣3,则函数在(﹣∞,1]上单调递减,在[1,+∞)上单调递增.因为函数12xy ⎛⎫= ⎪⎝⎭在定义域上为减函数,所以由复合函数的单调性性质可知,此函数的单调递减区间是(1,+∞). 故选D .【名师点睛】本题主要考查了复合函数的单调性以及单调区间的求法.复合函数的单调性,一要先确定函数的定义域,二要利用复合函数与内层函数和外层函数单调性之间的关系进行判断,判断的依据是“同增异减”.解答本题时,利用复合函数的单调性确定函数f (x )的单调递减区间. 3.已知函数1()xf x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .c b a <<B .a b c <<C .b c a <<D .c a b << 【答案】B【解析】函数1()xf x e=,()0.52a f =,()0.20.3b f =,()0.3log 2c f = 根据指数函数和对数函数的单调性可得:0.50221>=,0.2000.30.31<<=,0.30.3log 2log 01<<,因为函数1()x f x e=在R 上单调递减,且0.50.20.3log 20.23<<, 所以0.20.053.(log 2)(0.23)()f f f >>,即a b c <<. 故选:B 【点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 4.已知函数()22cos()(1)sin(),()233x f x x a x a g x x ππ=+-+=-,若()[]0f g x ≤对[]0,1x ∈恒成立,则实数a 的取值范围是( )A .(1]-∞B .(,0]-∞C .1]D .(,1-∞ 【答案】A【解析】在同一坐标系内画出2231,2,2xy x y y x =+==+的图象,由图象可知,在[]0,1上,223122xx x +≤<+恒成立,即23122x x ≤-<, 当且仅当0x =或1x =时等号成立,()312g x ∴≤<, 设()g x t =,则()(31,02t f g x ⎤≤<≤⎦等价于()0f t ≤, 即()2cos1sin 033t a t a ππ+-+≤, 31,,2332t t πππ⎡⎫≤<∴∈⎪⎢⎣⎭Q ,再设sin13tm m π=≤<,原不等式可化为()212sin 1sin 033t a t a ππ-+-+≤,即()22211210,211m m m a m n a m m +--+-+≤≤=-+,1211m ≤-<,1a ∴≤, 故选:A. 【点睛】关键点点睛:本题考查恒成立问题,考查三角函数的图象和性质,解决本题的关键点是设()g x t =,则原不等式等价于()0f t ≤,再设sin3tm π=,并参变分离求出最值解出实数a 的取值范围,考查了数形结合的解题思想方法,考查学生计算能力,属于中档题.5.设函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(]0,1x ∈时,()(1)f x x x =-.若对任意(],x m ∈-∞,都有8()9f x -≥,则m 的取值范围是( ) A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,∴()2(1)f x f x =-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,∴()()37380x x --=(舍),∴173x =,283x =,∴(,]x m ∈-∞时,8()9f x -≥成立,即73m ≤,∴7,3m ⎛⎤∈-∞ ⎥⎝⎦,故选B .一、单选题1.(2022·青海·海东市第一中学模拟预测(文))下列函数中是减函数的为( )A .2()log f x x =B .()13x f x =-C .()f x =D .2()1f x x =-+ 【答案】B【解析】选项A :由21>,可得2()log f x x =为增函数.判断错误; 选项B :由31>,可得3x y =为增函数,则()13x f x =-是减函数.判断正确; 选项C :由12-<,可得12y x -=是减函数,则()f x =.判断错误;选项D :2()1f x x =-+在(),0∞-上单调递增. 判断错误. 故选:B2.(2023·河南·洛宁县第一高级中学一模(理))已知函数33,0()e 1,0xx x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为( )A .10,2⎛⎫ ⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭;故选:C3.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( )A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f ef x x <D .(0)(1)f <【答案】D【解析】若()f x 是奇函数,则()()f x f x -=-,又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222eeex x x g x x f x f x xf x f x '''=+=+,因为22e 0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<,所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <<sin 1x <<, 所以sin cos x x >,故()()sin cos g x g x >,即()()22sin cos 22e sin ecos xx f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确. 故选:D.4.(2022·江苏无锡·模拟预测)已知13e ,(93ln3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c <<B .a c b <<C .c a b <<D .b c a << 【答案】C【解析】令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===, 显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C5.(2022·青海·模拟预测(理))若01a b <<<,则( ) A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥- C .e e a b b a ≤D .e e a b b a > 【答案】D【解析】对于A,B,令()e ln x f x x =- ,则1()e xf x x '=-,当01x <<时,1()e xf x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=->>故存在012(,)23x ∈ ,使得0()0f x '=,则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增, 由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定, 故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x -',当01x <<时,()0g x '<,故eg()=xx x单调递减,所以当01a b <<<时,()()g a g b > ,即e e a b a b> ,即e e a b b a >,故C 错误,D 正确, 故选:D 6.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()11f =,对于1x ∀,2R x ∈,当12x x <时,都有()()()12122f x f x x x -<-,则不等式()222log 1log f x x +<的解集为( )A .(),2-∞B .()0,2C .()1,2D .()2,+∞【答案】B【解析】由题设12x x <时1122()2()2f x x f x x -<-,即()()2h x f x x =-在R 上递增,又(1)(1)21h f =-=-,而()222log 1log f x x +<等价于()22log 2log 1f x x -<-,所以2(log )(1)h x h <,即2log 1x <,可得02x <<.故不等式解集为()0,2.故选:B二、多选题7.(2022·江苏无锡·模拟预测)定义:在区间I 上,若函数()y f x =是减函数,且()y xf x =是增函数,则称()y f x =在区间I 上是“弱减函数”.根据定义可得( )A .()1f x x=在()0,∞+上是“弱减函数” B .()e xx f x =在()1,2上是“弱减函数” C .若()ln x f x x =在(),m +∞上是“弱减函数”,则e m ≥ D .若()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上是“弱减函数”,则213k ππ≤≤ 【答案】BCD【解析】对于A ,1y x=在()0,+∞上单调递减,()1y xf x ==不单调,故A 错误;对于B ,()e x x f x =,()1e x x f x -'=在()1,2上()0f x ¢<,函数()f x 单调递减, ()2e x x y xf x ==,()2220e ex x x x x x y --'==>,∴y 在()1,2单调递增,故B 正确;对于C ,若()ln x f x x =在(),m +∞单调递减,由()21ln 0x f x x -'==,得e x =, ∴e m ≥,()ln y xf x x ==在()0,+∞单调递增,故C 正确;对于D ,()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上单调递减, ()sin 20f x x kx '=-+≤在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立min sin 2x k x ⎛⎫⇒≤ ⎪⎝⎭, 令()sin x h x x =,()2cos sin x x x h x x -'=,令()cos sin x x x x ϕ=-, ()cos sin cos sin 0x x x x x x x ϕ'=--=-<,∴()ϕx 在0,2π⎛⎫ ⎪⎝⎭上单调递减,()()00x ϕϕ<=, ∴()0h x '<,∴()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,()22h x h ππ⎛⎫>= ⎪⎝⎭, ∴212k k ππ≤⇒≤,()()3cos g x xf x x x kx ==+在0,2π⎛⎫ ⎪⎝⎭上单调递增, ()2cos sin 30g x x x x kx =+'-≥在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立, ∴2maxsin cos 3x x x k x -⎛⎫≥ ⎪⎝⎭, 令()2sin cos x x x F x x -=,()23cos 2cos 0x x x F x x+'=>, ∴()F x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,()22F x F ππ⎛⎫<= ⎪⎝⎭, ∴2233k k ππ≥⇒≥, 综上:213k ππ≤≤,故D 正确. 故选:BCD.8.(2022·江苏省木渎高级中学模拟预测)当121x x <<时,不等式1221e e 0x x x x -<成立.若e e a b >>,则( )A .e 1e e b b ->B .e e e aa b b +<C .e ln b a b a <D .e ln a ab b >【答案】AD【解析】当121x x <<时,不等式12122112e e e e 0x x x x x x x x -<⇔<,令e (),1x f x x x =>, 则()f x 在(1,)+∞上单调递增,因e>1b >,则ee 1e e ()(e)e e eb b f b f b b ->⇔>⇔>,A 正确; 因e a b >>1,则ee e e ()(e )e e e a a b aa b a f b f b b +>⇔>⇔>,B 不正确; 由e e a>知,1a >,有()()e 1e 1e aa f a f a a >⇔>>⇔>,则ln ln 1a a a a >⇔<, 由选项A 知,e 1b b >,即e ln e ln b b a a b a b a>⇔>,C 不正确; 由e e ab >>得,ln 1b a >>,则ln e e (ln )()e ln ln b aa fb f a ab b b a >⇔>⇔>,D 正确. 故选:AD三、填空题9.(2022·上海长宁·二模)已知函数()f x 满足:()(),01,0x x f x x f x x ⎧≥⎪=+⎨⎪--<⎩,则不等式()102f x +≥的解集为____.【答案】[)1,-+∞【解析】根据题意可得(),01,01x x x f x x x x⎧≥⎪⎪+=⎨⎪<⎪-⎩,且()f x 为奇函数 当0x ≥时,()11011x f x x x ==-≥++,则()f x 在[)0,∞+上单调递增∴()f x 在R 上单调递增则()12f x =-,即112x x =--,解得1x =- ∴()102f x +≥即()12f x ≥-的解集为1x ≥- 故答案为:[)1,-+∞.10.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =②()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+. 【答案】③④【解析】对于①,()f x =对于②,()2111x f x x x x ==++不单调,不符合题意;对于③,()22222e e e 1e 1221e e e 1e 11e x x x x x x x x xf x ----+-===-++++=单调递增,且()()1,1f x ∈-,则()1f x <,符合题意;对于④,()11e xf x -=+单调递增,且()()0,1f x ∈,则()1f x <,符合题意. 