人教A版高中数学选修2-1第二章2.2.2椭圆的简单.
- 格式:doc
- 大小:945.50 KB
- 文档页数:6
§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
选修2-1 第二章《圆锥曲线与方程》 2.2.2椭圆的简单几何性质第五课时:与椭圆相关的最值、范围问题有关椭圆的最值、范围问题,在近几年的高考试卷中频频出现,在各种题型中均有考查,其中以解答题为重,在平时的教学中需有所重视。
圆锥曲线最值问题具有综合性强、涉及知识面广而且常含有变量的一类难题,也是教学中的一个难点。
要解决这类问题往往利用函数与方程思想、数形结合思想、转化与化归等数学思想方法,将它转化为解不等式或求函数值域,以及利用函数单调性、各种平面几何中最值的思想来解决。
例1:在椭圆2288x y +=上求一点P ,使P 到直线l :40x y -+=的距离最小. 解:(法一:几何法)设与l 平行且与椭圆相切的直线l '方程为0x y m -+=,则由22880x y x y m ⎧+=⎨-+=⎩得229280y my m -+-=,22449(8)0m m ∆=-⨯⨯-=,∴3m =±,由图知,3m =时距离最小,此时P 点坐标为81(,)33-,此时,最短距离即为l 与l '间距离222d ==. (法二:三角换元)设点(22cos ,sin )P θθ,则有|22cos sin 4|22d θθ-+==,tan 22ϕ=, 当2πθϕ-=时,min 2d =,此时,22sin ϕ=,1cos 3θ=,∴22cos sin θϕ=-=-,1sin cos 3θϕ==,∴P 点坐标为81(,)33-.【练习】(1)把上例中距离“最小”改为“最大”;(2)求椭圆2212516x y +=的内接矩形的最大面积.例2.如图,点P 在圆22(6)2x y +-=上移动,点Q 在椭圆221010x y +=上移动,求||PQ 的最大值.xyOy x m =+xy OB A CD y x P o A M Q解:圆心M (0,6),设椭圆上的点为(,)Q x y ,则MQ ===当2[1,1]3y =-∈-时,max MQ =max PQ == 例3:如图,在直线09:=+-y x l 上任意取一点M ,经过M 点且以椭圆131222=+y x 的焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出最短长轴为多少?分析:要使所作椭圆的长轴最短,当然想到椭圆的定义。
三种方法巧解一类椭圆轨迹变式问题椭圆的轨迹问题是圆锥曲线中一块重要内容,求解的方法较多,但常见的有三类轨迹问题,一般可用定义法、转移法、交轨法进行破解,下面就如何用这三种方法巧解三类相似的椭圆的轨迹问题进行举例分析:一、定义法破椭圆轨迹 所谓定义法,就是根据椭圆的定义设出椭圆的方程,若是标准型的椭圆则求出涉及到椭圆方程的二个参数,a b ;对于非标准型的椭圆则需要利用第一定义求解.例1、一个椭圆的焦点是()0,0和(4,0)F ,长半轴为3,求这个椭圆方程.分析:在所给的条件为非标准情况时,如适合椭圆定义,也可用椭圆的定义求它的方程.解:设(,)M x y 为椭圆上任意一点,根据椭圆的定义有6MO MF +=6=,移项,平方,整理可得:225920250x y x +--=,即22(2)195x y -+=为所求椭圆方程. 点评:此题中的椭圆为非标准型的,解题时主要是利用了第一定义求方程,但当已知椭圆是标准型时,求椭圆方程一般为以下三步:1、依题意设出方程22221x y a b +=或22221x y b a+=,或利用椭圆的定义;2、根据已知条件,建立关于,a b 的方程;3、解方程求出,a b ,然后代入所设方程.二、转移法破椭圆轨迹所谓转移法,就是指转移代入法,主要是利用动点M 和曲线上的点P 的关系(有相关性),通过求出点M 与点P 的坐标关系,用点M 的坐标表示点P 坐标,然后代入点P 坐标所满足方程的方法.例2、已知圆229x y +=,从这个圆上任意一点P 向x 轴作垂线段PP ',点M 在PP '上,并且2PM MP '=,求点M 的轨迹.分析:此题是一个已知P 点的轨迹求未知点M 的轨迹问题,需要通过建立已知点的坐标和未知点的坐标关系求解,即转移代入法.解:设(,)M x y ,P 的坐标为()00,x y ,则由题意如图,003x x y y=⎧⎨=⎩,因为点P 在圆229x y +=上,即满足22009x y +=,将003x x y y=⎧⎨=⎩代入得2299x y +=,即2219x y +=,所以点M 的轨迹是一个圆. 点评:此题是一个转移代入法求椭圆轨迹问题,解题的步骤是:1、先写出P 点与M 点的关系,2、用点M 的坐标表示点P 的坐标,3、代入点P 的坐标所满足的方程。
1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
《椭圆及其标准方程》说课稿---人教A版高中数学选修2-1第二章2.2.1一、教材分析(一) 教学内容"椭圆及其标准方程"是人教A版高中数学选修2-1第二章内容,分三课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法;第三课时讲解运用中间变量法求动点轨迹方程的基本思路. 现在说第一课时.(二) 教材的地位和作用本节内容是继学生学习了直线和圆的方程,对曲线的方程的概念有了一定了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线. 椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本章和本节的重点内容之一.(三) 教学目标[确定依据] 根据上述教学内容的地位和作用,结合大纲,确定了以下目标:1. 知识与技能目标:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导.2. 过程与方法目标:通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程,体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力.3. 情感态度与价值观目标:通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神,同时培养学生运动、变化和对立统一的观点. 以“神舟五号”飞船运动轨迹的演示,激发学生学习数学的兴趣,增强学生的数学应用意识、创新意识,扩展学生的数学视野,并让学生受到爱国主义思想的教育,使之逐步认识到数学的科学价值、应用价值和文化价值.(四) 教学的重点难点的确立和解决[确定依据] 教学大纲学生情况1. 