高三数学课件 轨迹方程(一)
- 格式:ppt
- 大小:1.32 MB
- 文档页数:11
高中数学轨迹与方程教案
教学目标:通过本节课的学习,学生将能够理解轨迹与方程的概念,掌握二维平面上各种图形的轨迹和相应的方程,并能够应用这些知识解决实际问题。
教学重点:轨迹与方程的概念、各种图形的轨迹及相应的方程。
教学难点:如何确定各种图形的轨迹方程。
教学准备:教科研教材《数学》必修一,多媒体设备,教学PPT。
教学过程:
一、导入
通过展示一些常见的平面图形及其方程,引导学生思考图形与方程之间的关系,并提出本节课的学习目标。
二、讲解
1. 轨迹和方程的概念:通过具体例子引导学生理解轨迹和方程的含义,区分轨迹与方程的关系。
2. 直线的轨迹与方程:讲解直线的一般方程及斜率截距式,并通过实例展示直线在平面上的轨迹及对应的方程。
3. 圆的轨迹与方程:讲解圆的标准方程及参数方程,并通过实例展示圆在平面上的轨迹及对应的方程。
4. 抛物线、椭圆、双曲线等图形的轨迹与方程:介绍其他二次曲线的标准方程,并通过实例展示不同曲线的轨迹及对应的方程。
三、练习
布置一些相关的数学问题,让学生在课堂上或课后完成,巩固所学知识。
四、实践
通过实际案例,引导学生运用所学知识,解决实际问题,培养学生的数学建模能力。
五、总结
对本节课的内容进行总结,并回顾学生掌握的重点知识,强化学生记忆。
六、作业
布置相关的作业,巩固学生所学知识。
教学反思:
本节课主要围绕轨迹与方程展开,通过讲解、练习和实践等环节,帮助学生深入理解各种图形的轨迹和相应的方程。
在教学中,要注意引导学生探究问题、独立思考,激发学生学习兴趣,提高学生的学习效果。
【本讲主要内容】轨迹方程求轨迹方程的基本方法【知识掌握】 【知识点精析】1. 求曲线轨迹方程的基本步骤:⑴建立适当的平面直角坐标系,设轨迹上任一点的坐标为(),M x y ;⑵寻找动点与已知点满足的关系式; ⑶将动点与已知点坐标代入; ⑷化简整理方程;⑸证明所得方程为所求曲线的轨迹方程。
通常求轨迹方程时,可以将步骤⑵和⑸省略。
2. 几种常用的求轨迹的方法:⑴直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x y 、的等式,就得到轨迹方程,这种方法称之为直接法。
用直接法求动点轨迹的方程一般有建系设点、列式、代换、化简、证明五个步骤,但最后的证明可以省略。
⑵定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
⑶代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点(),P x y 却随另一动点()','Q x y 的运动而有规律的运动,且动点Q 的轨迹为给定或容易求得,则可先将','x y 表示为,x y 的式子,再代入Q 的轨迹方程,然后整理得P 的轨迹方程,代入法也称相关点法。
⑷参数法:求轨迹方程有时很难直接找出动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使,x y 之间建立起联系,然后再从所求式子中消去参数,得出动点的轨迹方程。
说明:利用参数法求动点轨迹也是解决问题的常用方法,应注意如下几点:①参数的选择要合理,应与动点坐标,x y 有直接关系,且易以参数表达。
可供选择作参数的元素很多,有点参数、角参数、线段参数、斜率参数等。
②消参数的方法有讲究,基本方法有代入法、构造公式法等,解题时宜注意多加积累。
③对于所选的参数,要注意其取值范围,并注意参数范围对,x y 的取值范围的制约。
⑸几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然后得出动点的轨迹方程。
高三数学必修二知识点:轨迹方程的求解【导语】你手心里有交错的曲线和无来由的茧,那是岁月留下的痕迹。
你站在行驶在岁月河流的船头上,表情坚毅,你无悔的付出终会让一段旅程熠熠闪光。
xx 高中频道为你准备了《高三数学必修二知识点:轨迹方程的求解》助你成功!符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的根本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种曲线的定义,那么可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y 与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y 的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
高(Gao)三数学轨迹方程50题及答案求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数(Shu)法、交轨法,待定(Ding)系数法。