故答案为:③④1.(2021年全国高考甲卷数学(文)试题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x =【答案】D【解析】对于A ,()f x x =-为R 上的减函数,不合题意,舍.对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0-∞为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意,故选:D.2.(2018·陕西高考真题(理))下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是A .()12f x x =B .()3f x x =C .()12xf x ⎛⎫= ⎪⎝⎭D .()3x f x = 【答案】D【解析】试题分析:由于x r x r a a a +⋅=,所以指数函数()x f x a =满足()()()f x y f x f y +=+,且当1a >时单调递增,01x <<时单调递减,所以()3xf x =满足题意,故选D . 考点:幂函数、指数函数的单调性.3.(2019·陕西高考真题(理))下列函数中,既是奇函数又是增函数的为A .1y x =+B .2y x =-C .1y x=D .y x x = 【答案】D【解析】A 是增函数,不是奇函数;B 和C 都不是定义域内的增函数,排除,只有D 正确,因此选D.4.(2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.5.(2020年高考数学课标Ⅱ卷理科)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减 C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减 【答案】D【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x ∴为定义域上的奇函数,可排除AC ; 当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减, ()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ; 当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增, 根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.6.(2021·浙江高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =-- C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=++> ⎪⎝⎭,与图象不符,排除C. 故选:D.7.(2018北京卷)能说明“若()(0)f x f >对任意的(0,2]x ∈都成立,则()f x 在[0,2]上是增函数”为假命题的一个函数是__________.【答案】sin y x =(不答案不唯一)【解析】这是一道开放性试题,答案不唯一,只要满足()(0)f x f >对任意的(0,2]x ∈都成立,且函数()f x 在[0,2]上不是增函数即可,如,()sin f x x =,答案不唯一.。
第二章 第三节 函数的单调性与最值一、选择题1.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .y =x 3B .y =|x |+1C .y =-x 2+1D .y =2-|x |2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1xB .f (x )=(x -1)2C .f (x )=e xD .f (x )=ln(x +1)3.函数f (x )=⎩⎪⎨⎪⎧-x +3a , x <0,a x, x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( )A .(0,1)B .[13,1)C .(0,13]D .(0,23]4.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B .[-1,43]C .[0,32)D .[1,2)5.函数y =(12)2x 2-3x +1的递减区间为( )A .(1,+∞)B .(-∞,34)C .(12,+∞)D .[34,+∞)6.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的偶函数,在(0,+∞)上单调递减,且f (12)>0>f (-3),则方程f (x )=0的根的个数为( )A .0B .1C .2D .3二、填空题7.函数f (x )=log 5(2x +1)的单调增区间是________. 8.函数f (x )=⎩⎪⎨⎪⎧1,x >00,x =0-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.9.已知函数f (x )=3-axa -1(a ≠1),若f (x )在区间(0,1]上是减函数,则实数a 的取值范围是________.三、解答题10.已知函数f (x )对任意的a ,b ∈R 恒有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.12.设奇函数f (x )在[-1,1]上是增函数,f (-1)=-1.若函数f (x )≤t 2-2at +1对所有的x ∈[-1,1],a ∈[-1,1]都成立,求t 的取值范围.详解答案一、选择题1.解析:A 选项中,函数y =x 3是奇函数;B 选项中,y =|x |+1是偶函数,且在(0,+∞)上是增函数;C 选项中,y =-x 2+1是偶函数,但在(0,+∞)上是减函数;D 选项中,y =2-|x |=(12)|x |是偶函数,但在(0,+∞)上是减函数.答案:B2.解析:由题意可知,函数f (x )在(0,+∞)上为减函数. 答案:A3.解析:据单调性定义,f (x )为减函数应满足:⎩⎪⎨⎪⎧0<a <1,3a ≥a 0,即13≤a <1. 答案:B4.解析:由2-x >0,得x <2,即函数定义域是(-∞,2).作出函数y =|ln(-x )|的图象,再将其向右平移2个单位,即函数f (x )=|ln(2-x )|的图象,由图象知f (x )在[1,2)上为增函数.答案:D5.解析:作出t =2x 2-3x +1的示意图如右,∵0<12<1,∴y =(12)t单调递减.要使y =(12)2x 2-3x +1递减,只需x ∈[34,+∞].答案:D6.解析:因为在(0,+∞)上函数递减,且f (12)·f (-3)<0,又f (x )是偶函数,所以f (12)·f (3)<0.所以f (x )在(0,+∞)上只有一个零点.又因为f (x )是偶函数,则它在(-∞,0)上也有唯一的零点,故方程f (x )=0的根有2个.答案:C 二、填空题7.解析:由题意知,函数f (x )=log 5(2x +1)的定义域为{x |x >-12},且函数y =log 5u ,u =2x +1在各自定义域上都是增函数,所以该函数的单调增区间为(-12,+∞).答案:(-12,+∞)⎩⎪⎨⎪⎧x 2,x >10,x =1-x 2,x <1.8.解析:由条件知,g (x )=如图所示,其递减区间是[0,1). 答案:[0,1)9.解析:当a -1>0,即a >1时,要使f (x )在(0,1]上是减函数, 则需3-a ×1≥0,此时1<a ≤3.当a -1<0,即a <1时, 要使f (x )在(0,1]上是减函数, 则需-a >0,此时a <0所以,实数a 的取值范围是(-∞,0)∪(1,3] 答案:(-∞,0)∪(1,3] 三、解答题10.解:(1)证明:任取x 1,x 2∈R, 且x 1<x 2, ∵f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)+f (x 1)-1, 又x 2-x 1>0,∴f (x 2-x 1)>1.∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0,即f (x 2)>f (x 1). ∴f (x )是R 上的增函数.(2)令a =b =2,得f (4)=f (2)+f (2)-1=2f (2)-1, ∴f (2)=3,而f (3m 2-m -2)<3,∴f (3m 2-m -2)<f (2). 又f (x )在R 上是单调递增函数, ∴3m 2-m -2<2.∴3m 2-m -4<0,解得-1<m <43.故原不等式的解集为(-1,43).11.解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),. ∴f (x )在(-∞,-2)内单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].12.解:∵f (x )是奇函数, ∴f (1)=-f (-1)=1, 又f (x )是 [-1,1]上的奇函数, ∴当x ∈[-1,1]时,f (x )≤f (1)=1.又函数f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立, ∴1≤t 2-2at +1⇔2at -t 2≤0,设g (a )=2at -t 2(-1≤a ≤1),欲使2at -t 2≤0恒成立,则⎩⎪⎨⎪⎧g-g⇔t ≥2或t =0或t ≤-2.即所求t 的取值范围是(-∞,-2]∪{0}∪[2,+∞).。
第二讲函数的单调性1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M (3)对于任意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【套路秘籍】---千里之行始于足下考向一 单调区间求解【例1】(1)下列函数中,定义域是R 且为增函数的是( )A.y =2-xB.y =xC.y =log 2xD.y =-1x(2)函数f (x )=ln (x 2-2x -8) 的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞) (3)求函数f (x )=|x 2-4x +3|的单调区间 . (4)求函数f (x )=x -ln x 的单调区间 .(5)函数33y x x =-的单调增区间为__________. 【答案】见解析【解析】(1)只有y =2-x与y =x 的定义域为R ,且y =2-x是减函数,y =x 是增函数.选B (2)由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵函数t =x 2-2x -8的单调递增区间为(4,+∞),∴函数f (x )的单调递增区间为(4,+∞).故选D. (3)先作出函数y =x 2-4x +3的图象,由于绝对值的作用,把x 轴下方的部分翻折到上方,可得函数y =|x 2-4x +3|的图象.如图所示.由图可知f (x )在(-∞,1]和[2,3]上为减函数,在[1,2]和[3,+∞)上为增函数,故f (x )的增区间为[1,2],[3,+∞),减区间为(-∞,1],[2,3].(4)由题意,得x >0.y ′=1-1x =x -1x.由y ′=0解得x =1.【修炼套路】---为君聊赋《今日诗》,努力请从今日始列表如下:由上表可知,函数的单调递增区间为(1,+∞),单调递减区间为(0,1).(5)21119033y x x '=->∴-<< ,即单调增区间为11,33⎛⎫- ⎪⎝⎭【举一反三】1.下列函数中,在(0,+∞)上单调递减的是( )A . f(x)=lnxB . f(x)=(x −1)2C . f(x)=2−xD . f(x)=x 3 【答案】C【解析】根据题意,依次分析选项:对于A ,函数f(x)=lnx 为对数函数,在(0,+∞)上为增函数,不符合题意.【套路总结】一.函数单调性的判断方法有 ①定义法; ②图象法;③利用已知函数的单调性; ④导数法.二.复合函数y =f (g (x ))的单调性应根据外层函数y =f (t )和内层函数t =g (x )的单调性判断,遵循“同增异减”的原则.对于B ,函数f(x)=(x −1)2为二次函数,在(−∞,1)上为减函数,在(1,+∞)上为增函数,不符合题意. 对于C ,函数f(x)=2−x =(12)x 为指数函数,在(0,+∞)上单调递减,符合题意.对于D ,函数y =x 3为幂函数,在(0,+∞)上为增函数,不符合题意.故选C . 2.函数f (x )=log 2(4+3x −x 2)的单调递减区间是( ) A . (−∞,32] B . [32,+∞) C . (−1,32] D . [32,4) 【答案】D【解析】函数f (x )=log 2(4+3x-x 2),令t=4+3x-x 2>0,求得-1<x <4,即函数的定义域为(-1,4),且f (x )=log 2t ,即求函数t 在定义域内的减区间.再利用二次函数的性质可得t=4+3x-x 2在定义域内的减区间为[32,4).故选D . 3.函数()| g x x =的单调递增区间是 ( )A . [)0+∞,B . (]0-∞,C . (]2-∞-,D . [)2+-∞, 【答案】A【解析】任取120,x x >> 则120,x x -> ()()()()121212120,g x g x x x x x g x g x ->-=->> ,所以函数()| g x x =的单调递增区间是[)0+∞,,故选A.考向二 单调性的运用一---比较大小【例2】定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25) B .f (log 25)<f (20.3)<f (0.32) C .f (log 25)<f (0.32)<f (20.3) D .f (0.32)<f (log 25)<f (20.3) 【答案】A【解析】 ∵对任意x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数,又∵f (x )是R 上的偶函数,∴f (x )在(0,+∞)上是增函数,∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A.【举一反三】1.已知f (x )=2x-2-x,117459279,,log 97a b c -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则f (a ),f (b ),f (c )的大小顺序为( ) A.f (b )<f (a )<f (c ) B.f (c )<f (b )<f (a ) C.f (c )<f (a )<f (b ) D.f (b )<f (c )<f (a )【答案】B【解析】易知f (x )=2x -2-x在(-∞,+∞)上是增函数,又a =⎝ ⎛⎭⎪⎫79-14=⎝ ⎛⎭⎪⎫9714>⎝ ⎛⎭⎪⎫9715=b >0,c =log 279<0,∴f (a )>f (b )>f (c ).2.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c【套路总结】(1)比较大小:县判断出函数的单调性,再根据自变量的大小判断出函数值的大小关系。
