七年级数学图形的平移
- 格式:ppt
- 大小:1.08 MB
- 文档页数:16
7.3 图形的平移知识点一、平移的概念1、平移的定义:在平面内,把一个图形沿着一定的方向平行移动而达到另一个位置,这种图形的平行移动简称为平移。
2、平移的两个要素:(1)平移方向;(2)平移距离。
3、对应点、对应线段、对应角一个图形经过平移后得到一个新的图形,这个新图形与原图形是能够互相重合的全等形,我们把互相重合的点称为对应点,互相重合的线段称为对应线段,互相重合的角称为对应角。
4、平移方向和距离的确定(1)要对一个图形进行平移,在平移前必须弄清它的平移方向和平移距离,否则将无法实现平移,那么怎样确定这两点呢?A.若给出带箭头的线段:从箭尾到箭头的方向表示平移方向,而带箭头的线段的长度,表示平移距离,也有时另给平移距离的长度。
B.若给出由小正方形组成的方格纸:在方格中的平移,从方向上看往往是要求用横纵两次平移来完成(有特殊要求例外),而移动距离是由最终要达到的位置确定的。
C.具体给出从某点P到另一点P’的方向为平移方向,线段PP’的长度为平移距离。
D.给出具体方位(如向东或者西北等)和移动长度(如10cm)(2)图形平移后,平移方向与平移距离的确定。
图形平移后,原图形与新图形中的任意一对前后对应点的射线方向就是原平移方向,这对对应点间的线段长度就是原平移距离。
例:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的()A.B.C.D.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化,进而得出即可.【解答】解:如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.知识点二、平移的性质图形平移的实质是图形上的每一点都沿着同一个方向移动了相同的距离。
平移后的图形与原图形①对应线段平行(或在同条一直线上)且相等;②对应点连线平行(或在同一条直线上)且相等;③图形的形状与大小都不变(全等);④图形的顶点字母的排列顺序的方向不变。
初中数学学习方法:图形的平移定义
初中数学学习方法:图形的平移定义
(1)平移的定义:在平面内,将一个图形整体沿某一方向由一个位置平移到另一个位置,图形的这种移动,叫做平移变换,简称平移,平移前后互相重合的点叫做对应点。
(2)平移的性质:
①对应点的连线平行(或共线)且相等
②对应线段平行(或共线)且相等,平移前后的两条对应线段的四个端点所围成的四边形为平行四边形(四个端点共线除外)
③对应角相等,对应角两边分别平行,且方向一致。
(3)用坐标表示平移:如果把一个图形各个点的横坐标都加上(或减去)一个正数a,纵坐标不变,相应的新图形就是把原图形向右(或向左)平移a个单位长;如果把一个图形各个点的纵坐标都加上(或减去)一个正数a,横坐标不变,相应的新图形就是把原图形向上(或向下)平移a个单位长。
(4)平移的条件:图形的原来位置、方向、距离
(5)平移作图的步骤和方法:将原图形的各个特征点按规定的方向平移,得到相应的对称点,再将各对称点进行相应连接,即得到平移后的图形,方法有如下三种:平行线法、对应点连线法、全等图形法。
以上对图形的平移定义知识的总结学习,相信同学们已经能很好的掌握了吧,希望上面的知识给同学们的学习很好的帮助。
七年级数学下《平移》知识点总结归纳
一、平移的定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离。
平移不改变图形的形状、大小和方向。
二、平移的性质
1.平移不改变图形中线段的长度和角度。
2.通过平移,可以组成一个新的图形。
3.在平移过程中,图形上的每一点都沿同一方向移动相同的距离。
三、平移的基本操作
1.确定平移的方向和距离。
2.对于图形中的每一个点,都按照平移的方向和距离进行移动。
3.连接移动后的点,得到平移后的图形。
四、平移的实际应用
1.在日常生活和工程设计中,平移是一种常见的几何变换,如推拉门、传送带等。
2.通过平移,可以重新排列和组合图形,为设计提供更多可能性。
五、常见问题与注意事项
1.在判断一个图形是否经过平移时,要仔细观察图形上的每一个点是否都沿同一
方向移动了相同的距离。
2.在进行平移操作时,要注意保持图形的大小和形状不变,避免出现变形或错位。
3.对于一些复杂的图形,可以先分解为简单的部分,分别进行平移操作,然后再
组合起来。
通过以上知识点的总结归纳,可以帮助学生们更好地理解和掌握《平移》这一部分内容,为后续的学习打下坚实的基础。
初中数学平移知识点总结一、平移的定义平移是指将图形整体沿着平面上的某一方向进行移动,移动的距离和方向相同。
在平移的过程中,图形的形状和大小保持不变。
例如,将一个图形沿着平面上的水平方向移动一定的距离,这样的移动就是平移。
二、平移的表示方法平移可以通过向量来表示。
假设平移向量为,那么对于平面上的任意一点 P(x, y),经过平移后的新位置可以表示为P’(x+a, y+b)。
其中,向量 (-a, -b) 表示平移的方向和距离。
三、平移的性质1、平移不改变图形的形状和大小。
无论图形是怎样平移的,它的形状和大小都不会改变。
这是平移的一个重要性质。
2、平移保持图形的各点之间的相对位置关系不变。
经过平移后,图形上任意两点之间的连线和距离保持不变。
3、平移可以叠加。
即多次平移后的结果与一次平移相同。
4、平移是一个向量操作。
平移可以用向量求解,通过给定平移向量,就可以确定平移的具体位置和距离。
四、平移的应用1、地图制图。
在制作地图的过程中,需要对地图上的各种地物进行平移,以便调整地物的位置和方向。
2、建筑设计。
在建筑设计中,平移可以用来对建筑图形进行调整,使其符合设计要求。
3、机械制造。