教学重点:椭圆的定义及其标准方程[解决方法] 为了突出重点,让学生动手实践,自主探索,通过画图揭示椭圆上的点所要满足的条件,由此得出定义,推出方程.2. 教学难点:椭圆标准方程的推导[解决方法] 为了突破此难点,关键是抓住 "怎样建立坐标系" 并把实际问题数学化即建模和 "怎样简化方程" 两个环节来进行方程的推导.二、学情分析通过前面的学习,学生已具备一定的分析与归纳能力. 初步掌握了解析几何的基本思想与方法,但是学生对坐标法解决几何问题掌握不够,从研究圆到研究椭圆,跨度较大,学生思维上存在障碍. 在求椭圆标准方程时,会遇到比较复杂的根式化简问题,而这些在目前初中代数中都没有详细介绍,初中代数不能完全满足学习本节的需要,故本节采取缺什么补什么的办法来补充这些知识.三、教法和学法(一) 教法:根据以上的分析及本节课的内容和学生的认知水平,采用在教师指导下的学生探究发现教学法.通过这样的教法可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃. 同时培养了学生自主学习,动手探究的能力.(二) 学法:自主探究,合作交流"授人以鱼,不如授人以渔." 教给学生如何学习是教师的职责,因此在本节课的教学中,教会学生动手尝试、仔细观察、开动脑筋、分析讨论,最后抽象出概念,推出方程. 这样有利于学生发挥学习的主动性,使学生的学习过程成为在教师引导下的“再创造”过程.(三) 教学手段:多媒体辅助教学.通过动态演示,集声、文、图象于一体,有利于引起学生的学习兴趣,激发学生的学习热情,增大知识信息的容量,使内容充实、形象、直观,提高教学效率和教学质量. 四、教学过程及设计意图(一) 创设情景,提出课题本节课的开始由多媒体演示“神舟五号”飞船绕地球旋转运行的画面,并描绘出运行轨迹图.[问一] 2003年10月15日,中国“神舟五号”飞船试验成功,实现了中国人的千年飞天梦. 请问:“神舟五号”飞船绕地球旋转的轨迹是什么图形?[设置依据] 让学生形成椭圆的感性认识,感受数学的应用价值,明白生活实践中有很多数学问题,数学来源于实践,同时培养学生学会用数学眼光去观察周围事物的能力,并体现了爱国主义思想的渗透.此时老师可以指出,在天体运行的轨道中,除椭圆外,还有抛物线、双曲线等. 再运用多媒体演示一个平面截圆锥的各种情形,向学生介绍“"圆锥曲线”这个名称的来历,并让学生举出实际生产、生活中有关椭圆的例子.[设置依据] 使学生对圆锥曲线有初步的感性认识,同时对本章要学习的内容产生兴趣,培养学生对立统一的观点. 教师也可以很自然的引出课题.(二) 自主探究,形成概念[问二] 曲线可以看作适合某种条件的点的集合或轨迹. 椭圆是满足什么条件的点的轨迹呢?[设置依据] “思维从疑问开始”,由于学生熟知“到定点距离等于定长的点的轨迹是圆”,通过创设情景,激发了学生的求知欲,使学生急于想知道椭圆是满足什么条件的点的轨迹,但现有知识又无从回答,形成认知冲突,使学生进入愤悱状态.此时教师引导:要想知道椭圆是满足什么条件的点的轨迹,首先要知道椭圆的画法(几何特征). 于是让学生拿出课前准备好的一块纸板,一段细绳,两枚图钉,按课本上介绍的方法,同桌间相互磋商、动手绘图,教师巡视,并抽已完成的两位同学在黑板上用准备好的工具演示,使学生尝试到成功的喜悦. 教师进一步启发引导学生讨论,得出“到两个定点的距离的和等于常数的点的轨迹是椭圆”时,马上提出第三个问,让学生回答.[问三]1. 在纸板上作图说明了什么?2. 在绳长 (设为 2 a)不变的条件下,改变两个图钉之间的距离(设为2 c),画出的椭圆有何变化?3. 当两个图钉之间的距离等于绳长时,画出的图形是什么?4.当两图钉固定,能使绳长小于两图钉之间的距离吗?能画出图形吗?教师让学生再一次动手实践,相互讨论交流,然后抽学生代表发表意见,同时教师运用多媒体进行配合说明,可以得出:当 2 a > 2 c时,是椭圆,并且当两定点间的距离越小,椭圆越圆,特别地当两点重合时,是圆,两定点间的距离越大,椭圆越扁;当 2 a= 2 c时是线段;当 2 a < 2 c时,无轨迹.[设置依据] 按学生的认识规律与心理特征引导学生自己探索、分析,启发学生认识新的概念,这有利于学生对概念的全面理解,同时培养了学生从量变到质变的辨证思维.在上述基础上,定义的形成已是水到渠成了,于是教师让学生自己概括椭圆定义.定义平面内与两个定点F1、F2 的距离的和等于常数(大于 |F1F2| )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.在归纳定义时,再次强调定义要满足三个条件:①平面内(这是大前提);②任意一点到两个定点的距离的和等于常数;③常数大于 |F1F2 |.(三) 师生互动,导出方程给出椭圆的定义后,教师即可指出:由椭圆定义,知道了它的基本几何特征,这只是一种“定性”的描述,但是对于这种曲线还具有哪些性质,尚需进一步研究. 根据解析几何的基本思想方法,我们需要利用坐标法先建立椭圆的方程“定量”的描述,然后通过对椭圆的方程的讨论,来研究其几何性质.[问四]1. 求曲线方程的一般步骤是什么?2. 建立坐标系的一般原则有哪些?学生围绕两问,思考,讨论可得:求曲线方程的一般步骤——建系设点、写出点集、列出方程、化简方程、证明(可省略). 建系的一般原则为:使已知点的坐标和曲线的方程尽可能简单,即原点取在定点或定线段的中点,坐标轴取在定直线上或图形的对称轴上,充分利用图形的对称性.[设置依据] 让学生明确思维的目的,通过复习旧知,为下一步学习搭桥铺路.[问五] 怎样建立坐标系,才能使求出的椭圆方程最为简单?通过前面知识的回忆,学生思考、相互交流,很容易选定下列建立坐标系的方案.1. 建系设点:以两定点F1、F2的连线为x轴,以线段F1F2的垂直平分线为y轴,建立坐标系,如图1设M ( x, y) 为椭圆上任意一点,|F1F2 | = 2 c(c>0) ,则有F1(-c, 0)、F2(c,0). 又设M与F1和F2的距离的和等于常数 2 a ( a > 0 ) .[设置依据] 因为正确选取坐标系是解析几何解题的基本技巧之一,故设计目的是为了着重培养学生这方面的能力.2. 写出点集:让学生利用两点的距离公式,根据椭圆定义列出:P = { M | |MF| + |MF2 | = 2 a } .1到此为止,学生以为椭圆的方程已求出,此时教师可以指出:为了更进一步利用方程探讨椭圆的其他性质需要尽量简化方程形式,使数量关系更加明朗化.4. 化简方程:学生对含有两个根式之和的等式进行化简有一定困难,教师可采用以下方法突破难点:首先让学生明确,含根号的等式化简的目的就是要去掉根号,变无理式为有理式;其次复习含有一个根式的等式的化简方法——将根式放在等式的一边,其它项移到等式另一边,两边平方可去掉根号;有了这一基础,可启发学生,化简含两个根式之和的等式,只要将两个根式分别放在等号两边,其中一边只含一个根式,平方一次后即可转化为只含一个根式的化简问题.教师引导学生化简,得到 (a2-c2 ) x2 + a2y 2 = a2 (a2-c2 ) . 