(1)直(Zhi)接法(Fa)直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程.(6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( ) A 、x 2+y 2=1 B 、x 2+y 2=1(x ≠±1) C 、x 2+y 2=1(x ≠1) D 、y=4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y)5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆 C 、中点在原点的双曲线 D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0)10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( )A 、x 2+y 2=B 、x 2+y 2=C 、x 2+y 2=21(x<21)D 、x 2+y 2=41(x<41)11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A、(x-2)2+(y+4)2=16B、(x-2)2+4(y+2)2=16 (0)yC、(x-2)2-(y+4)2=16D、(x-2)2+4(y+4)2=1612、椭(Tuo)圆(Yuan)C与椭(Tuo)圆关于(Yu)直线x+y=0对(Dui)称,椭圆C的方程是()A、 B、C、 D、13、设A1、A2是椭圆=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为 ( )A. B.C. D.14、中心在原点,焦点在坐标为(0,±5)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为,则椭圆方程为 ( )15、已知⊙O:x2+y2=a2, A(-a, 0), B(a, 0), P1, P2为⊙O上关于x轴对称的两点,则直线AP1与直线BP2的交点P的轨迹方程为()A、x2+y2=2a2B、x2+y2=4a2C、x2-y2=4a2D、x2-y2=a2二、填空题:16、动圆与x轴相切,且被直线y=x所截得的弦长为2,则动圆圆心的轨迹方程为。
高三数学知识点:运用向量方法解决轨迹天津市第四十二中学李艳杰二、运用两非零向量共线的充要条件求轨迹方程。
例1:已知定点A(2,0),点P在曲线x2+y2=1(x≠1)上运动,∠AOP的平分线交PA于Q,其中O为原点,求点Q的轨迹方程。
解: 设Q(x,y),P(x1,y1)-=(x-2,y)-=( x1-x,y1-y)又∵-=-=-∴ -=2-即:(x-2,y)=2(x1-x,y1-y)解得:-代入x12+y12=1(x≠1)有:-(3x-2)2+-y2=1(x≠-)即所求轨迹方程为:(x--)2+y2=-(x≠-)【点拨】用该方法解此类问题简单明了,若将Q视为线段AP 的定比分点,运用定比分点公式解本题,则计算过程既繁琐又容易出错。
例2:设过点P(x,y)的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若-=2-,且-■=1,求P点的轨迹方程。
解:-=2-∴P分有向线段-所成的比为2由P(x,y)可得B(0,3y),A(-x,0)∴- =(--x,3y)∵Q与P关于y轴对称, ∴Q(-x,y),-且 =(-x,y)∴由-■=1可得-x2+3y2=1(x0,y0)即所求点P的轨迹方程为-x2+3y2=1(x0,y0)【点拨】求动点轨迹方程时应注意它的完备性与纯粹性。
化简过程破坏了方程的同解性,要注意补上遗漏的点或者挖去多余的点。
三、运用两非零向量垂直的充要条件是求轨迹方程。
例1:如图,过定点A(a,b)任意作相互垂直的直线l1与l2,且l1与x轴相交于M点,l2与y轴相交于N点,求线段MN 中点P的轨迹方程。
解:设P(x,y),则M(2x,0),N(0,2y)-=(2x-a ,-b)-=(-a,2y-b)由-⊥-知-■=0∴(2x-a)(-a)+(-b)(2y-b)=0即所求点P的轨迹方程为2ax+2by=a2+b2【点拨】用勾股定理解本题,运算繁琐,若用斜率解本题,又必须分类讨论,用向量的方法避免了上述两种方法的缺陷,使解题优化。
东北师大附中2011-2012学年高三数学(理)第一轮复习导学案53轨迹与轨迹方程编写教师:夏文显 审稿教师:周仁哲一、知识梳理1.求曲线的轨迹方程是解析几何的基本问题之一. 求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系的问题. 解决这类问题不但对圆锥曲线的定义,性质等基础知识要熟练掌握,还要利用各种数学思想方法, 同时具备一定的推理能力和运算能力. 2.求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、几何法、交轨法.(1) 定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(2) 直接法:直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简,即得动点轨迹方程.(3) 相关点法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5) 交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然后消去参数得到轨迹方程.3. 