情境2:取一个边长为2a的正方形及 其内切圆,随机向正方形内丢一粒豆 子,豆子落入圆内的概率?
情境3: 有一杯1升的水,其中有1个微生物,用 一个小杯从这杯水中取出0.1升,求小杯水中 含有这个微生物的概率.
思考: 上述情境是古典概型么? 构成它们的基本事件是什么以及有什么共同特点?
基本事件:
情境3:1升水中的每 情境1:圆周上的每个点 情境2:正方形内的每个位置 一点
3.3.1几何概型
温故知新
古典概型的两个基本特点:
(1)所有的基本事件只有有限个; (2)每个基本事件发生都是等可能的.
古典概型的概率公式:Biblioteka P ( A )事件
A包 含 的 基 本 事 件个 数 基本事件的总数
引入新课
情境1:上图中有两个转 盘,甲乙两人玩转盘游戏: 规定当指针指向B区域时, 甲获胜,否则乙获胜.在两种情况下分别求甲获 胜的概率是多少?
D
C
A
B
3.在1L高产小麦种子中混入一粒带麦锈病的种子,从中随机取出 10mL,含有麦锈病种子的概率是多少?
回顾小结:
古典概型与几何概型的区别.
相同:两者基本事件的发生都是等可能的; 不同:古典概型要求基本事件有有限个,
几何概型要求基本事件有无限多个.
几何概型的概率公式.
例2:一海豚在水池中自由游弋,水池长30m,
30m
宽20m的长方形,求此刻海豚嘴尖离岸小于2m 20
的概率.
2m
练习: 1.如右下图,假设你在每个图形上随机撒一粒黄 豆,分别计算它落到阴影部分的概率.
2.若将一个质点随机投入如图 所示的长方形ABCD中,其中AB=2, BC=1,则质点落在以AB为直径的半圆内的概率为__________