指出:此方程形式还不够简捷,还有变形的必要,5. 证明:证明以化简后的方程的解为坐标的点都是曲线上的点,一般情况下,化简前后方程的解集是相同的,此步可以省略. 如有特殊情况,应给出说明.另外步骤2也可省略,直接列出曲线的方程.[设置依据] 再一次体现解析几何的基本思想,即用代数方法研究几何问题.在解决解析几何问题中,熟练运用代数变形技巧是十分重要的,学生常因运算能力不强而功亏一篑,故在此,教师不失时机地加强了运算技能的训练.[问六] 如果焦点F1、F2在y轴上,并且点O 与线段F1F2 的中点重合,a、b、c的意义同上,椭圆的方程形式又如何呢?[设置依据] 该问的设置,一方面是为了得出焦点在y轴上的椭圆的标准方程;另一方面通过学生的猜想,充分发挥学生的直觉思维和数学悟性. 调动了学生学习的主动性和积极性,通过动手验证,培养了学生严谨的学习作风和类比的能力.为了让学生加深对椭圆的两种标准方程的理解,下面举例,巩固练习.1.指出在下列方程中,哪些是椭圆的标准方程?哪些是椭圆的方程?(让学生思考、抢答)2.比较椭圆的两种标准方程,填表. (学生讨论回答,教师板书)[设置依据] 使学生进一步理解方程,掌握方程的本质特征,揭示规律,充分展示数形结合的和谐美、统一美,同时为解决例题做铺垫.(四) 初步运用,强化理解例题1. 判定下列椭圆的焦点在哪个轴上,并指明a2,b2和焦点坐标.图3[设置依据] 数学概念是要在运用中得以巩固的,通过该例题使学生进一步理解椭圆的定义,掌握标准方程,使知识内化为智能,并在解题过程中感受"数形结合" 思想的优越性.(五) 自我评价,反馈调节[设置依据] 变换练习方式,可增强新异感,调动学生的积极性,同时使学生获得的知识信息及时得到巩固,纳入长时记忆系统.(六) 知识整理,形成系统(由学生归纳,教师完善)1. 椭圆的定义(注意定义中的三个条件)2. 椭圆的标准方程(注意焦点的位置与方程形式的关系)3. 解析几何的基本思想[设置依据]通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养概括能力.(七) 布置作业,巩固提高(学有余力的学生全做,其余学生不做探究题)1. 课本习题 8. 1 第 1 (2)、4 题2. 课后探究题:[设置依据] 一方面为了巩固知识,形成技能,培养学生周密的思维能力,发现教学中的遗漏和不足;另一方面,分层要求,有利各种层次的学生获得最佳发展,充分培养了学生的自主学习能力和探究性学习习惯.(八) 板书设计(附后)[设置依据] 勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握.五、教学评价本节课围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行了优化组合,在教学过程中,学生通过观看动画,动手实践,自己总结出椭圆定义,符合从感性上升为理性的认知规律,而且提升了抽象概括的能力. 同时在进行推导椭圆的标准方程的过程中,提高了利用坐标法解决几何问题的能力及运算能力. 在整节课中,教师作为引导者,利用“神舟五号”运行轨迹的演示,激发学生学习数学的兴趣,鼓励学生大胆探索,勇于创新,提高学生参与数学活动的兴趣和积极性,树立了学好数学的自信,养成独立思考习惯.但在本节课中,根据学生能力的高低因人施教尤为重要. 学生是否具有问题意识,是否善于发现和提出问题. 在解决问题中,能否既独立思考又与他人交流与合作,能否对解决问题的方案进行质疑、调整和完善. 鉴于此,在设计本教案时,应增加教案的弹性设计,设置不同层次的知识面,以适应不同学生的认知过程. 与此同时,教师应不失时机地鼓励、肯定和表扬学生,调动课堂学习氛围,真正做到将传授知识和培养能力融为一体,较好地体现“数学教学主要是数学活动的教学”这一教育思想,实践新的教育理念.教学设计说明1.教学指导思想以新课程的教学理念为指导,转变教的行为,做到“用教材教,而不是教教材”;改变学习方式,以学生发展为本,充分体现素质教育的重点:培养学生的创新精神和实践能力.2.教学过程的设计本节内容教学安排与一般设想不同. 如一般设想是“重结论,轻过程”,常常直接给出定义,尽快得出两种标准方程,举例示范,使学生课外能学会使用方程解答课本习题. 而本节课不仅重视结论,也重视知识的形成过程,围绕“层层设问自主探索发现规律归纳总结”这一主线展开,对教材内容进行了优化组合. 在教学过程中,教师作为引导者、参与者、合作者,努力引导学生动手、探索、分析,亲身经历知识形成的过程. 运用多媒体演示“神舟五号”飞船围绕地球的运行轨迹,形象地给出椭圆;通过让学生自己动手做图,“定性”地画出椭圆;再通过方程“定量”地描述出椭圆,使之从感性到理性抽象概括,形成概念,推出方程. 在整个教学过程中渗透了方程、转化、数形结合等数学思想.3.重视对能力的培养在教学过程中通过学生动手实践、自主探索,培养其分析、交流、抽象概括及数学表达的能力. 在推导椭圆的标准方程过程中,提高学生利用坐标法解决几何问题的能力及运算能力.4.重视辨证唯物主义和历史唯物主义观点的培养本节课通过“神舟五号”飞船运动轨迹的演示,通过介绍“圆锥曲线”名称的来历,通过问三的设置,培养了学生运动变化、量变到质变、相互联系、相互转化、对立统一的观点,并使学生受到了爱国主义思想的教育,增强了学生的数学素质.5.弹性化设计教案根据学情不同,学生能力的高低,以及学生的特点和兴趣,设置不同层次的知识面,以适应不同学生的认知过程.。
2.2.2 椭圆的简单几何性质第一课时问题探究椭圆的扁平程度与哪些量有关系?思路分析:先从长、短轴方面思考.当a b 越小时,椭圆应越扁平,而a b =ac a 22- =2)(1a c -,于是,椭圆的扁平程度与a c 也有关系. a c 这个量在椭圆中比较重要,我们称之为离心率,记为e=ac . 自学导引1.椭圆22a x +22by =1(a>b>0)上的点中,横坐标x 的取值范围是,纵坐标y 的取值范围是. 2.椭圆关于都是对称的,椭圆的对称中心叫做.3.椭圆22a x +22by =1的四个顶点坐标是. 4.椭圆的焦距与长轴长的比ac 称为椭圆的. 5.在椭圆22a x +22by =1(a>b>0)中,A 1(-a,0)、A 2(a,0)、B 1(0,-b)、B 2(0,b),线段A 1A 2、B 1B 2分别叫做椭圆的,在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,这就是的几何意义.△OB 2F 2叫做椭圆的特征三角形,并且cos ∠OF 2B 2是椭圆的.答案:1.-a≤x≤a -b≤y≤b2.x 轴、y 轴和原点 椭圆的中心3. (a,0),(-a,0),(0,b),(0,-b)4.离心率5.长轴、短轴 c 2=a 2-b 2 离心率疑难剖析1.