易错点提示: (1)要注意区别“轨迹”与“轨迹方程”这两个不同的概念; (2)检验是否有不符条件的点, 或漏掉的点. 二、题型探究 探究1 定义法例1 (1)由动点P 向圆122=+y x 引两条切线PB PA ,,切点分别为B A ,,︒=∠60APB ,则动点P 的轨迹方程为____________.422=+y x(2) 已知ABC ∆三边AC BC AB ,,的长为等差数列,点C B ,的坐标分别为(-1,0)、(1,0),点A 的轨迹方程为 .)0(13422≠=+y y x 探究2直接法例2已知ABC ∆中,||||2,(0)||AB BC m m AC ==>,求点A 的轨迹方程,并说明轨迹是什么图形. 解:以BC 所在直线为x 轴,BC 中点O 为原点建立直角坐标系,则(1,0),(1,0)B C -,设点A 的坐标为(,)x y ,由||||AB m AC =m =,化简得: 222222(1)(1)(22)10m x m y m x m -+-+++-=当1m =时,轨迹为直线0x =)0(≠y ;当1m ≠且0>m 时,配方得:22222212()()11m m x y m m +++=--)0(≠y 轨迹是圆心为(221,01m m +-),半径为22||1m m -的圆,去掉圆和x 轴的交点. 探究3 相关点法例3 已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是)0,(),0,(21c F c F -,Q 是椭圆外的动点,满足.2||1a Q F = 点P 是线段Q F 1与该椭圆的交点,点T 在线段Q F 2上,并且满足.0||,022≠=⋅TF TF PT 求点T 的轨迹C 的方程;解法一:(相关点法)当|0||0|2≠≠TF 且时,由02=⋅TF ,得2TF ⊥.又,2||1a F =||||2PF =∴,所以T 为线段Q F 2的中点,设点T 的坐标为).,(y x 点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x 因此⎩⎨⎧='-='.2,2y y c x x ①由a Q F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+0=时,轨迹为点(a ,0)和点(-a ,0). 综上所述,点T 的轨迹C 的方程是.222a y x =+ 解法二:定义法设点T 的坐标为).,(y x当|0||0|2≠≠TF 且时,由0||||2=⋅TF ,得2TF ⊥. 又||||2PF =,所以T 为线段Q F 2的中点. 在△21F QF 中,a F OT ==||21||1,所以有.222a y x =+0|=时,点(a ,0)和点(-a ,0)在轨迹上. 综上所述,点T 的轨迹C 的方程是.222a y x =+ 探究4 参数法例4设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆于点O B A ,,是坐标原点,点P 满足)(21+=,当l 绕点M 旋转时,求:动点P 的轨迹方程. 解:直线l 过点)1,0(M 设其斜率为k ,则l 的方程为.1+=kx y记),(11y x A 、),,(22y x B 由题设可得点B A ,的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122y x kx y 的解,化简得,032)4(22=-++kx x k ,所以 ⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x 于是).44,4()2,2()(21222121k k k y y x x OB OA OP ++-=++=+= 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x当k 不存在时,AB 中点为坐标原点(0,0),也满足方程,所以点P 的轨迹方程为.0422=-+y y x 探究5 交轨法例 5 一条双曲线2212x y -=的左、右顶点分别为21,A A ,点11(,)P x y ,11(,)Q x y -是双曲线上不同的两个动点,求直线P A 1与Q A 2交点的轨迹E 的方程. 解:(1)由题设知112(x A A >,则有 直线1A P的方程为y x =+, ① 直线2A Q的方程为y x =, ②解法一:联立①②解得交点坐标为1111122,,x y x y x x x ====即, ③则0,x x ≠< 而点()11,P x y 在双曲线2212x y -=上,221112x y ∴-=. 将③代入上式,整理得所求轨迹E的方程为22102x y x x +=≠≠,且解法二:设点M(,)x y 是12A P A Q 与的交点,①×②得)2(2221212---=x x y y ③又点()11,P x y 在双曲线上,因此221112x y -=,即221112x y =-.代入③式整理得2212x y +=. 因为点P ,Q 是双曲线上的不同两点,所以它们与点12A A ,均不重合,故点12A A 和均不在轨迹E 上.过点(0,1)及)2A 0的直线l 的方程为0x =.