第2节 函数的单调性与最值课标要求:1.理解函数的单调性、最大(小)值及其几何意义;2.会运用基本初等函数的图象分析函数的性质. 知识衍化体验知 识 梳 理1.函数的单调性自左向右看图象是______自左向右看图象是______2.函数的最值[微点提醒]1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)对于函数f(x),x∈D,若对任意x1,x2∈D,且x1≠x2有(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在区间D上是增函数.()(2)函数y=1x的单调递减区间是(-∞,0)∪(0,+∞).()(3)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.()(4)函数y=f(x)在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).() 2.下列函数中,在区间(0,+∞)内单调递减的是()A.y=1x-x B.y=x2-xC.y=ln x-xD.y=e x3.函数y=2x-1在区间[2,3]上的最大值是________.4.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=1f(x)在R上为减函数B.y=|f(x)|在R上为增函数C.y=-1f(x)在R上为增函数D.y=-f(x)在R上为减函数5.若函数f(x)=(m-1)x+b在R上是增函数,则f(m)与f(1)的大小关系是()A. f(m)>f(1)B. f(m)<f(1)C. f(m)≥f(1)D. f(m)≤f(1)6.(2017·全国Ⅱ卷)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)考点聚焦突破考点一讨论函数的单调性【例1】(1)(2019·东北三省四校质检)若函数y=log12(x2-ax+3a)在区间(2,+∞)上是减函数,则a的取值范围为()A.(-∞,-4)∪[2,+∞)B.(-4,4]C.[-4,4)D.[-4,4](2)判断并证明函数f(x)=ax2+1x(其中1<a<3)在x∈[1,2]上的单调性.规律方法 1.(1)求函数的单调区间,应先求定义域,在定义域内求单调区间,如例1(1).(2)单调区间不能用集合或不等式表达,且图象不连续的单调区间要用“和”“,”连接.2.(1)函数单调性的判断方法有:①定义法;②图象法;③利用已知函数的单调性;④导数法.(2)函数y=f[g(x)]的单调性应根据外层函数y=f(t)和内层函数t=g(x)的单调性判断,遵循“同增异减”的原则.【训练1】(一题多解)试讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考点二求函数的最值【例2】(1)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg(x 2+1),x <1,则f [f (-3)]=________,f (x )的最小值是________.(2).(2016北京理科14)设函数f (x )=3x 3x,x a,2x,x a.⎧-≤⎨->⎩若a =0,则f(x )的最大值为 ;若f(x )无最大值,则实数a 的取值范围是 .规律方法 求函数最值的四种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值. (3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.【训练2】 (1)(2019·郑州调研)函数f (x )=x -1x 2在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( ) A.3116B.2C.94D.114(2)(2018·邵阳质检)定义max{a ,b ,c ,}为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是( ) A.2B.3C.4D.6考点三 函数单调性的应用多维探究角度1 利用单调性比较大小【例3-1】 已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c的大小关系为( ) A.c >a >b B.c >b >a C.a >c >b D.b >a >c角度2 求解函数不等式【例3-2】 (2017全国III 卷理科15)设函数f (x )=1,0,02x x x x +≤⎧⎪⎨>⎪⎩则满足f (x )+f 12x ⎛⎫- ⎪⎝⎭>1的x 的取值范围是 .角度3 求参数的值或取值范围【例3-3】(16年天津理科8题)已知函数f(x)=()()2a x 4a 3x 3a,x 0,log x 11,x 0,⎧+-+<⎪⎨++≥⎪⎩ (a>0且a≠1)在R 上单调递减,且关于x 的方程|f(x)|=2-x 恰有两个不相等的实数解,则a 的取值范围是 ( )A.20,3⎛⎤⎥⎝⎦ B.23,34⎡⎤⎢⎥⎣⎦ C.123,334U ⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭ D.123,334U ⎡⎫⎧⎫⎨⎬⎪⎢⎣⎭⎩⎭规律方法 1.利用单调性求参数的取值(范围)的思路是:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.2.(1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”.【训练3】 (1)已知奇函数f (x )在R 上是增函数,若a =-f ⎝ ⎛⎭⎪⎫log 215,b =f (log 2 4.1),c =f (20.8),则a ,b ,c 的大小关系为( ) A.a <b <c B.b <a <c C.c <b <aD.c <a <b(2) 已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么实数a 的取值范围是________.第2节 函数的单调性与最值知识衍化体验知 识 梳 理f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的 f (x )≤M ; f (x )≥M ;f (x 0)=M f (x 0)=M基 础 自 测1.(1)√ (2)× (3)× (4)×2.A3. 24.D5.A6. D考点聚焦突破 【例1】 (1) D(2)解 f (x )在[1,2]上单调递增,证明如下:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)⎣⎢⎡⎦⎥⎤a (x 1+x 2)-1x 1x 2, 由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4, 1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12, 得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1), 故当a ∈(1,3)时,f (x )在[1,2]上单调递增. 【训练1】 (一题多解)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 法一 设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,。
2016年高考数学 热点题型和提分秘籍 专题05 函数的单调性与最值理(含解析)新人教A 版【高频考点解读】1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用函数的图象理解和研究函数的性质. 【热点题型】题型一 函数单调性的判断例1、(1)下列函数f (x )中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-x D .f (x )=ln(x +1)(2)函数y =x +2x +1在(-1,+∞)上是________(填“增函数”或“减函数”). 【答案】 (1)C(2)减函数 【解析】【提分秘籍】(1)图象法作图象→看升降→归纳单调性区间(2)转化法(3)导数法求导→判断f′x正、负→单调性区间(4)定义法取值→作差→变形→定号→单调性区间求函数的单调区间,一定要注意定义域优先原则.【举一反三】下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)【答案】A【解析】题型二求函数的单调区间例2、求下列函数的单调区间:(1)y=-x2+2|x|+1;(2)y=log1(x2-3x+2).2解析(1)由于y=⎩⎪⎨⎪⎧-x 2+2x +1x ≥0,-x 2-2x +1x <0,即y =⎩⎪⎨⎪⎧-x -12+2x ≥0,-x +12+2x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).【提分秘籍】(1)求函数的单调区间与确定单调性的方法一致.常用的方法有:①利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间. ②定义法:先求定义域,再利用单调性定义确定单调区间.③图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性写出它的单调区间.④导数法:利用导数取值的正负确定函数的单调区间.(2)若函数f (x )的定义域上(或某一区间上)是增函数,则f (x 1)<f (x 2)⇔x 1<x 2.利用上式,可以去掉抽象函数的符号,将函数不等式(或方程)的求解化为一般不等式(或方程)的求解,但无论如何都必须在定义域内或给定的X 围内进行.【举一反三】求下列函数的单调区间,并指出其增减性. (1)y =(a >0且a ≠1);(2)y =log 12(4x -x 2).题型三函数单调性的应用例3、已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f (x )=e x+sin x ,则( )A .f (1)<f (2)<f (3)B .f (2)<f (3)<f (1)C .f (3)<f (2)<f (1)D .f (3)<f (1)<f (2) 【答案】D【解析】由f (x )=f (π-x ),得函数f (x )的图象关于直线x =π2对称,又当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f ′(x )=e x +cos x >0恒成立,所以f (x )在⎝ ⎛⎭⎪⎫-π2,π2上为增函数,f (2)=f (π-2),f (3)=f (π-3),且0<π-3<1<π-2<π2,所以f (π-3)<f (1)<f (π-2),即f (3)<f (1)<f (2).【提分秘籍】1.高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.2.高考对函数单调性的考查主要有以下几个命题角度: (1)利用函数的单调性比较大小.(2)利用函数的单调性解决与抽象函数有关的不等式问题. (3)利用函数的单调性求参数.(4)利用函数的单调性求解最值(或恒成立)问题.【方法规律】(1)含“f ”号不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.(2)分段函数单调性解法为了保证函数在整个定义域内是单调的,除了要分别保证各段表达式在对应区间上的单调性一致外,还要注意两段连接点的衔接.【举一反三】已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ).(1)求f (1)的值;(2)解不等式f (-x )+f (3-x )≥-2.则⎩⎪⎨⎪⎧x <0,-x 2·3-x 2≤1,解得-1≤x <0.∴不等式的解集为{x |-1≤x <0}. 【变式探究】已知f (x )=⎩⎪⎨⎪⎧3-a x -a x <1log a x x ≥1是(-∞,+∞)上的增函数,则a 的取值X 围是( ) A .(1,+∞) B .(1,3) C.⎣⎢⎡⎭⎪⎫32,3D.⎝ ⎛⎭⎪⎫1,32【答案】⎣⎢⎡⎭⎪⎫32,3 【解析】【高考风向标】【2015高考某某,理6】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令x x f =)(,所以x a x g )1()(-=,因为1>a ,所以)(x g 是R 上的减函数,由符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩知,1,0sgn[()]0,0sgn 1,0x g x x x x ->⎧⎪===-⎨⎪<⎩.