椭圆的基本性质对于椭圆的性质,一般先把方程化成标准形式然后再求,理解a 、b 、c 的几何意义.【例1】 求椭圆25x 2+y 2=25的长轴和短轴的长及其焦点和顶点坐标.解析:把已知方程化成标准方程为252y +x 2=1, 这里a=5,b=1,所以c=125-=26.因此,椭圆的长轴和短轴的长分别是2a=10和2b=2,两个焦点分别是F 1(0,-26)、F 2(0,26),椭圆的四个顶点是A 1(0,-5)、A 2(0,5)、B 1(-1,0)和B 2(1,0).温馨提示:求椭圆的长轴、短轴长需要求a 、b ,求a 、b 一般是把椭圆方程化成标准形式.在求顶点坐标和焦点坐标时,应注意焦点所在的坐标轴.【例2】 椭圆9x 2+4y 2=36与252x +162y =1哪一个更扁? 解析:把椭圆9x 2+4y 2=36写成42x +92y =1,则它的长轴长为6, 焦距为25,∴它的离心率e 1=35. 椭圆252x +162y =1的长轴长为10,焦距为6, ∴它的离心率e 2=53. ∵e 1>e 2, ∴椭圆42x +92y =1比252x +162y =1更扁. 答:椭圆9x 2+4y 2=36比252x +162y =1更扁. 温馨提示:椭圆的扁平程度由离心率的大小确定,与椭圆的焦点所在的坐标轴无关.【类题演练1】 (1)椭圆6x 2+y 2=6的长轴的端点坐标是( )A. (-1, 0)、(1,0)B. (-6, 0)、 (6,0)C. (-6,0)、 (6,0)D. (0,-6)、 (0,6)(2)椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( )A.5,3,0.8B.10, 6, 0.8C.5, 3, 0.6D.10, 6, 0.62.椭圆性质的简单应用【例3】 已知点P (3,6)在以两坐标轴为对称轴的椭圆上,你能根据P 点的坐标最多写出椭圆上几个点的坐标(P 点除外)?这些点的坐标是什么?解析:根据椭圆关于两坐标轴对称及P 点的坐标,最多可以写出椭圆上三个点的坐标,这三个点的坐标分别是(3,-6)、(-3,-6)、(-3,6).温馨提示:如果知道椭圆的两条对称轴,那么可以根据椭圆上一点的坐标,写出椭圆上另外三点的坐标.【例4】 已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且C os∠OFA=23,求椭圆的方程.解析:∵椭圆的长轴长是6,C os∠OFA=23,∴点A 不是长轴的端点(是短轴的端点).∴|OF |=C ,|AF |=a=3.∴C3=23.∴C=2,b 2=32-22=5.∴椭圆的方程是x 29+y 25=1或x 25+y 29=1.温馨提示:△OFA 是椭圆的特征三角形,它的两直角边长分别为b 、c ,斜边的长为a ,∠OFA 的余弦值是椭圆的离心率.【类题演练2】 (1)已知椭圆C:22a x +22by =1与椭圆42x +82y =1有相同的离心率,则椭圆C 的方程可能是( ) A. 82x +42y =m 2(m≠0) B. 162x +642y =1 C. 82x +22y =1 D.以上都不可能(2)已知椭圆22a x +22b y =1与椭圆252x +162y =1有相同的长轴,椭圆22a x +22by =1的短轴长与椭圆212y +92x =1的短轴长相等,求a 2与b 2. 答案:1.(1)答案:D(2)解析:把椭圆的方程写成标准方程为92x +252y =1,知a=5,b=3,c=4. ∴2a=10,2b=6,ac =0.8. 答案:B 2.(1)解析:把方程82x +42y =m 2写成228m x +224my =1,则a 2=8m 2,b 2=4m 2. ∴c 2=4m 2. ∴22a c =84=21,e=a c =22. 而椭圆42x +82y =1的离心率为22.答案:A(2)解析:∵椭圆252x +162y =1的长轴长为10,焦点在x 轴上,椭圆212y +92x =1的短轴长为6, ∴a 2=25,b 2=9.拓展迁移【拓展点】 已知椭圆82 k x +92y =1的离心率为e=21,求k 的值. 解析:当椭圆的焦点在x 轴上时,a 2=k+8,b 2=9.得c 2=k-1,由e=21,可得k=4. 当椭圆的焦点在y 轴上时,a 2=9,b 2=k+8.得c 2=1-k,由e=21,得=41,即k=-45. ∴满足条件的k=4或k=-45.。
2.2.2 椭圆的简单几何性质(第二课时)一、教学目标(一)学习目标1.理解直线与椭圆的位置关系;2.会进行位置关系的判断,计算弦长.(二)学习重点理解直线与椭圆的位置关系,会判定及应用(三)学习难点应用代数方法进行判定,相关计算的准确性,理解用方程思想解决直线与圆锥曲线的位置关系.二.教学设计(一)预习任务设计1.预习任务写一写:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- 若0∆=,则直线和椭圆有唯一公共点,直线和椭圆 相切 ;若0∆>,则直线和椭圆有两个公共点,直线和椭圆 相交 ;若0∆<,则,直线和椭圆没有公共点,直线和椭圆 相离 .2.预习自测(1)直线1y kx k =-+与椭圆22123x y +=的位置关系是( ) A.相交 B.相切 C.相离 D.不确定【知识点】直线与椭圆位置关系.【解题过程】直线(1)1y k x =-+恒过定点(1,1).由11123+<可知:点(1,1)在椭圆内部,故直线与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】A(2)判断(正确的打“√”,错误的打“×”) ①已知椭圆22221x y a b+=(0)a b >>与点(,0)P b ,过点P 可作出该椭圆的一条切线.( )②直线()y k x a =-与椭圆22221x y a b+=的位置关系是相交.( ) 【知识点】直线与椭圆位置关系.【解题过程】点(,0)P b 在椭圆22221x y a b+=内部,故过P 不能作出椭圆的切线;直线()y k x a =-恒过点(,0)a ,而(,0)a 为椭圆22221x y a b+=的有顶点,过直线()y k x a =-一定与椭圆相交.【思路点拨】注意利用点在椭圆内判断直线与椭圆相交.【答案】①×;②√.(3)直线1y mx =+与椭圆2241x y +=有且只有一个交点,则2m =( ) A.21 B.32 C.43 D.54 【知识点】直线与椭圆的位置关系.【解题过程】联立方程22141y mx x y =+⎧⎨+=⎩得:22(14)830m x mx +++=. 由条件知:226412(14)0m m ∆=-+=,解得:234m =. 【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】C(4)椭圆13422=+y x 长轴端点为M 、N ,不同于M 、N 的点P 在此椭圆上,那么PM 、PN 的斜率之积为( )A.34-B.43-C.43D.34 【知识点】直线与椭圆.