解方程组22012x x y ⎧+=⎪⎨-=⎪⎩,得0x ==.所以直线l 与双曲线只有唯一交点2A .故轨迹E 不经过点(0,1).同理轨迹E 也不经过点(0,-1).综上分析,轨迹E的方程为22102x y x x +=≠≠,且三、方法提升求轨迹方程时,一般先观察能否根据条件直接判断轨迹是什么图形,设出方程,求出未知系数即定义法.否则通过条件列出动点坐标所满足的方程,若能直接列出则为直接法,否则寻求动点的坐标与其他动点的坐标的关系即相关点法,或寻求动点坐标与其它参数的关系,消去参数获得轨迹方程即参数法.交轨法关键是处理涉及到的轨迹方程,消去多余参数获得方程. 四、课时作业 (一)选择题1.一动圆与两圆122=+y x 和012822=+-+x y x 都相外切,则动圆圆心的轨迹为( C ) )(A 圆 )(B 椭圆 )(C 双曲线的一支 )(D 抛物线。
高三数学解答题难题突破—圆锥曲线中动点轨迹方程问题本文介绍了解动点轨迹问题的四种方法:直译法、定义法、代入法和参数法。
其中,直译法包括建系、设点、列式、代换和证明五个步骤;定义法则是根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;代入法和参数法则是在特定条件下使用的方法。
此外,文章还提到了解轨迹问题时需要注意的两点:求点的轨迹与求轨迹方程是不同的要求,要验证曲线上的点是否都满足方程。
接下来,文章以一个例题为例,介绍了利用代点法求轨迹方程的具体步骤。
该例题要求求出点P的轨迹方程,通过设点、列式、代换和证明四个步骤,最终得出了轨迹方程x2+y2=2.此外,文章还介绍了如何利用轨迹方程验证曲线上的点是否都满足方程,以及如何去掉满足方程的解而不再曲线上的点。
最后,文章介绍了另一种解轨迹问题的方法:定义法。
该方法是先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程。
I)设圆心C的坐标为(x,y),则圆方程为(x-1)^2+y^2=1,又因为在y轴上截得的弦长为2,所以C到y轴的距离为1,即x^2+y^2=1.联立两式可得圆心C的轨迹方程为x^2+y^2-x-1=0.II)由题意可知,直线l的斜率为k,且过点Q(1,0),则直线方程为y=k(x-1)。
将直线方程代入圆的方程中,得到方程x^2+(k(x-1))^2-x-1=0,化简可得x^2(1+k^2)-2xk^2+k^2-1=0.由于直线l与轨迹C有交点A、B,所以方程有两个不同的实根,即Δ=4k^4-4(k^2+1)(k^2-1)≥0.解得-1≤k≤1.再将k带入直线方程可求出交点A、B的坐标,进而证明AR//FQ。
求AB中点的坐标为((k^2-1)/(1+k^2),k(k^2-2)/(1+k^2)),将其代入x^2+y^2-x-1=0中得到轨迹方程为x^4-2x^3+6x^2-2x+1-4y^2=0.1.定点、定值问题的解法定点、定值问题通常可以通过设定参数或取特殊值来确定“定点”是什么、“定值”是多少。
高三数学预防求轨迹方程时漏解有妙招知识精讲 赵红霞 求动点的轨迹方程是解析几何的一个重要问题,轨迹概念包含“完备性”与“纯粹性”两方面,然而因某种原因导致动点轨迹遗漏的现象经常出现。
下面通过典型例题,就解题过程中造成动点轨迹遗漏的原因总结如下,以期防X 。
一、忽略对动点运动的多种情形的讨论:例1 直角△ABC 的两直角边长分别是BC=a ,AC=b (a>b ),A 、B 两点分别在x 轴正半轴和y 轴正半轴上滑动(可包括原点),求顶点C 的轨迹方程。
错解:如图1,设C (x,y ),由A 、O 、B 、C 四点共圆,可得∠ABC=∠AOC ,即a b x y =,所以x a b y =。
又当A 与原点重合时,点C 的横坐标为22ba ab x +=,当点B 与原点重合时,点C 的横坐标为222b a a x +=,故顶点C 的轨迹方程为≤≤+=x b a ab (x a b y 22)b a a 222+。
剖析:上述解法遗漏了另一种情况(如图2)。
故顶点C 的轨迹方程为22ba ab (x a b y += )b a a x 222+≤≤或)b a a x b a ab (x a b y 22222+≤≤+--=。
二、忽略动点的特殊位置。
求动点的轨迹,不但要考虑动点运动规律的一般情况,还要考虑动点的特殊位置,如极限位置、临界位置、轨迹与坐标轴的交点,忽视对这些特殊位置的考虑,常会造成轨迹遗漏。
例2 已知定线段AB 的长为2,点P 是以点A 为圆心的单位圆上的动点,∠PAB 的平分线交PB 于Q ,求点Q 的轨迹方程。
错解:以A 为坐标原点,线段AB 所在的射线为x 轴的正半轴,建立平面直角坐标系,如图3所示。
则圆A 的方程为1y x 22=+,由三角形的内角平分线的性质定理得2|AP ||AB ||QP ||BQ |==,即→=→QP 2BQ 。
设点Q 的坐标为(x,y ),由定比分点坐标公式可得点P的坐标是(2y 322x 3,-),而P 在圆上,可得1)2y 3()22x 3(22=+-。
高考数学知识点:动点的轨迹方程高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
求轨迹方程求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法、交轨法,待定系数法。