【2015高考某某,理15】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤ 【解析】(2014·卷)下列函数中,在区间(0,+∞)上为增函数的是( )A .y =x +1B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 【答案】A【解析】由基本初等函数的性质得,选项B 中的函数在(0,1)上递减,选项C ,D 中的函数在(0,+∞)上为减函数,所以排除B ,C ,D ,选A.(2014·某某卷)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x , x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞) 【答案】D【解析】由函数f (x )的解析式知,f (1)=2,f (-1)=cos(-1)=cos 1,f (1)≠f (-1),则f (x )不是偶函数;当x >0时,令f (x )=x 2+1,则f (x )在区间(0,+∞)上是增函数,且函数值f (x )>1; 当x ≤0时,f (x )=cos x ,则f (x )在区间(-∞,0]上不是单调函数,且函数值f (x )∈[-1,1];∴函数f (x )不是单调函数,也不是周期函数,其值域为[-1,+∞).(2014·某某卷)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.【答案】1【解析】由题意可知,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-12=f ⎝ ⎛⎭⎪⎫-12=-4⎝ ⎛⎭⎪⎫-122+2=1. (2014·某某卷)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R,∃a ∈D ,f (a )=b ”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B;④若函数f(x)=a ln(x+2)+xx2+1(x>-2,a∈R)有最大值,则f(x)∈B.其中的真命题有________.(写出所有真命题的序号)【答案】①③④【解析】(2014·某某卷)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值X围.【解析】(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1. 同理g (x )在区间(x 0,1)内存在零点x 2. 故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0得a +b =e -1<2, 则g (0)=a -e +2>0,g (1)=1-a >0, 解得e -2<a <1.当e -2<a <1时,g (x )在区间[0,1]内有最小值g (ln(2a )). 若g (ln(2a ))≥0,则g (x )≥0(x ∈[0,1]),从而f (x )在区间[0,1]内单调递增,这与f (0)=f (1)=0矛盾,所以g (ln(2a ))<0. 又g (0)=a -e +2>0,g (1)=1-a >0.故此时g (x )在(0,ln(2a ))和(ln(2a ),1)内各只有一个零点x 1和x 2.由此可知f (x )在[0,x 1]上单调递增,在(x 1,x 2)上单调递减,在[x 2,1]上单调递增. 所以f (x 1)>f (0)=0,f (x 2)<f (1)=0, 故f (x )在(x 1,x 2)内有零点.综上可知,a 的取值X 围是(e -2,1).(2013·某某卷)已知函数f(x)=⎩⎪⎨⎪⎧x 2+2x +a ,x<0,lnx ,x>0,其中a 是实数.设A(x 1,f(x 1)),B(x 2,f(x 2))为该函数图像上的两点,且x 1<x 2. (1)指出函数f(x)的单调区间;(2)若函数f(x)的图像在点A ,B 处的切线互相垂直,且x 2<0,求x 2-x 1的最小值; (3)若函数f(x)的图像在点A ,B 处的切线重合,求a 的取值X 围. 【解析】所以,函数f(x)的图像在点A,B处的切线互相垂直时,x2-x1的最小值为1.(2013·某某卷)设函数f(x)=e x+x-a(a∈R,e为自然对数的底数).若曲线y=sinx上存在(x0,y0)使得f(f(y0))=y0,则a的取值X围是( )A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]【答案】A【解析】因为y0=sin x0∈[-1,1],且f(x)在[-1,1]上(有意义时)是增函数,对于y 0∈[-1,1],如果f(y 0)=c >y 0,则f(f(y 0))=f(c)>f(y 0)=c >y 0,不可能有f(f(y 0))=y 0.同理,当f(y 0)=d <y 0时,则f(f(y 0))=f(d)<f(y 0)=d <y 0,也不可能有f(f(y 0))=y 0,因此必有f(y 0)=y 0,即方程f(x)=x 在[-1,1]上有解,即e x+x -a =x 在[-1,1]上有解.显然,当x <0时,方程无解,即需要e x+x -a =x 在[0,1]上有解.当x≥0时,两边平方得e x+x -a =x 2,故a =e x-x 2+x.记g(x)=e x-x 2+x ,则g′(x)=e x-2x +1.当x∈⎣⎢⎡⎦⎥⎤0,12时,e x>0,-2x +1≥0,故g′(x)>0,当x∈⎝ ⎛⎦⎥⎤12,1时,e x>e >1,0>-2x +1≥-1,故g′(x)>0.综上,g′(x)在x∈[0,1]上恒大于0,所以g(x)在[0,1]上为增函数,值域为[1,e],从而a 的取值X 围是[1,e].(2013·某某卷)函数y =x33x -1的图像大致是( )【答案】C【解析】函数的定义域是{x∈R|x≠0},排除选项A ;当x<0时,x 3<0,3x-1<0,故y>0,排除选项B ;当x→+∞时,y>0且y→0,故为选项C 中的图像.(2013·新课标全国卷Ⅱ] 已知函数f(x)=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .x 0∈R,f(x 0)=0B .函数y =f(x)的图像是中心对称图形C .若x 0是f(x)的极小值点,则f(x)在区间(-∞,x 0)单调递减D .若x 0是f(x)的极值点,则f′(x 0)=0 【答案】C【解析】【高考押题】1.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A. k >12 B. k <12C. k >-12D. k <-12【答案】D【解析】使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.2.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A. y =x 3B. y =|x |+1C. y =-x 2+1 D. y =2-|x |【答案】B 【解析】3.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )A. f (4)>f (-6)B. f (-4)<f (-6)C. f (-4)>f (-6)D. f (4)<f (-6) 【答案】C【解析】由(x 1-x 2)(f (x 1)-f (x 2))>0知f (x )在(0,+∞)上递增,∴f (4)<f (6)⇔f (-4)>f (-6).4. 函数y =(12)2x 2-3x +1的递减区间为( )A. (1,+∞)B. (-∞,34)C. (12,+∞)D. [34,+∞)【答案】D【解析】设t =2x 2-3x +1,其递增区间为[34,+∞),∴复合函数递减区间为[34,+∞),选D 项.5. 函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A. (-∞,0)∪(12,2] B. (-∞,2]C. (-∞,12)∪[2,+∞) D. (0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),y =2x -1在(-∞,1)上为减函数,在[2,5)上也为减函数,则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 6. 设函数g (x )=x 2-2(x ∈R),f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A. [-94,0]∪(1,+∞)B. [0,+∞)C. [-94,+∞)D. [-94,0]∪(2,+∞)【答案】D 【解析】7. 函数f (x )=x 2-2x -3的单调增区间为________. 【答案】[3,+∞)【解析】定义域x 2-2x -3≥0,∴x ≤-1或x ≥3,函数的递增区间为[3,+∞). 8. 函数y =xx +a在(-2,+∞)上为增函数,则a 的取值X 围是________.【答案】a ≥2 【解析】y =xx +a=1-ax +a,依题意,得函数的单调增区间为(-∞,-a )、(-a ,+∞),要使函数在(-2,+∞)上为增函数,只要-2≥-a ,即a ≥2.9.设函数f (x )的图象关于y 轴对称,又已知f (x )在(0,+∞)上为减函数,且f (1)=0,则不等式f -x +f xx<0的解集为________.【答案】(-1,0)∪(1,+∞) 【解析】10.已知函数f (x )是定义在(0,+∞)上的减函数,且满足f (xy )=f (x )+f (y ),f (13)=1.(1)求f (1);(2)若f (x )+f (2-x )<2,求x 的取值X 围.解:(1)令x =y =1,则f (1)=f (1)+f (1),∴f (1)=0. (2)∵2=1+1=f (13)+f (13)=f (19),∴原不等式等价于f [x (2-x )]<f (19),由f (x )为(0,+∞)上的减函数,得⎩⎪⎨⎪⎧x >0,2-x >0,x 2-x >19,⇒⎩⎪⎨⎪⎧x >0,2-x >0,1-223<x <1+223,⇒1-223<x <1+223,即x 的取值X 围为(1-223,1+223).11. 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值X 围.12.已知函数g (x )=x +1,h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域; (2)当a =14时,求函数f (x )的值域.解:(1)f (x )=x +1x +3,x ∈[0,a ],(a >0). (2)函数f (x )的定义域为[0,14],令x +1=t ,则x =(t -1)2,t ∈[1,32],f (x )=F (t )=tt 2-2t +4=1t +4t-2, ∵t =4t 时,t =±2∉[1,32],又t ∈[1,32]时,t +4t 单调递减,F (t )单调递增,F (t )∈[13,613]. 即函数f (x )的值域为[13,613].。
高考数学二轮复习考点知识与题型专题讲解 第10讲 对数平均不等式、切线不等式在高考压轴题中,经常考查与导数有关的不等式问题,这些问题可以用常规方法求解,也可以转变成对数平均不等式、切线不等式进行求解,起到事半功倍的效果.考点一 对数平均不等式例1 若a >0,b >0,a ≠b ,求证:ab <a -b ln a -ln b<a +b 2. 证明 不妨设a >b >0,①要证ab <a -b ln a -ln b成立, 即证ab <a -b ln a b,即证ln a b <a -b ab , 即证ln a b <a b -b a ,令a b=t (t >1), 则需证明2ln t <t -1t(t >1), 构造函数f (t )=2ln t -t +1t(t >1), 则f ′(t )=2t -1-1t 2=-(t -1)2t2<0, 所以f (t )在(1,+∞)上单调递减,又f (1)=0,所以f (t )<0,即2ln t <t -1t,原不等式得证. ②要证a -b ln a -ln b <a +b 2,只需证2·a -b a +b<ln a b ,即证2·a b -1a b+1<ln a b ,令t =a b (t >1), 即证2·t -1t +1<ln t .即证2-4t +1<ln t , 构造函数φ(t )=2-4t +1-ln t (t >1), φ′(t )=4(t +1)2-1t =-(t -1)2t (t +1)2<0, ∴φ(t )在(1,+∞)上单调递减,∴φ(t )<φ(1)=0,即2-4t +1<ln t , ∴原不等式得证. 综上,ab <a -b ln a -ln b<a +b 2. 规律方法 该类问题的特征是双变量,将双变量问题转变为单变量问题处理,即将a b看成一个新对象(整体),从而进行降维打击.跟踪演练1 已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2. (1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①若a ≤2,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,∴f (x )在(0,+∞)上单调递减. ②若a >2,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. ∴f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减, 在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. (2)证明 由(1)知,f (x )存在两个极值点当且仅当a >2.由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0,所以x 1x 2=1,不妨设x 2>x 1>0,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a (ln x 1-ln x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2, 由对数平均不等式知x 1-x 2ln x 1-ln x 2>x 1x 2=1, 又x 2>x 1>0,∴x 1-x 2<0,ln x 1-ln x 2<0,∴0<ln x 1-ln x 2x 1-x 2<1, ∴f (x 1)-f (x 2)x 1-x 2=-2+a (ln x 1-ln x 2)x 1-x 2<-2+a , 即证原不等式成立.