【解题过程】设00(,)P x y ,则,则2200334x y =-,故00003224PM PN y y k k x x ⋅=⋅=-+- 【思路点拨】按照题意直接代入求解即可.【答案】A(二)课堂设计1. 知识回顾(1)椭圆的简单几何性质;(2)直线与圆的位置关系.2. 新知讲解探究一:探究直线与椭圆的位置关系●活动① 复习回顾,类比学习我们学习过直线与圆的位置关系及判定,请你回忆相关知识.(1)直线与圆有三种位置关系分别是相离(没有公共点)、相切(一个公共点)、相交(两个公共点).(2)判定方法有两种:代数法、几何法.那么直线与椭圆又有什么样的位置关系呢?又该如何来判定直线与椭圆的位置关系呢?【设计意图】由已有的知识类比迁移到新知识.●活动② 思考交流,结论形成通过画图我们看到,直线与椭圆的位置关系也可以归纳为相离,相切和相交,请你类比直线和圆的相离、相切、相交的定义来对直线和椭圆相离,相切和相交进行定义.学生交流,自由发言,教师适时引导,得出结论.直线与椭圆没有公共点⇔直线与椭圆相离;直线与椭圆有一个公共点⇔直线和椭圆相切;直线与椭圆有两个公共点⇔直线与椭圆相交.通过公共点的个数可以判断直线和椭圆的位置关系,如何确定公共点的个数呢?你有什么办法呢?例 1.判断直线123:1;:3;:3l y x l y x l y =+=-+=+与椭圆2214x y +=的位置关系.【知识点】直线与椭圆的位置关系.课堂活动:学生完成练习,根据学生的解题情况引入代数方法.在巡视过程中,大部分学生采用的是代数的方法,及个别的学生画出了图像,但第三条直线与椭圆的位置关系学生画图的很少,但利用代数方法研究的同学也没有得到结论.【解题过程】将直线与椭圆方程联立,根据判别式∆判断,123,,l l l 分别与椭圆的关系为:相交、相离和相切.【思路点拨】利用∆判断直线与椭圆的位置关系.【答案】123,,l l l 分别与椭圆的关系为:相交、相离和相切请你说说如何利用代数方法来进行直线和椭圆的位置关系的判断?直线与椭圆的位置关系的研究方法可通过代数方法即解方程组的办法来研究.因为方程组解的个数与交点的个数是一样的.直线与椭圆的位置关系的判定方法:直线与椭圆的位置关系设直线:l y kx m =+,椭圆:C 22221(0)x y a b a b+=>>,联立 2222222222222()201y kx m a k b x a kmx a m a b x y ab =+⎧⎪⇒+++-=⎨+=⎪⎩2222224()a b a k b m ⇒∆=+- (1)0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;(2)0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;(3)0∆<,方程没有实数根⇔没有公共点⇔相离.【设计意图】以旧带新,学生易于理解.同类训练 已知椭圆2241x y +=及直线y x m =+,当m 为何值时,直线与椭圆相切?【知识点】直线与椭圆的位置关系【解题过程】解方程组2241x y y x m⎧+=⎨=+⎩,消去y ,整理得225210x mx m ++-=, 222420(1)2016m m m ∆=--=-,由0∆=得220160m -=,解得m =【思路点拨】用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法.探究二:计算椭圆的弦长●活动① 互动交流,形成结论例2. 已知斜率为2的直线经过椭圆22154x y +=的右焦点2F ,与椭圆交于,A B 两点,求AB 的长.【提出问题】本题的解决需要什么条件?如何由题目所给的条件去求得?前面的学习中遇到过类似的问题吗?当时是怎么解决的,方法能不能拿来一用?【知识点】直线与椭圆相交【解题过程】由条件知2(1,0)F ,故直线AB 方程为:22y x =-.设1122(,),(,)A x y B x y . 联立方程组2222154y x x y =-⎧⎪⎨+=⎪⎩,消去y 可得:2350x x -=. 法一:由2350x x -=得:1250,3x x ==,从而54(0,2),(,)33A B -. ||AB ∴== 法二:由2350x x -=得:12125,03x x x x +==. 2||=AB x ∴==-. 【思路点拨】初学者常想到求直线和椭圆的交点,然后利用两点间距离公式求弦长,此种方法仅当直线方程和椭圆方程简单时,易得交点坐标,一般情况不采用此法.弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .【设计意图】由特殊到一般,让学生体会韦达定理的应用及解析几何中“设而不求,整体代入”的解题思路.同类训练 已知椭圆2241x y +=及直线y x m =+,求直线被椭圆截得最长弦所在直线方程.【知识点】直线与椭圆相交弦长公式.【解题过程】由题意2241x y y x m⎧+=⎨=+⎩得225210x mx m ++-=, 由韦达定理得122122515m x x m x x ⎧+=-⎪⎪⎨-⎪=⎪⎩, ∴弦长l === 当0m =时,l, 此时直线方程为y x =. 【思维点拨】当直线与椭圆相交时,求弦长时,联立直线方程和椭圆方程,利用韦达定理,就可以直接利用弦长公式求得弦长.●活动② 强化提升,灵活应用例3. 已知椭圆2212x y += (1)求斜率为2的平行弦的中点轨迹方程;(2)过(2,1)A 的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程;【知识点】直线与椭圆相交,曲线的方程.【解题过程】解:(1)设斜率为2的直线方程为2y x b =+.由22212y x b x y =+⎧⎪⎨+=⎪⎩得2298220x bx b ++-=, 由22(8)36(22)0b b ∆=-->,得33b -<<.设该弦的端点坐标为1122(,),(,)A x y B x y ,则12429x x b +=-,444393b -<-<. 设弦的中点坐标为(,)M x y ,则1249,294x x b x b x +==-=-, 代入2y x b =+,得4440()33x y x +=-<<为所求轨迹方程. (2)设l 与椭圆的交点为1122(,),(,)x y x y ,弦的中点为(,)x y ,则221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减并整理得12121212()()2()()0x x x x y y y y -++-+=.