(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程. (4)参数法若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.(5)交轨法 若动点是受某一参量影响的两动曲线的交点,我们可以以消去这个参量得到动点轨迹方程. (6)待定系数法求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.一、选择题:1、方程y=122+--x x 表示的曲线是: ( ) A 、双曲线 B 、半圆 C 、两条射线 D 、抛物线2、方程[(x -1)2+(y+2)2](x 2-y 2)=0表示的图形是: ( ) A 、两条相交直线 B 、两条直线与点(1,-2) C 、两条平行线 D 、四条直线3、动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是: ( )A 、x 2+y 2=1B 、x 2+y 2=1(x ≠±1)C 、x 2+y 2=1(x ≠1)D 、y=21x -4、一动点到两坐标轴的距离之和的2倍,等于该点到原点距离的平方,则动点的轨迹方程是: ( )A 、x 2+y 2=2(x+y)B 、x 2+y 2=2|x+y|C 、x 2+y 2=2(|x|+|y|)D 、x 2+y 2=2(x -y) 5、动点P 到直线x=1的距离与它到点A (4,0)的距离之比为2,则P 点的轨迹是:( )A 、中心在原点的椭圆 B 、中心在(5,0)的椭圆C 、中点在原点的双曲线D 、中心在(5,0)的双曲线6、已知圆x 2+y 2=4,过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程是 ( ) A 、(x -2)2+y 2=4 B 、(x -2)2+y 2=4(0≤x <1) C 、(x -1)2+y 2=4 D 、(x -1)2+y 2=4(0≤x <1)7、已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是: ( ) A 、双曲线 B 、双曲线左支 C 、一条射线 D 、双曲线右支8、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆9、点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是:( ) A 、y 2=12x B 、y 2=12x(x>0) C 、y 2=6x D 、y 2=6x(x>0) 10、已知圆x 2+y 2=1,点A (1,0),△ABC 内接于圆,且∠BAC=60°,当B 、C 在圆上运动时,BC 中点的轨迹方程是 ( ) A 、x 2+y 2=21 B 、x 2+y 2=41 C 、x 2+y 2=21(x<21) D 、x 2+y 2=41(x<41) 11、抛物线过点M (2,-4),且以x 轴为准线,此抛物线顶点的轨迹方程是 ( )A 、(x -2)2+(y+4)2=16 (0)y ¹B 、(x -2)2+4(y+2)2=16 (0)y ¹C 、(x -2)2-(y+4)2=16D 、(x -2)2+4(y+4)2=1612、椭圆C 与椭圆14)2(9)3(22=-+-y x 关于直线x+y=0对称,椭圆C 的方程是( ) A 、22(2)(3)149x y +++= B 、22(2)(3)194x y --+= C 、22(2)(3)194x y +++= D 、22(2)(3)149x y --+= 13、设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为 ( )A.14922=+y xB.14922=+x y222214、中心在原点,焦点在坐标为(0,±52)的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为 ( ) 12575 D. 17525C.1252752 B. 1752252A.22222222=+=+=+=+y x y x y x y x15、已知⊙O :x 2+y 2=a 2, A(-a, 0), B(a, 0), P 1, P 2为⊙O 上关于x 轴对称的两点,则直线AP 1与直线BP 2的交点P 的轨迹方程为 ( ) A 、x 2+y 2=2a 2 B 、x 2+y 2=4a 2 C 、x 2-y 2=4a 2 D 、x 2-y 2=a 2 二、填空题:16、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。
专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。
首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。
直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。
经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。