考点二 以泰勒公式为背景的切线不等式泰勒公式:将函数展开为一个多项式与一个余项的和.f (x )=f (x 0)+f ′(x 0)(x -x 0)+f ″(x 0)2!(x -x 0)2+…+f (n )(x 0)n !(x -x 0)n +R n (x ), 其中余项R n (x )=f (n +1)(ξ)(n +1)!(x -x 0)n +1(ξ在x 0与x 之间), 当x 0=0时为麦克劳林公式.其中e x 与ln(1+x )的麦克劳林公式为e x =1+x +12x 2+16x 3+o (x 3), ln(1+x )=x -12x 2+13x 3+o (x 3), 从中截取片段就构成了常见的不等式:e x ≥1+x 或e x≥1+x +x 22(x ≥0), ln(1+x )≤x (x ≥0)或ln x ≤x -1(x >0),ln(1+x )≥x -x 22(x ≥0),例2 设函数f (x )=a e xln x +b e x -1x ,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2. (1)求a ,b ;(2)证明:f (x )>1.(1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x 2e x -1+b xe x -1. 由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.(2)证明 方法一 由(1)知,f (x )=e x ln x +2x·e x -1, 从而f (x )>1等价于x ln x >x e -x -2e. 设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝⎛⎭⎫0,1e ,g ′(x )<0; 当x ∈⎝⎛⎭⎫1e ,+∞时,g ′(x )>0. 故g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ⎝⎛⎭⎫1e =-1e. 设函数h (x )=x e -x -2e, 则h ′(x )=e -x (1-x ). 所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e. 综上,当x >0时,g (x )>h (x ),即f (x )>1.方法二 f (x )=e x ln x +2xe x -1=e x ⎝⎛⎭⎫ln x +2e x . 当x >0时,e x >1+x ,所以e x -1≥x , 即e x e≥x ,e x ≥e x ,当x =1时等号成立, 即e -ln x ≥e(-ln x ),所以1x≥e(-ln x ), 即ln x ≥-1e x ,当x =1e时等号成立,所以e x ⎝⎛⎭⎫ln x +2e x ≥e x ⎝⎛⎭⎫-1e x +2e x =e xe x >1(等号不同时成立). 规律方法 指数的放缩.形如:e x -1≥x -1+1⇒e x ≥e x , e x n≥e·x n ⇒e x ≥e n n n x n . 对数的放缩.形如:e ln x ≥1+ln x ⇒ln x ≤x -1⇒ln(1+x )≤x ,ln ⎝⎛⎭⎫1+1x <1x ⇒ln(x +1)-ln x <1x, ln ⎝⎛⎭⎫1+⎝⎛⎭⎫-11+x <-11+x⇒ln(1+x )-ln x >11+x , ln x e ≤x e-1⇒x ≥eln x . 跟踪演练2 已知函数f (x )=12ax 2-(2a +1)x +2ln x (a ∈R ). (1)当a >0时,求函数f (x )的单调递增区间;(2)当a =0时,证明:f (x )<2e x -x -4.(1)解 f (x )的定义域为(0,+∞),f ′(x )=ax -(2a +1)+2x =(ax -1)(x -2)x, 当0<1a <2,即a >12时, 在⎝⎛⎭⎫0,1a 和(2,+∞)上,f ′(x )>0,f (x )单调递增; 当1a =2,即a =12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; 当1a >2,即0<a <12时, 在(0,2)和⎝⎛⎭⎫1a ,+∞上,f ′(x )>0,f (x )单调递增.综上所述,当a >12时,f (x )的单调递增区间为⎝⎛⎭⎫0,1a 和(2,+∞); 当a =12时,f (x )的单调递增区间为(0,+∞); 当0<a <12时,f (x )的单调递增区间为(0,2)和⎝⎛⎭⎫1a ,+∞. (2)证明 方法一 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,构造函数h (x )=e x -ln x -2(x >0),h ′(x )=e x -1x, 令φ(x )=e x -1x(x >0), 则φ′(x )=e x +1x 2>0, 所以h ′(x )在(0,+∞)上单调递增,h ′⎝⎛⎭⎫12=e -2<0,h ′(1)=e -1>0,故存在x 0∈⎝⎛⎭⎫12,1,使得h ′(x 0)=0,即0e x =1x 0. 当x ∈(0,x 0)时,h ′(x )<0,h (x )单调递减;当x ∈(x 0,+∞)时,h ′(x )>0,h (x )单调递增.所以当x =x 0时,h (x )取得极小值,也是最小值.h (x 0)=0e x -ln x 0-2=1x 0-01ln e 2x - =1x 0+x 0-2>21x 0·x 0-2=0, 所以h (x )=e x -ln x -2>0,故f (x )<2e x -x -4.方法二 当a =0时,要证f (x )<2e x -x -4,即证e x -ln x -2>0,由x >0时,e x >x +1可得e x -1>x ,由x >0时,ln x ≤x -1可得x ≥ln x +1,故e x -1>x ≥ln x +1,即e x -ln x -2>0,即原不等式成立.专题强化练1.(2022·葫芦岛模拟)已知函数f (x )=x +b (1+ln x )(b ∈R ).(1)求f (x )的单调区间;(2)设g (x )=f (x )-12sin x ,若存在0<x 1<x 2,使得g (x 1)=g (x 2),求证: ①b <0;②x 1x 2<4b 2.(1)解 由题意,定义域为(0,+∞),f ′(x )=x +b x, 若b ≥0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若b <0,令f ′(x )=0,得x =-b , 当x ∈(0,-b )时,f ′(x )<0,f (x )单调递减;当x ∈(-b ,+∞)时,f ′(x )>0,f (x )单调递增,综上,若b ≥0,f (x )的单调递增区间为(0,+∞),无单调递减区间;若b <0,f (x )的单调递减区间为(0,-b ),单调递增区间为(-b ,+∞).(2)证明 g (x )=x +b (1+ln x )-12sin x , g ′(x )=1-cos x 2+b x, ①若b ≥0,则由1-cos x 2>0,b x≥0得g ′(x )>0,g (x )在(0,+∞)上单调递增,故不存在0<x 1<x 2,使得g (x 1)=g (x 2),所以b <0.②令m (x )=x -sin x (x >0),m ′(x )=1-cos x ≥0,当x →0时,m (x )→0, 故m (x )>0,即x >sin x ,因为g (x 1)=g (x 2),即x 1+b (1+ln x 1)-12sin x 1 =x 2+b (1+ln x 2)-12sin x 2, 所以-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12(x 2-x 1), 又0<x 1<x 2,所以-2b >x 2-x 1ln x 2-ln x 1>0, 根据对数平均不等式ab <a -b ln a -ln b<a +b 2, 所以x 2-x 1ln x 2-ln x 1>x 2x 1, 所以-2b >x 2x 1,故x 1x 2<4b 2.2.(2022·抚州模拟)已知函数f (x )=x (ln x +a ),a ∈R .(1)求f (x )的单调区间;(2)当a =1时,求证:f (x )≤x e x-1在(0,+∞)上恒成立. (1)解 因为f (x )=x (ln x +a ),故可得f ′(x )=ln x +a +1,又y =ln x +a +1为单调递增函数,令f ′(x )=0,解得x =e -a -1,故当0<x <e-a -1时,f ′(x )<0; 当x >e -a -1时,f ′(x )>0,故f (x )的单调递减区间为(0,e-a -1), 单调递增区间为(e -a -1,+∞).(2)证明 方法一 当a =1时,f (x )=x (ln x +1), 要证f (x )≤x e x -1,即证x (ln x +1)≤x e x -1,又x >0,则只需证ln x +1≤e x -1,即证ln x -x +1≤e x -1-x ,令m (x )=ln x -x +1,m ′(x )=1x -1=1-x x ,当0<x <1时,m ′(x )>0,m (x )单调递增, 当x >1时,m ′(x )<0,m (x )单调递减, 故当x =1时,m (x )取得最大值m (1)=0; 令n (x )=e x -1-x ,n ′(x )=e x -1-1,又y =n ′(x )为单调递增函数,且当x =1时,n ′(x )=0,当0<x <1时,n ′(x )<0,n (x )单调递减; 当x >1时,n ′(x )>0,n (x )单调递增, 故当x =1时,n (x )取得最小值n (1)=0. 则n (x )min =m (x )max ,且当x =1时,同时取得最小值和最大值, 故n (x )≥m (x ),即ln x -x +1≤e x -1-x ,故f (x )≤x e x -1在(0,+∞)上恒成立.方法二 当a =1时,f (x )=x (ln x +1),要证f(x)≤x e x-1,即证x(ln x+1)≤x e x-1,又x>0,则只需证ln x+1≤e x-1,又ln x+1≤x,e x-1≥x,且等号都在x=1处取得,所以ln x+1≤e x-1.即f(x)≤x e x-1在(0,+∞)上恒成立.11 / 11。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结10 幂函数与二次函数高考概览高考在本考点的常考题型为选择题、填空题,分值为5分,中等难度考纲 研读1.了解幂函数的概念2.结合函数y =x ,y =x 2,y =x 3,y =x -1,y =x 12的图象,了解它们的变化情况3.理解并掌握二次函数的定义、图象及性质4.能用二次函数、方程、不等式之间的关系解决简单问题一、基础小题1.若a =⎝ ⎛⎭⎪⎫1223,b =⎝ ⎛⎭⎪⎫1523,c =⎝ ⎛⎭⎪⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c 答案 D解析 因为y =x 23在第一象限内是增函数,所以a =⎝ ⎛⎭⎪⎫1223>b =⎝ ⎛⎭⎪⎫1523,因为y =⎝ ⎛⎭⎪⎫12x是减函数,所以a =⎝ ⎛⎭⎪⎫1223<c =⎝ ⎛⎭⎪⎫1213,所以b <a <c .2.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列,且f (0)=-4,则f (x )( ) A .有最小值-4 B .有最大值-4 C .有最小值-3 D .有最大值-3 答案 D解析 由a ,b ,c 成等比数列且f (0)=-4,得⎩⎨⎧c =-4,b 2=ac .显然a <0,故f (x )有最大值,最大值为4ac -b 24a =4ac -ac 4a =3c4=-3.故选D.3.已知函数f (x )=x 2-2x +m ,若f (x 1)=f (x 2)(x 1≠x 2),则f ⎝⎛⎭⎪⎫x 1+x 22的值为( ) A .1 B .2 C .m -1 D .m 答案 C解析 由题意知,函数图象的对称轴为直线x =x 1+x 22=1,所以f ⎝⎛⎭⎪⎫x 1+x 22=f (1)=m -1.故选C.4.幂函数y =x -1,y =x m 与y =x n 在第一象限内的图象如图所示,则m 与n 的取值情况为( )A .-1<m <0<n <1B .-1<n <0<1<mC .-1<m <0<1<nD .-1<n <0<m <1 答案 D解析 在第一象限作出幂函数y =x ,y =x 0的图象,在(0,1)内作直线x =x 0与各图象有交点,如图,由“点低指数大”,知-1<n <0<m <1,故选D.5.若函数f (x )=x 2-2x +2的定义域和值域都是[1,b ],则实数b =( ) A .3 B .2或3 C .2 D .1或2 答案 C解析 二次函数图象的对称轴为直线x =1,它在[1,b ]上为增函数,所以⎩⎪⎨⎪⎧f (1)=1,f (b )=b 2-2b +2=b ,b >1,解得b =2.故选C.6.若二次函数y =kx 2-4x +2在区间[1,2]上单调递增,则实数k 的取值范围为( ) A .[2,+∞) B .(2,+∞) C .(-∞,0) D .(-∞,2) 答案 A解析 二次函数y =kx 2-4x +2的图象的对称轴为直线x =2k ,当k >0时,要使y =kx 2-4x +2在区间[1,2]上是增函数,只需2k ≤1,解得k ≥2.当k <0时,2k <0,此时二次函数图象的对称轴在区间[1,2]的左侧,该函数y =kx 2-4x +2在区间[1,2]上递减,不符合要求.综上可得,实数k 的取值范围是[2,+∞).7.已知幂函数f (x )=x -m2+2m +3(m ∈Z )在区间(0,+∞)上单调递增,且f (x )的图象关于y 轴对称,则f (-2)的值为( )A .16B .8C .-16D .-8 答案 A解析 ∵幂函数f (x )=x -m 2+2m +3(m ∈Z )的图象关于y 轴对称,∴f (x )为偶函数,又幂函数f (x )=x -m2+2m +3(m ∈Z )在区间(0,+∞)上单调递增,∴-m 2+2m +3是偶数,且-m 2+2m +3>0,∵m ∈Z ,∴m =1,∴幂函数f (x )=x 4,f (-2)=16.