又12122,2x x x y y y +=+=121212122()4()=0,()20()x x x y y y y y x y x x ∴-+--+⋅=-① 由题意知1212()1()2y y y x x x --=--,代入①得1202y x y x -+⋅=-. 化简得222220x y x y +--=.∴所求轨迹方程为222220x y x y +--=(夹在椭圆内的部分).【思路点拨】例3(2)解题方法叫做“点差法”,点差法充分体现了“设而不求”的数学思想.【答案】222220x y x y +--=.同类训练 已知定点)01(,-C 及椭圆5322=+y x ,过点C 的动直线与椭圆相交于A B ,两点,若线段AB 中点的横坐标是12-,求直线AB 的方程. 【知识点】直线与椭圆的位置关系.【解题过程】依题意,直线AB 的斜率存在,设直线AB 的方程为(1)y k x =+, 将(1)y k x =+代入5322=+y x ,消去y 整理得2222(31)6350.k x k x k +++-=设1122() () A x y B x y ,,,, 则4222122364(31)(35)0 (1) 6. (2)31k k k k x x k ⎧∆=-+->⎪⎨+=-⎪+⎩, 由线段AB 中点的横坐标是12-, 得2122312312x x k k +=-=-+,解得k =,适合(1). 所以直线AB 的方程为10x +=,或10x ++=.【思维点拨】解决直线和圆锥曲线的相关问题时,韦达定理得应用十分广泛,此题干中涉及中点问题,自然联想到12x x +韦达定理结构.【答案】10x -+=,或10x +=.3.课堂总结知识梳理(1)直线与椭圆的位置关系0∆>,方程有两个不等的实数根⇔有两个公共点⇔相交;0∆=,方程有两个相等的实数根⇔有一个公共点⇔相切;0∆<,方程没有实数根⇔没有公共点⇔相离.(2)弦长公式:2||AB x =-,其中k 为直线AB 的斜率,1122(,),(,)A x y B x y .重难点归纳(1)用方程实根个数刻画直线和圆锥曲线的位置关系,是研究直线和圆锥曲线位置关系的通法;(2)涉及弦中点的问题,常用点差法处理.(三)课后作业基础型 自主突破1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为( )A.(-233,233)B.(233,+∞)∪(-∞,-233)C.(43,+∞)D.(-∞,-43)【知识点】椭圆的几何性质.【解题过程】因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.【思路点拨】根据点与椭圆的位置关系建立不等式求解.【答案】B 2.点P 为椭圆x 25+y 24=1上一点,以点P 及焦点F 1、F 2为顶点的三角形的面积为1,则P 点的坐标为( )A.(±152,1)B.(152,±1)C.(152,1)D.(±152,±1)【知识点】椭圆的几何性质.【解题过程】设P (x 0,y 0),∵a 2=5,b 2=4,∴c =1,∴12PF F S ∆=12|F 1F 2|·|y 0|=|y 0|=1,∴y 0=±1,∵x 205+y 204=1,∴x 0=±152.故选D.【思路点拨】焦点三角形面积计算以12||F F 为底边.【答案】D3.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为( )A.22B.33C.12D.13【知识点】椭圆的几何性质.【解题过程】把x =-c 代入椭圆方程可得y c =±b 2a , ∴|PF 1|=b 2a ,∴|PF 2|=2b 2a ,故|PF 1|+|PF 2|=3b 2a =2a ,即3b 2=2a 2. 又∵a 2=b 2+c 2,∴3(a 2-c 2)=2a 2,∴(c a )2=13,即e =33.【思路点拨】利用椭圆定义和几何关系解题.【答案】B4.如图F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该左半椭圆的两个交点,且△F 2AB 是等边三角形,则椭圆的离心率为( )A.32B.12C.22D.3-1【知识点】椭圆的几何性质.【解题过程】连接AF 1,由圆的性质知,∠F 1AF 2=90°,又∵△F 2AB 是等边三角形,∴∠AF 2F 1=30°,∴AF 1=c ,AF 2=3c ,∴e =c a =2c 2a =2c c +3c=3-1.故选D.【思路点拨】利用圆的几何性质和椭圆离心率的定义. 【答案】D5.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_____________.【知识点】椭圆的几何性质.【解题过程】设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1,两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12, ∴所求直线方程为y -1=-12(x -2),即x +2y -4=0. 【思路点拨】中点弦问题灵活利用点差法. 【答案】x +2y -4=0.6.设F 1、F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右两个焦点,若椭圆C 上的点A (1,32)到F 1、F 2两点的距离之和为4,则椭圆C 的方程是________,焦点坐标是________.【知识点】椭圆的几何性质.【解题过程】由|AF 1|+|AF 2|=2a =4得a =2. ∴原方程化为:x 24+y 2b 2=1, 将A (1,32)代入方程得b 2=3.∴椭圆方程为:x 24+y 23=1,焦点坐标为(±1,0). 【思路点拨】把握椭圆的定义解题. 【答案】x 24+y 23=1;(±1,0). 能力型 师生共研7.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2+bx -c=0的两个实根分别为x 1和x 2,则点P (x 1,x 2)( ) A.必在圆x 2+y 2=2上 B.必在圆x 2+y 2=2外 C.必在圆x 2+y 2=2内 D.以上三种情形都有可能 【知识点】椭圆的几何性质. 【解题过程】e =12⇒c a =12⇒c =a2, a 2-b 2a 2=14⇒b 2a 2=34 ⇒b a =32⇒b =32a .∴ax 2+bx -c =0⇒ax 2+32ax -a2=0⇒x 2+32x -12=0,x 1+x 2=-32,x 1x 2=-12, ∴x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2. ∴在圆x 2+y 2=2内,故选C.【思路点拨】简化,,a b c 关系将方程具体化. 【答案】C8.如图,在椭圆中,若AB ⊥BF ,其中F 为焦点,A 、B 分别为长轴与短轴的一个端点,则椭圆的离心率e =________.