第8章_线性规划和网络流
- 格式:ppt
- 大小:1.43 MB
- 文档页数:119
数学中的运筹学运筹学是应用数学的重要分支之一,它主要研究在具有限制条件的情况下如何最优地进行决策。
运筹学主要依靠数学模型,通过分析、优化、决策等方法来解决实际问题,涉及到很多方面的应用,如工程管理、金融、运输物流等。
本文将主要介绍运筹学在数学中的应用。
一、线性规划线性规划是运筹学中最常见的一种应用,它是指在一定的约束条件下,找到某个目标函数的最大值或最小值。
在数学中,线性规划是指求解线性函数的最优解,其约束条件通常是由线性等式或不等式组成的。
线性规划的解法主要有两种,一种是单纯形法,另一种是对偶理论法。
二、整数规划整数规划是一个比线性规划更为复杂的问题,它要求目标函数的变量均为整数。
整数规划的解法通常需要利用割平面、分支定界等算法来求解。
整数规划在实际的应用中,可以被用来解决一些离散性问题,如选址问题、调度问题等。
三、动态规划动态规划是一种通过分治的方法来求解问题的数学算法,常常用于解决具有重叠子问题的问题。
它主要依赖于一个递推式,通过将问题分解成子问题,然后利用子问题的解来解决原问题。
动态规划在实际应用中,可以用来解决一些动态的优化问题,如最长公共子序列、背包问题等。
四、排队论排队论是运筹学中的一个重要分支,它主要研究人员或物品在某一个系统中的排队情况。
排队论的问题可以归结为等待时间、服务效率、资源使用率等。
在应用中,排队论可以应用到很多实际问题中,比如超市收银台的排队问题、交通拥堵问题、电话系统的呼叫等待问题等。
五、网络流问题网络流问题是指在网络中如何最优地传输资源,比如最大流、最小费用流等问题。
在实际中,这些问题可以应用于物流运输、通信网络等问题。
解决网络流问题,一般采用最短路算法、最大流算法等方法。
由于篇幅所限,本文只是对数学中的运筹学做了简单的介绍。
但可以肯定的是,运筹学在实际应用中具有十分广泛的应用前景,无论是在生产流程的优化,还是在物流运输、金融投资等众多领域中,都会起到至关重要的作用。
计算机算法设计与分析第4版(王晓东著)课后答
案下载
计算机算法设计与分析第4版内容简介
第1章算法概述
1.1 算法与程序
1.2 算法复杂性分析
1.3 NP完全性理论
算法分析题1
算法实现题1
第2章递归与分治策略
2.1 递归的概念
2.2 分治法的基本思想
2.3 二分搜索技术
2.4 大整数的乘法
2.5 Strassen矩阵乘法
2.6 棋盘覆盖
2.7 合并排序
2.8 快速排序
2.9 线性时间选择
2.10 最接近点对问题
第3章动态规划
第4章贪心算法
第5章回溯法
第6章分支限界法
第7章随机化算法
第8章线性规划与网络流
附录A C++概要
参考文献
计算机算法设计与分析第4版目录
本书是普通高等教育“十一五”__规划教材和国家精品课程教材。
全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。
主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、__化算法、线性规划与网络流等。
书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。
为突出教材的`可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版了《计算机算法设计与分析习题解答(第2版)》;并免费提供电子课件和教学服务。
运筹学模型的分类和类型运筹学是一门应用于决策制定和问题解决的学科,它通过数学模型和分析方法来优化资源的利用。
运筹学模型是在特定情境中描述问题和优化目标的数学表示。
根据问题的性质和优化目标的类型,运筹学模型可以被分类为多种类型。
在本文中,我将介绍一些常见的运筹学模型分类。
一、线性规划模型:线性规划模型是最基本的运筹学模型之一。
它的特点是目标函数和约束条件均为线性的。
线性规划模型常用于求解资源分配、生产计划、物流运输等问题。
通过线性规划模型,我们可以找到使资源利用最优化的决策方案。
某公司需要确定每种产品的生产数量,以最大化总利润,且需满足各种资源约束条件,这时可以使用线性规划模型进行求解。
二、整数规划模型:整数规划模型是在线性规划模型的基础上引入整数变量的扩展。
在某些情况下,问题的决策变量只能取整数值,这时就需要使用整数规划模型进行求解。
某物流公司需要确定车辆的调度方案,每辆车的装载量可以是整数,这时可以使用整数规划模型来求解最佳调度方案。
三、动态规划模型:动态规划模型是一种考虑时间因素的决策模型。
它通常用于求解多阶段决策问题。
动态规划模型通过将问题划分为多个阶段,并建立各阶段之间的转移方程,来寻找最优决策序列。
在项目管理中,我们需要确定每个阶段的最佳决策,以最小化总工期和成本,这时可以使用动态规划模型进行求解。
四、网络流模型:网络流模型是一种描述网络中资源分配和流量传输的模型。
它通常用于求解网络优化问题,如最小费用流问题、最大流问题等。
网络流模型中,节点表示资源或流量的源点、汇点和中间节点,边表示资源或流量的传输通道。
通过建立网络流模型,我们可以确定资源的最优分配方案,以及网络中的最大流量或最小成本。
在供应链管理中,我们需要确定货物从生产商到消费者的最佳流向,以最小化总运输成本,这时可以使用网络流模型进行求解。
五、排队论模型:排队论模型是一种描述排队系统的模型。
它通常用于评估系统性能指标,如平均等待时间、平均逗留时间等。
线性规划的网络流量流向控制技术摘要:合理控制网络流量流向可更好的服务互联网发展与广大网络用户需求,可显著降低成本、降低链路负载、更好应对流量突发变化。
本文结合线性规划对网络流量流向控制技术做了简要分析,在介绍网络流量流向控制与线性规划的基础上,探讨并验证了线性规划优化策略,证实了应用的可行性与优化效果,对于互联网的稳定高效运行有积极意义。
关键词:线性规划;网络流量;流向;控制1.网络流量流向控制信息技术和计算机技术的快速发展带来了当前时代互联网的飞跃式发展,激增的网络用户、信息数量和网络资源刺激着网络的不断升级与开拓。
呈指数级增长的广大用户、信息与资源数量要求运营服务商提供不断升级的高品质服务,网络带宽与速度升级都迫在眉睫。
从整体来看,以上这些目标的实现依赖于基础设施建设的升级,从战略上来看,通过合理控制网络流量流向也可达到高效利用当前基础设施实现升级的目标,更好的保障服务的实现与品质升级[1]。
截止2013年底,我国互联网用户数量已经达到8亿多,几乎相当于美国用户数量的2-3倍,庞大的用户数量以及随之而来庞大的网络应用需求推动着互联网硬件设施和软件设备的升级,网络流量十分庞大,面对这些庞大的网络流量,做好流向控制是关键。
我国网络流量流向控制主要面临三大问题的解决,分别是:现有设施的高效开发与利用以满足现阶段网络流量传输需求、通过降低网络链路负载达到节省网络资源的目的、通过平衡网络链路负载从而保障各链路有充足裕量应对网络流量的突发情况[2]。
对于网络流量流向控制而言,基础设施的建设、升级与高效利用是基础,链路节余、负载平衡和裕量应对突发情况是关键,三者之间的平衡最终决定了流量流向控制[3]。
通过将高负载链路的流量转移可降低局部高负载,实现整体负载水平的提升,有利于全局统筹协调链路资源,保证各链路游刃有余的运行与处理流向问题[4]。
想要实现各链路负载的全局性平衡,需要科学的控制策略和定向计算方法。