故选A.8.已知二次函数f (x )=x 2+px +q 通过点(α,0),(β,0).若存在整数n ,使n <α<β<n +1,则min{f (n ),f (n +1)}与14的大小关系为( )A .min{f (n ),f (n +1)}>14B .min{f (n ),f (n +1)}<14C .min{f (n ),f (n +1)}=14 D .不能确定,与n 的具体取值有关 答案 B解析 由二次函数通过点(α,0),(β,0),有恒等式f (x )=(x -α)(x -β) ①.取x =n ,n +1(n <α<β<n +1)代入①,有f (n )=(n -α)(n -β)>0,f (n +1)=(n +1-α)(n +1-β)>0.两式相乘得0<f (n )f (n +1)=(n -α)(n -β)·(n +1-α)(n +1-β)=(α-n )(n +1-α)(β-n )(n +1-β)≤⎣⎢⎡⎦⎥⎤(α-n )+(n +1-α)22·⎣⎢⎡⎦⎥⎤(β-n )+(n +1-β)22=⎝ ⎛⎭⎪⎫142,当且仅当⎩⎨⎧α-n =n +1-α,β-n =n +1-β,即⎩⎪⎨⎪⎧α=2n +12,β=2n +12时取等号,又α≠β,∴0<f (n )f (n +1)<⎝ ⎛⎭⎪⎫142.令min{f (n ),f (n +1)}=k ,则0<k ≤f (n ),0<k ≤f (n +1),∴k 2≤f (n )f (n +1)<⎝ ⎛⎭⎪⎫142,即k <14.从而,min{f (n ),f (n +1)}<14.故选B.9.(多选)已知幂函数f (x )=⎝ ⎛⎭⎪⎫m +95x m ,则下列结论正确的有( )A .f (-32)=116 B .f (x )的定义域是RC .f (x )是偶函数D .不等式f (x -1)≥f (2)的解集是[-1,1)∪(1,3] 答案 ACD解析 由幂函数f (x )=⎝ ⎛⎭⎪⎫m +95x m ,∴m +95=1,∴m =-45,∴f (x )=x-45,定义域为(-∞,0)∪(0,+∞),故B 错误;f (-32)=(-32)-45=116,故A 正确;f (x )=x -45=15x 4,定义域(-∞,0)∪(0,+∞)关于原点对称,又f (-x )=15(-x )4=15x 4=f (x ),∴f (x )是偶函数,故C 正确;∵f (x )=x-45,∴f (x )在(0,+∞)上单调递减,在(-∞,0)上单调递增,不等式f (x -1)≥f (2)等价于f (|x -1|)≥f (2),∴⎩⎨⎧x -1≠0,|x -1|≤2,解得-1≤x <1或1<x ≤3,故D 正确.故选ACD.10.(多选)已知函数f (x )=x 2-2x -3,则下列结论正确的是( ) A.函数f (x )的最小值为-4B .函数f (x )在(0,+∞)上单调递增C .函数f (|x |)为偶函数D .若方程f (|x -1|)=a 在R 上有4个不等实根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=4答案 ACD解析 二次函数f (x )在对称轴x =1处取得最小值,且最小值f (1)=-4,故A 正确;二次函数f (x )图象的对称轴为直线x =1,其在(0,+∞)上不单调,故B 错误;f (|x |)=|x |2-2|x |-3,显然f (|x |)为偶函数,故C 正确;令h (x )=f (|x -1|)=|x -1|2-2|x -1|-3,方程f (|x -1|)=a 的零点转化为y =h (x )的图象与直线y =a 的交点,作出h (x )的图象如图所示,图象关于x =1对称,当y =h (x )的图象与直线y =a 有四个交点时,两两分别关于x =1对称,所以x 1+x 2+x 3+x 4=4,故D 正确.故选ACD.11.已知幂函数f (x )过定点⎝ ⎛⎭⎪⎫8,12,且满足f (a 2+1)+f (-5)>0,则实数a 的取值范围为________.答案 (-2,2)解析 设幂函数y =f (x )=x α,其图象过点⎝⎛⎭⎪⎫8,12,所以8α=12,即23α=2-1,解得α=-13,所以f (x )=x -13.因为f (-x )=(-x )-13=-f (x ),所以f (x )=x-13为奇函数,且在(-∞,0)和(0,+∞)上单调递减,所以f (a 2+1)+f (-5)>0可化为f (a 2+1)>-f (-5)=f (5),可得a 2+1<5,解得-2<a <2,所以实数a 的取值范围为(-2,2).12.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),则f (x )=______.答案 x 2-4x +3解析 因为f (2-x )=f (2+x )对x ∈R 恒成立,所以f (x )的图象关于直线x =2对称.又因为y =f (x )的图象在x 轴上截得的线段长为2,所以f (x )=0的两根为2-22=1或2+22=3,所以二次函数f (x )的图象与x 轴的两交点坐标为(1,0)和(3,0),因此设f (x )=a (x -1)(x -3).又点(4,3)在y =f (x )的图象上,所以3a =3,则a =1.故f (x )=(x -1)(x -3)=x 2-4x +3.二、高考小题13.(2022·北京高考)下列函数中,在区间(0,+∞)上单调递增的是( )A .y =x 12B .y =2-xC .y =log 12xD .y =1x答案 A解析 y =x 12=x ,y =2-x=⎝ ⎛⎭⎪⎫12x,y =log 12x ,y =1x 的图象如图所示.由图象知,只有y =x 12在(0,+∞)上单调递增.故选A.14.(2022·全国Ⅱ卷)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A .⎝ ⎛⎦⎥⎤-∞,94B .⎝ ⎛⎦⎥⎤-∞,73C .⎝ ⎛⎦⎥⎤-∞,52D .⎝ ⎛⎦⎥⎤-∞,83答案 B解析 ∵当x ∈(0,1]时,f (x )=x (x -1),∴当x ∈(0,1]时,f (x )∈⎣⎢⎡⎦⎥⎤-14,0;∵f (x+1)=2f (x ),∴当x ∈(-1,0]时,x +1∈(0,1],f (x )=12f (x +1)=12(x +1)x ,f (x )∈⎣⎢⎡⎦⎥⎤-18,0;当x ∈(-2,-1]时,x +1∈(-1,0],f (x )=12f (x +1)=14(x +2)(x +1),f (x )∈⎣⎢⎡⎦⎥⎤-116,0;…;当x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2),f (x )∈⎣⎢⎡⎦⎥⎤-12,0;当x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4(x -2)(x -3),f (x )∈[-1,0];….f (x )的图象如图所示.若对任意x ∈(-∞,m ],都有f (x )≥-89,设f (m )=-89,则4(m -2)(m -3)=-89,∴m =73或m =83.结合图象可知,当m ≤73时,符合题意.故选B.15.(2022·浙江高考)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 答案 B解析 解法一:设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m=x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.解法二:由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,函数值变化相同,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,函数值变化不同,则M -m 的值在变化,故与a 有关.故选B.16.(2016·全国Ⅲ卷)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =243=423,c =2513=523,函数y =x 23在(0,+∞)上单调递增,所以423<523,即a <c ,又因为函数y =4x 在R 上单调递增,所以425<423,即b <a ,所以b <a <c .故选A.17.(2022·上海高考)已知α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,3.若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α=________.答案 -1解析 ∵幂函数f (x )=x α为奇函数,∴α可取-1,1,3,又f (x )=x α在(0,+∞)上递减,∴α<0,故α=-1.三、模拟小题18.(2022·四川省宜宾市第四中学模拟)已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则a 的值为( )A .-1B .0C .1D .-2 答案 D解析 函数f (x )=-x 2+4x +a 的对称轴为直线x =2,开口向下,f (x )=-x 2+4x +a在[0,1]上单调递增,则当x=0时,f(x)的最小值为f(0)=a=-2.19.(2022·河北衡水深州长江中学高三上开学考试)已知幂函数f(x)=xα满足2f(2)=f(16),若a=f(log42),b=f(ln 2),c=f(5-12),则a,b,c的大小关系是()A.a>c>b B.a>b>c C.b>a>c D.b>c>a 答案C解析由2f(2)=f(16)可得2·2α=24α,∴1+α=4α,∴α=13,即f(x)=x13.由此可知函数f(x)在R上单调递增.而由换底公式可得log42=log22log24=12,ln 2=log22log2e,5-12=15,∵1<log2e<2,∴log22log24<log22log2e,于是log42<ln 2,又15<12,∴5-12<log42,故a,b,c的大小关系是b>a>c.故选C.20.(2022·北京交通大学附属中学高三上开学考试)设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1),f(2),f(5)中,最小的一个不可能是()A.f(-1) B.f(1)C.f(2) D.f(5)答案 B解析∵对任意实数t都有f(2+t)=f(2-t)成立,∴函数f(x)=ax2+bx+c(a≠0)的对称轴是直线x=2,当a>0时,自变量取值离对称轴距离越近,函数值越小,函数值f(-1),f(1),f(2),f(5)中,最小的一个是f(2).当a<0时,自变量取值离对称轴距离越远,函数值越小,函数值f(-1),f(1),f(2),f(5)中,最小的是f(-1)和f(5).故选B.21.(2022·湖北荆州质量检查)若对任意的x∈[a,a+2],均有(3x+a)3≤8x3,则实数a的取值范围是()A.(-∞,-2] B.(-∞,-1]C.(-∞,0] D.[0,+∞)答案 B解析因为(3x+a)3≤8x3,y=x3在R上递增,所以3x+a≤2x,可得x≤-a,即x∈(-∞,-a],因为对任意的x∈[a,a+2],均有(3x+a)3≤8x3,所以[a,a+2]是(-∞,-a]的子集,所以a+2≤-a,所以a≤-1,即实数a的取值范围是(-∞,-1].故选B.22.(多选)(2022·河北省邢台市质量检测)设函数f(x)=x|x|+bx+c,给出如下命题,其中正确的是()A.c=0时,y=f(x)是奇函数B.b=0,c>0时,方程f(x)=0只有一个实数根C.y=f(x)的图象关于点(0,c)对称D.方程f(x)=0最多有两个实根答案ABC解析由题意,当c=0时,f(x)=x|x|+bx,此时f(-x)=-f(x),故f(x)为奇函数,A正确;当b=0,c>0时,f(x)=x·|x|+c,若x≥0,f(x)=0无解,若x<0,f(x)=0有一解x=-c,B正确;∵g(x)=x|x|+bx为奇函数,图象关于(0,0)对称,∴f (x )=x |x |+bx +c 的图象关于点(0,c )对称,C 正确;f (x )的图象可能如图,方程f (x )=0有三个实根,D 不正确.故选ABC.23.(多选)(2022·江苏扬州模拟)已知函数f (x )=⎩⎨⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列结论成立的是( )A .f (x )在R 上为偶函数B .f (x 1)+f (x 2)>0C .f (x )有最小值-1D .f (x 1)-f (x 2)<0 答案 ACD解析 函数f (x )的图象如图中实线部分所示,且f (-x )=f (x ),从而f (x )是偶函数,有最小值-1,又f (x )在[0,+∞)上是增函数,且0<|x 1|<|x 2|,所以f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.故选ACD.24.(2022·湖南岳阳模拟)设函数f (x )=⎩⎨⎧x 3,x ≤a ,-2x ,x >a .若a =0,则f (x )的最大值为________;若f (x )无最大值,则实数a 的取值范围是________.答案 0 (-∞,0)解析 若a =0,则f (x )=⎩⎨⎧x 3,x ≤0,-2x ,x >0,当x ≤0时,f (x )=x 3,此时函数为增函数, 当x >0时,f (x )=-2x ,此时函数为减函数, 故当x =0时,f (x )的最大值为f (0)=0.当a >0时,f (x )=⎩⎨⎧x 3,x ≤a ,-2x ,x >a 的图象如图1所示,由图可知存在最大值;图1 图2当a <0时,f (x )=⎩⎨⎧x 3,x ≤a ,-2x ,x >a 的图象如图2所示,由图可知此时不存在最大值;已证当a =0时,函数f (x )有最大值. 综上所述,若f (x )无最大值,则a <0.一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2022·四川绵阳高三阶段测试)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解 (1)由已知得c =1,a -b +c =0,-b2a =-1, 解得a =1,b =2,则f (x )=(x +1)2. 