【知识点】椭圆的几何性质.【解题过程】设椭圆方程为x 2a 2+y 2b 2=1,则有A (-a,0),B (0,b ),F (c,0),由AB ⊥BF ,得k AB ·k BF =-1,而k AB =b a ,k BF =-b c 代入上式得()1b b a c -=-,利用b 2=a 2-c 2消去b 2,得a c -c a =1,即1e -e =1,解得e =-1±52,∵e>0,∴e =5-12.【思路点拨】利用椭圆几何性质解题. 【答案】e =5-12.探究型 多维突破9.已知过点A (-1,1)的直线l 与椭圆x 28+y 24=1交于点B ,C ,当直线l 绕点A (-1,1)旋转时,求弦BC 中点M 的轨迹方程. 【知识点】椭圆的几何性质.【解题过程】设直线l 与椭圆的交点B (x 1,y 1),C (x 2,y 2),弦BC 的中点M (x ,y ),则⎩⎪⎨⎪⎧x 218+y 214=1,①x 228+y 224=1,②①-②,得(x 218-x 228)+(y 214-y 224)=0,∴(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0.③当x 1≠x 2时,③式可化为(x 1+x 2)+2(y 1+y 2)·y 2-y 1x 2-x 1=0.∵x 1+x 22=x ,y 1+y 22=y ,y 2-y 1x 2-x 1=y -1x +1,∴2x +2·2y ·y -1x +1=0,化简得x 2+2y 2+x -2y =0.当x 1=x 2时,∵点M (x ,y )是线段BC 中点, ∴x =-1,y =0,显然适合上式.综上所述,所求弦中点M 的轨迹方程是x 2+2y 2+x -2y =0. 【思路点拨】弦中点问题灵活利用点差法解题. 【答案】x 2+2y 2+x -2y =0.10.已知椭圆方程22123x y +=,试确定m 的范围,使椭圆上存在两个不同点关于直线4y x m =+对称.【知识点】椭圆的几何性质.【解题过程】设点1122(,),(,)A x y B x y 为椭圆上点,且关于直线4y x m =+对称,另设AB 中点坐标为00(,)M x y则22112222123123x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩作差得1212121211023y y y y x x x x -++⋅=-+ 01212121203322AB y y y y y k x x x x x -+⇒⋅=-⇒⋅=--+ ① 1122(,),(,)A x y B x y 关于直线4y x m =+对称,14AB k ∴=-,代入①式得006y x = ②易知点00(,)M x y 必在直线4y x m =+上,004y x m ∴=+ ③ 联立②③解得(,3)2mM m AB 为椭圆的弦,∴中点M 必在椭圆内, 22()(3)2123m m ∴+<,m <<【思路点拨】注意利用弦的中点在椭圆内部建立不等关系解题.【答案】m <<自助餐1.已知m 、n 、m +n 成等差数列,m 、n 、mn 成等比数列,则椭圆x 2m +y 2n =1的离心率为( )A.12B.33C.22D.32【知识点】椭圆的几何性质.【解题过程】由已知得⎩⎨⎧2n =m +m +n ,n 2=m 2n .解得⎩⎨⎧m =2,n =4.∴e =n -m n =22,故选C.【思路点拨】利用离心率的定义. 【答案】C2.AB 为过椭圆x 2a 2+y 2b 2=1中心的弦,F (c,0)为椭圆的左焦点,则△AFB 的面积最大值是( )A.b 2B.bcC.abD.ac 【知识点】椭圆的几何性质.【解题过程】S △ABF =S △AOF +S △BOF =12|OF |·|y A -y B |, 当A 、B 为短轴两个端点时,|y A -y B |最大,最大值为2b . ∴△ABF 面积的最大值为bc .【思路点拨】椭圆几何性质把握图形中的几何关系. 【答案】B3.在△ABC 中,AB =BC ,cos B =-718.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e =( )A.34B.37C.38D.318 【知识点】椭圆的几何性质.【解题过程】设|AB |=x >0,则|BC |=x , AC 2=AB 2+BC 2-2AB ·BC ·cos B=x 2+x 2-2x 2·(-718)=259x 2,∴|AC |=53x , 由条件知,|CA |+|CB |=2a ,AB =2c , ∴53x +x =2a ,x =2c ,∴e =c a =2c 2a =x 83x =38.【思路点拨】注意转化为椭圆的定义. 【答案】C4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A.2B.3C.6D.8 【知识点】椭圆的几何性质.【解题过程】由题意可知O (0,0),F (-1,0),设点P 为(x ,y ),则OP →=(x ,y ), FP →=(x +1,y ),∴OP →·FP→=x (x +1)+y 2=x 2+x +y 2=x 2+x +3-34x 2 =14x 2+x +3=14(x +2)2+2. ∵x ∈[-2,2],∴当x =2时,OP →·FP →取最大值.(OP →·FP →)max=14(2+2)2+2=6,故选C. 【思路点拨】数量积问题坐标化处理. 【答案】C5.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(0,4),离心率为35. (1)求椭圆C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 【知识点】椭圆的几何性质.【解题过程】(1)将点(0,4)代入椭圆C 的方程,得16b 2=1,∴b =4, 又e =c a =35,则a 2-b 2a 2=925,∴1-16a 2=925,∴a =5, ∴椭圆C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入椭圆方程得22(3)12525x x -+=,即x 2-3x -8=0,由韦达定理得x 1+x 2=3,所以线段AB 中点的横坐标为x 1+x 22=32,纵坐标为45(32-3)=-65,即所截线段的中点坐标为(32,-65).【思路点拨】直线与椭圆相交注意利用韦达定理解题. 【答案】见上6.设12F F 、是椭圆:E 2221(01)y x b b+=<<的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且22||,||,||AF AB BF 成等差数列. (1)求||AB ;(2)若直线l 的斜率为1,求b 得值. 【知识点】椭圆的几何性质.【解题过程】(1)由椭圆定义知:22||||||4AF AB BF ++=, 又222||||||AB AF BF =+,得4||3AB =. (2)l 的方程为y x c =+,其中c =设1122(,),(,)A x y B x y ,则2221y x c y x b =+⎧⎪⎨+=⎪⎩化简得222(1)2120b x cx b +++-=,则2121222212,11c b x x x x b b--+==++ 因为直线AB 的斜率为1,所以21|||AB x x =-,即214||3x x -.则224212122222284(1)4(12)8()49(1)(1)(1)b b b x x x x b b b --=+-=-=+++,解得b =【思路点拨】将弦长||AB 从两个不同角度考虑,建立等式解题. 【答案】见上。
