2012年高考数学复习专题---函数的单调性与最大(小)值
- 格式:ppt
- 大小:1.13 MB
- 文档页数:2
1.3.1函数的单调性与最大(小)值第一课时函数的单调性学习目标要求:1.理解函数单调性的概念;2.掌握判断函数单调性的一般方法;3.体验数形结合思想在函数性质研究中的价值,掌握其应用。
一、函数单调性的概念1:增函数(1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数,区间D称为函数f(x)的单调递增区间。
(2)几何意义:函数f(x)的图象在区间D上是上升的,如图所示:2:减函数(1)定义:设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数,区间D称为函数f(x)的单调递减区间。
(2)几何意义:函数f(x)的图象在区间D上是下降的,如图所示:3:单调性与单调区间定义:如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
思考:(1)单调性是函数在定义域上的“整体”性质吗?不是,由定义中“定义域I内某个区间D”知函数的单调递增区间或单调递减区间是其定义域的子集,这说明单调性是与“区间”紧密相关的,一个函数在定义域的不同区间可以有不同的单调性。
(2)定义中的“x1、x2”具备什么特征?定义中的x1、x2有以下几个特征:一是任意性,即任意取x1,x2,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x1<x2;三是属于同一个单调递增区间或单调递减区间。
(3)增(减)函数定义的核心是一组不等关系,据此你还能得出什么结论?增函数有>0,减函数有<0二、判断函数单调性的一般方法(1)定义法:利用定义严格判断。
一般步骤如下:①取值:任选定义域中同一单调区间D上的自变量值x1,x2,且设x1<x2;②作差:求f(x2)-f(x1);③变形:即将②中的差式f(x2)-f(x1)进一步化简变形,变到利于判断f(x2)-f(x1)的正负为止;变形的主要技巧:A、因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解;B、通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解;C、配方:当原函数是二次函数时,作差后可以考虑配方,便于判断符号;D、分子或分母有理化:当原函数是根式函数时,作差后往往考虑分子或分母有理化,如f(x)=④定号:根据变形结果,确定f(x2)-f(x1)的符号;⑤判断:根据x1与x2的大小关系及f(x1)与f(x2)的大小关系,结合单调性定义得出结论。