则F (x )=⎩⎨⎧(x +1)2,x >0,-(x +1)2,x <0. 故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,所以-2≤b ≤0. 故b 的取值范围是[-2,0].2.(2022·广东汕头质检)已知幂函数f (x )=(m -1)2x m 2-4m +2在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2)时,记f (x ),g (x )的值域分别为集合A ,B ,设p :x ∈A ,q :x ∈B ,若p 是q 的必要条件,求实数k 的取值范围.解 (1)依题意得,(m -1)2=1⇒m =0或m =2,当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)得,f (x )=x 2,当x ∈[1,2)时,f (x )∈[1,4),即A =[1,4),当x ∈[1,2)时,g (x )∈[2-k ,4-k ),即B =[2-k ,4-k ), 由于p 是q 的必要条件,则B ⊆A , 则⎩⎨⎧2-k ≥1,4-k ≤4,即⎩⎨⎧k ≤1,k ≥0,得0≤k ≤1. 故实数k 的取值范围为[0,1].3.(2022·辽宁大连模拟)已知函数f (x )=x 2-4x +a +3,a ∈R .(1)若函数f (x )在(-∞,+∞)上至少有一个零点,求实数a 的取值范围; (2)若函数f (x )在[a ,a +1]上的最大值为3,求a 的值. 解 (1)由Δ=16-4(a +3)≥0,得a ≤1. 故实数a 的取值范围是(-∞,1]. (2)f (x )=(x -2)2+a -1.当|a -2|≥|a +1-2|,即a ≤32时,f (x )max =f (a )=a 2-3a +3=3,解得a =0或a =3(舍去);当|a -2|<|a +1-2|,即a >32时,f (x )max =f (a +1)=a 2-a =3, 解得a =1+132或a =1-132(舍去).综上,a =0或a =1+132.4.(2022·甘肃甘谷第一中学第一次检测)已知函数g (x )=x 2-(m -1)x +m -7. (1)若函数g (x )在[2,4]上具有单调性,求实数m 的取值范围;(2)若在区间[-1,1]上,函数y =g (x )的图象恒在y =2x -9的图象上方,求实数m 的取值范围.解 (1)g (x )图象的对称轴为直线x =m -12, 因为函数g (x )在[2,4]上具有单调性,所以有m -12≤2或m -12≥4,所以实数m 的取值范围为(-∞,5]∪[9,+∞). (2)因为在区间[-1,1]上,函数y =g (x )的图象恒在y =2x -9的图象上方, 则x 2-(m -1)x +m -7>2x -9在[-1,1]上恒成立,即x 2-(m +1)x +m +2>0在[-1,1]上恒成立,令f (x )=x 2-(m +1)x +m +2,x ∈[-1,1], 则f (x )min >0,当m +12≤-1,即m ≤-3时,f (x )min =f (-1)=2m +4>0,解得m >-2,无解; 当-1<m +12<1,即-3<m <1时,f (x )min =f ⎝⎛⎭⎪⎫m +12=-m 24+12m +74>0,此时1-22<m <1;当m +12≥1,即m ≥1时,f (x )min =f (1)=2>0,此时m ≥1. 综上,实数m 的取值范围为(1-22,+∞).。
[A 级 基础练]1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3xC .f (x )=-1x +1 D .f (x )=-|x |解析:选C.当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.函数f (x )=-x +1x 在⎣⎡⎦⎤-2,-13上的最大值是( ) A.32 B .-83C .-2D .2解析:选A.函数f (x )=-x +1x 的导数为f ′(x )=-1-1x 2,则f ′(x )<0,可得f (x )在⎣⎡⎦⎤-2,-13上单调递减,即f (-2)为最大值,且为2-12=32.3.(2020·无锡模拟)若函数y =2-xx +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( )A .(1,2)B .(-1,2)C .[1,2)D .[-1,2)解析:选D.因为函数y =2-x x +1=3-(x +1)x +1=3x +1-1在区间(-1,+∞)上是减函数,且f (2)=0,所以n =2.根据题意,x ∈(m ,n ]时,y min =0.所以m 的取值范围是[-1,2).4.已知函数f (x )是R 上的增函数,对实数a ,b ,若a +b >0,则有( )A .f (a )+f (b )>f (-a )+f (-b )B .f (a )+f (b )<f (-a )+f (-b )C .f (a )-f (b )>f (-a )-f (-b )D .f (a )-f (b )<f (-a )-f (-b )解析:选A.因为a +b >0,所以a >-b ,b >-a .所以f (a )>f (-b ),f (b )>f (-a ),结合选项,可知选A.5.(多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0解析:选CD.根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.6.函数f (x )=|x -2|x 的单调递减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调递减区间是[1,2].答案:[1,2]7.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是⎣⎡⎦⎤-14,0. 答案:⎣⎡⎦⎤-14,0 8.已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),则实数a 的取值范围为________.解析:因为f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),所以⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23.答案:⎝⎛⎭⎫0,23 9.求下列函数的值域. (1)f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1;(2)y =x -x . 解:(1)当x <1时,x 2-x +1=⎝⎛⎭⎫x -122+34≥34;当x >1时,0<1x<1.因此函数f (x )的值域是(0,+∞).(2)y =x -x =⎝⎛⎭⎫x -122-14≥-14,所以函数y 的值域为⎣⎡⎭⎫-14,+∞. 10.已知函数f (x )=x +2x.(1)写出函数f (x )的定义域和值域;(2)证明:函数f (x )在(0,+∞)上为单调递减函数,并求f (x )在x ∈[2,8]上的最大值和最小值.解:(1)函数f (x )的定义域为{x |x ≠0}.又f (x )=1+2x,所以值域为{y |y ≠1}.(2)由题意可设0<x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫1+2x 1-⎝⎛⎭⎫1+2x 2=2x 1-2x 2=2(x 2-x 1)x 1x 2.又0<x 1<x 2,所以x 1x 2>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在(0,+∞)上为单调递减函数.在x ∈[2,8]上,f (x )的最大值为f (2)=2,最小值为f (8)=54.[B 级 综合练]11.已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]解析:选B.因为f (x )是R 上的增函数,且a >1,所以当x >0时,f (x )<f (ax ),即g (x )<0;当x =0时,f (x )=f (ax ),即g (x )=0;当x <0时,f (x )>f (ax ),即g (x )>0.由符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0知,sgn [g (x )]=⎩⎨⎧-1,x >0,0,x =0,1,x <0=-sgn x . 12.设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0,若f (0)是f (x )的最小值,则实数a 的取值范围为________.解析:因为当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,所以a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2,所以实数a 的取值范围是0≤a ≤2.答案:[0,2]13.已知函数f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求实数a 的取值范围. 解:(1)证明:设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,实数a 的取值范围为(0,1].14.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈()0,+∞,且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间()0,+∞上是单调递减函数.(3)因为f (x )在(0,+∞)上是单调递减函数,所以f (x )在[2,9]上的最小值为f (9),由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.[C 级 创新练]15.(多选)对于实数x ,符号[x ]表示不超过x 的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-12=0有无数个根解析:选ACD.根据符号[x ]的意义,讨论当自变量x 取不同范围时函数f (x )=x -[x ]的解析式:当-1≤x <0时,[x ]=-1,则f (x )=x -[x ]=x +1;当0≤x <1时,[x ]=0,则f (x )=x -[x ]=x ;当1≤x <2时,[x ]=1,则f (x )=x -[x ]=x -1;当2≤x <3时,[x ]=2,则f (x )=x -[x ]=x -2.画函数f (x )=x -[x ]的图象如图所示:根据定义可知,f (-3.9)=-3.9-(-4)=0.1,f (4.1)=4.1-4=0.1,即f (-3.9)=f (4.1),所以A 正确;从图象可知,函数f (x )=x -[x ]最高点处取不到,所以B 错误;函数图象最低点处函数值为0,所以C 正确;从图象可知y =f (x )与y =12的图象有无数个交点,即f (x )=12有无数个根,所以D 正确.故选ACD.16.已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)求F (x )的最小值m (a ).解:(1)由于a ≥3,故当x ≤1时,x 2-2ax +4a -2-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,x 2-2ax +4a -2-2|x -1|=(x -2)(x -2a ). 由(x -2)(x -2a )≤0得2≤x ≤2a .所以使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围为[2,2a ].(2)设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2,则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2,所以由F (x )的定义知m (a )=min{f (1),g (a )},即m (a )=⎩⎪⎨⎪⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.。
函数单调性引入对于二次函数 ,我们可以这样描述“在区间(0, )上,随着 的增大,相应的 也随着增大”;在区间(0, )上,任取两个 , ,得到 ,,当 时,有 .这时,我们就说函数 在区间(0, )上是增函数.一、 函数单调性的判断与证明 1、函数增减性的定义一般地,设函数 的定义域为 : 如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是增函数(increasing function )如果对于定义域 内某个区间D 上的任意两个自变量的值 , ,当 时,都有 ,那么就说函数在区间D 上是减函数(decreasing function ).【例1】下列四个函数中,在(0,+∞)上为增函数的是( )A .f (x )=3-xB .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x | 【解析】选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C.【例2】判断函数g (x )=-2xx -1在(1,+∞)上的单调性.【解】任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1),因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 【例3】 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|; (3)y =-x 2+2|x |+1.【解】(1)∵f (x )=3|x |=⎩⎪⎨⎪⎧3x , x ≥0,-3x , x <0.图象如图所示.f(x )在(-∞,0]上是减函数,在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示.由图象易得:函数的递增区间是[-3,-1],[1,+∞); 函数的递减区间是(-∞,-3],[-1,1].(3)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1], 单调递减区间为[-1,0]和[1,+∞). 【例4】求函数y =x 2+x -6的单调区间.【解】令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞). 【例5】证明:函数 在R 上是增函数【变式1】利用函数单调性的定义,证明函数 在区间 上是增函数。