§2.2.2椭圆的简单几何性质(2)1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.2. 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.3. 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.4. 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联线互相垂直,且焦距为6.5. 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.6. 已知椭圆19822=++y k x 的离心率21=e ,求k 的值.7. 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.求1PF PA +的最大值、最小值及对应的点P 坐标;8. 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . 求证:21F PF ∆的面积与椭圆短轴长有关.9. 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.参考答案及其解析1. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.2. 解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.3. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k .解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹. (2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.4. 分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ① 又过点()62-,,因此有()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .5. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd .当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.6. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.7. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线. 由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线. 建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点)2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.8. 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F . 求证:21F PF ∆的面积与椭圆短轴长有关. 证明:在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.9. 分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。
2.2椭圆课时分配:1.第一课椭圆及其标准方程1个课时2.第二课椭圆的简单几何性质1个课时2.2.1椭圆及其标准方程【教材分析】圆锥曲线被安排在第二章中,以“圆锥曲线与方程”的标题出现,其包含曲线与方程、椭圆、双曲线、抛物线四部分内容。
本节是整个解析几何部分的重要基础知识。
椭圆的定义与初中时学生学习的圆的定义具有相通之处,就是“点动成线”的原理。
通过学习,让学生理解当点运动的规则(遵循的几何关系)发生变化的时候,则画出的曲线的形状也会不同。
高中阶段,在《直线和圆的方程》的学习过程中,学生对坐标法(解析法)思想有了一定程度的认识;在“曲线与方程”和“方程与曲线”的概念中,学生进一步明确了坐标法及其研究曲线的方程的一般步骤。
从本节课开始,又将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好研究方法和研究思想的准备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前启后的作用。
【教学目标】知识与技能目标: 1.准确理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程及其推导过程;2.根据条件确定椭圆的标准方程;过程与方法目标: 1.通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义;在探索椭圆标准方程的过程中,培养学生观察、辨析、归纳和抽象概括问题的能力.2.提高运用坐标法解决几何问题的能力和运算求解和数据处理的能力。
情感态度与价值观目标:通过提炼归纳椭圆的定义的过程,让学生学会将问题抽象成数学问题,并透过运动的现象把握事物的本质;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。
通过讨论椭圆方程推导的过程中养成学生扎实严谨的科学态度。
教学重点和难点1.重点:体会椭圆的形成过程,感受求曲线方程的基本方法,掌握椭圆的标准方程及其推导方法。
2.难点:椭圆标准方程的推导(尤其是遇到的根式化简的过程与方法)法与学法(一)教法为了使学生更主动地参与到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。