高考总复习函数的单调性与最值习题及详解一、选择题1.已知f〔x〕=-x-x3,x∈[a,b],且f〔a〕·f〔b〕<0,则f〔x〕=0在[a,b]内〔〕A.至少有一实数根B.至多有一实数根C.没有实数根D.有唯一实数根[答案] D[解析] ∵函数f〔x〕在[a,b]上是单调减函数,又f〔a〕,f〔b〕异号.∴f〔x〕在[a,b]内有且仅有一个零点,故选D.2.〔2010·北京文〕给定函数①y=x,②y=log〔x+1〕,③y=|x-1|,④y=2x+1,其中在区间〔0 ,1〕上单调递减的函数的序号是〔〕A.①②B.②③C.③④D.①④[答案] B[解析]易知y=x在〔0,1〕递增,故排除A、D选项;又y=log〔x+1〕的图象是由y=logx的图象向左平移一个单位得到的,其单调性与y=logx相同为递减的,所以②符合题意,故选B.3.〔2010·济南市模拟〕设y1=0.4,y2=0.5,y3=0.5,则〔〕A.y3<y2<y1 B.y1<y2<y3C.y2<y3<y1 D.y1<y3<y2[答案] B[解析]∵y=0.5x为减函数,∴0.5<0.5,∵y=x在第一象限内是增函数,∴0.4<0.5,∴y1<y2<y3,故选B.4.〔2010·广州市〕已知函数,若f〔x〕在〔-∞,+∞〕上单调递增,则实数a的取值范围为〔〕A.〔1,2〕B.〔2,3〕C.〔2,3] D.〔2,+∞〕[答案] C[解析] ∵f〔x〕在R上单调增,∴,∴2<a≤3,故选C.5.〔文〕〔2010·山东济宁〕若函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,则实数a的取值范围是〔〕A.a≥0 B.a≤0C.a≥-4 D.a≤-4[答案] D[解析]∵函数f〔x〕=x2+2x+alnx在〔0,1〕上单调递减,∴当x∈〔0,1〕时,f ′〔x〕=2x+2+=≤0,∴g〔x 〕=2x2+2x+a≤0在x∈〔0,1〕时恒成立,∴g〔0〕≤0,g〔1〕≤0,即a≤-4.〔理〕已知函数y=tanωx在内是减函数,则ω的取值范围是〔〕A.0<ω≤1 B.-1≤ω<0C.ω≥1 D.ω≤-1[答案] B[解析]∵tanωx在上是减函数,∴ω<0.当-<x<时,有-≤<ωx<-≤,∴,∴-1≤ω<0.6.〔2010·天津文〕设a=log54,b=〔log53〕2,c=log45,则〔〕A.a<c<b B.b<c<aC.a<b<c D.b<a<c[答案] D[解析] ∵1>log54>log53>0,∴log53>〔log53〕2>0,而log45>1,∴c>a>b.7.若f〔x〕=x3-6ax的单调递减区间是〔-2,2〕,则a的取值范围是〔〕A.〔-∞,0] B.[-2,2]C.{2} D.[2,+∞〕[答案] C[解析] f ′〔x〕=3x2-6a,若a≤0,则f ′〔x〕≥0,∴f〔x〕单调增,排除A;若a>0,则由f ′〔x〕=0得x=±,当x<-和x>时,f ′〔x〕>0,f〔x〕单调增,当-<x<时,f〔x〕单调减,∴f〔x〕的单调减区间为〔-,〕,从而=2,∴a=2.[点评]f〔x〕的单调递减区间是〔-2,2〕和f〔x〕在〔-2,2〕上单调递减是不同的,应加以区分.8.〔文〕定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,若f〔〕=0,则适合不等式f〔logx〕> 0的x的取值范围是〔〕A.〔3,+∞〕B.〔0,〕C.〔0,+∞〕D.〔0,〕∪〔3,+∞〕[答案] D[解析]∵定义在R上的偶函数f〔x〕在[0,+∞〕上是增函数,且f〔〕=0,则由f〔logx〕>0,得|logx|>,即logx>或logx<-.选D.〔理〕〔2010·南充市〕已知函数f 〔x 〕图象的两条对称轴x =0和x =1,且在x ∈[-1,0]上f 〔x 〕单调递增,设a =f 〔3〕,b =f 〔〕,c =f 〔2〕,则a 、b 、c 的大小关系是〔 〕A .a>b>cB .a>c>bC .b>c>aD .c>b>a [答案] D[解析] ∵f 〔x 〕在[-1,0]上单调增,f 〔x 〕的图象关于直线x =0对称,∴f〔x 〕在[0,1]上单调减;又f 〔x 〕的图象关于直线x =1对称,∴f〔x 〕在[1,2]上单调增,在[2,3]上单调减.由对称性f 〔3〕=f 〔-1〕=f 〔1〕<f 〔〕<f 〔2〕,即a<b<c.9.〔2009·天津高考〕已知函数f 〔x 〕=若f 〔2-a2〕>f 〔a 〕,则实数a 的取值范围是〔 〕A .〔-∞,-1〕∪〔2,+∞〕B .〔-1,2〕C .〔-2,1〕D .〔-∞,-2〕∪〔1,+∞〕[答案] C[解析]∵x≥0时,f 〔x 〕=x2+4x =〔x +2〕2-4单调递增,且f 〔x 〕≥0;当x<0时,f 〔x 〕=4x -x2=-〔x -2〕2+4单调递增,且f 〔x 〕<0,∴f 〔x 〕在R 上单调递增,由f 〔2-a2〕>f 〔a 〕得2-a2>a ,∴-2<a<1.10.〔2010·泉州模拟〕定义在R 上的函数f 〔x 〕满足f 〔x +y 〕=f 〔x 〕+f 〔y 〕,当x<0时,f 〔x 〕>0,则函数f 〔x 〕在[a ,b]上有〔 〕A .最小值f 〔a 〕B .最大值f 〔b 〕C .最小值f 〔b 〕D .最大值f ⎝⎛⎭⎪⎫a +b 2 [答案] C[解析] 令x =y =0得,f 〔0〕=0,令y =-x 得,f 〔0〕=f 〔x 〕+f 〔-x 〕,∴f〔-x 〕=-f 〔x 〕.对任意x1,x2∈R 且x1<x2,,f 〔x1〕-f 〔x2〕=f 〔x1〕+f 〔-x2〕=f 〔x1-x2〕>0,∴f 〔x1〕>f 〔x2〕,∴f〔x 〕在R 上是减函数,∴f〔x 〕在[a ,b]上最小值为f 〔b 〕.二、填空题11.〔2010·重庆中学〕已知函数f 〔x 〕=ax +-4〔a ,b 为常数〕,f 〔lg2〕=0,则f 〔lg 〕=________.[答案] -8[解析] 令φ〔x 〕=ax +,则φ〔x 〕为奇函数,f 〔x 〕=φ〔x 〕-4,∵f〔lg2〕=φ〔lg2〕-4=0,∴φ〔lg2〕=4,∴f〔lg 〕=f 〔-lg2〕=φ〔-lg2〕-4=-φ〔lg2〕-4=-8.12.偶函数f 〔x 〕在〔-∞,0]上单调递减,且f 〔x 〕在[-2,k]上的最大值点与最小值点横坐标之差为3,则k =________.[答案] 3[解析] ∵偶函数f 〔x 〕在〔-∞,0]上单调递减,∴f 〔x 〕在[0,+∞〕上单调递增.因此,若k≤0,则k -〔-2〕=k +2<3,若k>0,∵f 〔x 〕在[-2,0]上单调减在[0,-k]上单调增,∴最小值为f 〔0〕,又在[-2,k]上最大值点与最小值点横坐标之差为3,∴k -0=3,即k =3.13.函数f 〔x 〕=在〔-∞,-3〕上是减函数,则a 的取值范围是________.[答案] ⎝⎛⎭⎪⎫-∞,-13 [解析] ∵f 〔x 〕=a -在〔-∞,-3〕上是减函数,∴3a +1<0,∴a<-.14.〔2010·江苏无锡市调研〕设a 〔0<a<1〕是给定的常数,f 〔x 〕是R 上的奇函数,且在〔0,+∞〕上是增函数,若f =0,f 〔logat 〕>0,则t 的取值范围是______.[答案] 〔1,〕∪〔0,〕[解析] f 〔logat 〕>0,即f 〔logat 〕>f ,∵f〔x 〕在〔0,+∞〕上为增函数,∴logat>,∵0<a<1,∴0<t<.又f 〔x 〕为奇函数,∴f =-f =0,∴f〔logat 〕>0又可化为f 〔logat 〕>f ,∵奇函数f 〔x 〕在〔0,+∞〕上是增函数,∴f〔x 〕在〔-∞,0〕上为增函数,∴0>logat>-,∵0<a<1,∴1<t<,综上知,0<t<或1<t<.三、解答题15.〔2010·北京市东城区〕已知函数f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕,a>0且a≠1.〔1〕求f 〔x 〕的定义域;〔2〕判断f 〔x 〕的奇偶性并予以证明;〔3〕当a>1时,求使f 〔x 〕>0的x 的取值集合.[解析] 〔1〕要使f 〔x 〕=loga 〔x +1〕-loga 〔1-x 〕有意义,则⎩⎪⎨⎪⎧ x +1>01-x>0,解得-1<x<1.故所求定义域为{x|-1<x<1}.〔2〕由〔1〕知f 〔x 〕的定义域为{x|-1<x<1},且f 〔-x 〕=loga 〔-x +1〕-loga 〔1+x 〕=-[loga 〔x +1〕-loga 〔1-x 〕]=-f 〔x 〕,故f 〔x 〕为奇函数.〔3〕因为当a>1时,f 〔x 〕在定义域{x|-1<x<1}内是增函数,所以f 〔x 〕>0⇔>1.解得0<x<1.所以使f 〔x 〕>0的x 的取值集合是{x|0<x<1}.16.〔2010·北京东城区〕已知函数f 〔x 〕=loga 是奇函数〔a>0,a≠1〕.〔1〕求m 的值;〔2〕求函数f 〔x 〕的单调区间;〔3〕若当x ∈〔1,a -2〕时,f 〔x 〕的值域为〔1,+∞〕,求实数a 的值.[解析] 〔1〕依题意,f 〔-x 〕=-f 〔x 〕,即f 〔x 〕+f 〔-x 〕=0,即loga +loga =0, ∴·=1,∴〔1-m2〕x2=0恒成立,∴1-m2=0,∴m=-1或m =1〔不合题意,舍去〕当m =-1时,由>0得,x ∈〔-∞,-1〕∪〔1,+∞〕,此即函数f 〔x 〕的定义域,又有f 〔-x 〕=-f 〔x 〕,∴m =-1是符合题意的解.〔2〕∵f 〔x 〕=loga ,∴f ′〔x 〕=′logae=·logae =2logae 1-x2①若a>1,则logae>0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕<0,f 〔x 〕在〔1,+∞〕上单调递减,即〔1,+∞〕是f 〔x 〕的单调递减区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递减区间.②若0<a<1,则logae<0当x ∈〔1,+∞〕时,1-x2<0,∴f ′〔x 〕>0,∴〔1,+∞〕是f 〔x 〕的单调递增区间;由奇函数的性质知,〔-∞,-1〕是f 〔x 〕的单调递增区间.〔3〕令t ==1+,则t 为x 的减函数∵x∈〔1,a -2〕,∴t∈且a>3,要使f 〔x 〕的值域为〔1,+∞〕,需loga =1,解得a =2+.17.〔2010·山东文〕已知函数f 〔x 〕=lnx -ax +-1〔a ∈R 〕.〔1〕当a=-1时,求曲线y=f〔x〕在点〔2,f〔2〕〕处的切线方程;〔2〕当a≤时,讨论f〔x〕的单调性.[解析] 〔1〕a=-1时,f〔x〕=lnx+x+-1,x∈〔0,+∞〕.f ′〔x〕=,x∈〔0,+∞〕,因此f ′〔2〕=1,即曲线y=f〔x〕在点〔2,f〔2〕〕处的切线斜率为1.又f〔2〕=ln2+2,所以y=f〔x〕在〔2,f〔2〕〕处的切线方程为y-〔ln2+2〕=x-2,即x-y+ln2=0.〔2〕因为f〔x〕=lnx-ax+-1,所以f ′〔x〕=-a+=-x∈〔0,+∞〕.令g〔x〕=ax2-x+1-a,①当a=0时,g〔x〕=1-x,x∈〔0,+∞〕,当x∈〔0,1〕时,g〔x〕>0,f ′〔x〕<0,f〔x〕单调递减;当x∈〔1,+∞〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;②当a≠0时,f ′〔x〕=a〔x-1〕[x-〔-1〕],〔ⅰ〕当a=时,g〔x〕≥0恒成立,f ′〔x〕≤0,f〔x〕在〔0,+∞〕上单调递减;〔ⅱ〕当0<a<时,-1>1>0,x∈〔0,1〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;x∈〔1,-1〕时,g〔x〕<0,此时f ′〔x〕>0,f〔x〕单调递增;x∈〔-1,+∞〕时,g〔x〕>0,此时f ′〔x〕<0,f〔x〕单调递减;③当a<0时,-1<0,x∈〔0,1〕时,g〔x〕>0,有f ′〔x〕<0,f〔x〕单调递减x∈〔1,+∞〕时,g〔x〕<0,有f ′〔x〕>0,f〔x〕单调递增.综上所述:当a≤0时,函数f〔x〕在〔0,1〕上单调递减,〔1,+∞〕上单调递增;当a=时,f〔x〕在〔0,+∞〕上单调递减;当0<a<时,f〔x〕在〔0,1〕上单调递减,在〔1,-1〕上单调递增,在〔-1,+∞〕上单调递减.注:分类讨论时要做到不重不漏,层次清楚.。
专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。
2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。
此时也说函数是这一区间上的单调函数。
在单调区间上,增函数的图像是上升的,减函数的图像是下降的。
例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。
A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(+=x x h D 、12)(+=x x w【答案】B【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(+=x x h 在]1(--∞,上是减函数,在)1[∞+-,上是增函数,12)(+=x x w 在R 上是增函数,则)(x g 在区间)10(,上单调递减的函数,选B 。
(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。
函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。
但在某个区间上单调,在整个定义域上不一定单调。
如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。