在机械制造中,需要对零件进行定位和装配,平移可以用来控制零件的位置和方向。
4、游戏开发。
在电子游戏开发中,平移可以用来实现角色的移动和位置调整。
以上就是关于初中数学中平移知识点的总结,通过学习平移知识,我们可以更好地理解图形的位置关系,为以后的学习奠定了基础。
希望大家能够加强对平移知识的理解和掌握,为以后的学习打下坚实的基础。
七年级下册平移的知识点平移是初中数学中的一个重要知识点,也是初中代数学的基础,它与中学数学与几何学密切相关。
在七年级下册的数学教材中,平移是一个重要的章节,学习平移的知识点能够帮助我们更好地理解几何学的基本概念,同时也能够为以后学习代数和几何学打下基础。
一、平移的定义平移是指将一个几何图形沿着一个方向移动一定的距离,而不改变其大小和形状的操作。
平移的结果是一个与原图形完全相同的新图形。
平移的基本要素有两个:方向和距离。
二、平移的符号表示平移的符号表示为“T”,后跟一个括号,括号中的第一个数表示平移的横向距离,第二个数表示平移的纵向距离。
例如T(2,3)表示平移的横向距离为2,纵向距离为3.三、平移的性质1. 平移保持图形的大小和形状不变。
2. 平移保持相邻两点之间的距离和角度不变。
3. 平移把一条直线变成与原有直线平行的直线。
4. 平移把一条射线变成与原有射线相同的射线。
5. 平移把一个线段变成另一个相同长度的线段。
6. 平移把平行线段变成平行线段。
四、平移的解题方法平移的解题方法通常分为以下三类:1. 用图形进行分析。
使用图形进行分析,可以更加直观地理解问题,找到规律。
2. 使用向量法。
使用向量法,可以将平移问题转化为向量的加法。
3. 使用坐标法。
使用坐标法,可以将平移问题转化为坐标系中的问题,通过计算坐标的变化来解决问题。
五、平移的应用平移的应用非常广泛,例如算术、几何、物理等方面。
在几何学中,平移被广泛应用于图形的变形、对称、相似和全等等问题中。
在物理学中,平移被应用于描述各种运动的规律。
六、结语平移是一个基础且重要的几何运算,学习平移的知识点对于学习初中数学和几何学至关重要。
同时,掌握平移的应用也是我们理解和掌握其他领域的知识的基础。
因此,学生们在学习平移的知识点时,一定要认真理解,并运用到实际问题中去。
第03讲图形的平移 (核心考点讲与练)一.平行线之间的距离(1)平行线之间的距离从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.(2)平行线间的距离处处相等.二.生活中的平移现象1、平移的概念在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.2、平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3、确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.三.平移的性质(1)平移的条件平移的方向、平移的距离(2)平移的性质①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.四.作图-平移变换(1)确定平移后图形的基本要素有两个:平移方向、平移距离.(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.五.利用平移设计图案确定一个基本图案按照一定的方向平移一定的距离,连续作图即可设计出美丽的图案.通过改变平移的方向和距离可使图案变得丰富多彩.一.平行线之间的距离(共3小题)1.(2019春•桂平市期末)如图,AB∥DC,ED∥BC,AE∥BD,那么图中和△ABD面积相等的三角形(不包括△ABD)有()A.1个B.2个C.3个D.4个【分析】根据两平行直线之间的距离相等,再根据等底等高的三角形的面积相等,找出与△ABD等底等高的三角形即可.【解答】解:∵AB∥DC,∴△ABC与△ABD的面积相等,∵AE∥BD,∴△BED与△ABD的面积相等,∵ED∥BC找不到与△ABD等底等高的三角形,∴和△ABD的面积相等的三角形有△ABC、△BDE,共2个.故选:B.【点评】本题主要考查了平行线间的距离相等,等底等高的三角形面积相等的性质,找出等底等高的三角形是解题的关键.2.(2021春•宁德期末)如图,MN⊥AB,垂足为M点,MN交CD于N,过M点作MG⊥CD,垂足为G,EF过点N点,且EF∥AB,交MG于H点,其中线段GM的长度是点M到直线CD的距离,线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离,点N到直线MG的距离是线段GN的长度.【分析】点到直线的距离是指直线外一点到这条直线的垂线段的长度,根据这一定义结合图形进行填空即可.【解答】解:线段GM的长度是点M到直线CD的距离;线段MN的长度是点M到直线EF的距离,又是平行线AB、EF间的距离;点N到直线MG的距离是线段GN的长度.【点评】正确理解点到直线的距离的定义是解决此类问题的关键.3.(2019春•如东县期末)如图,两条平行线间依次有三个图形:△ABC,▱CDEF和梯形DGMN.根据图中所标数据比较它们的面积,其中面积最大的是()A.△ABC B.▱CDEF C.梯形DGMN D.无法比较【分析】根据两条平行线之间的距离处处相等,分别算出三个图形的面积进行比较,即可得出答案.【解答】解:设平行线之间的距离为x,三角形ABC的面积==6x,平行四边形CDEF的面积=7x,梯形DGMN的面积==5.5x,∴面积最大的是平行四边形CDEF.故选:B.【点评】此题考查三角形、平行四边形、梯形的面积公式,利用平行线之间的距离处处相等是解决问题的关键.二.生活中的平移现象(共10小题)4.(2021春•大丰区月考)下列现象是数学中的平移的是()A.树叶从树上落下B.电梯从底楼升到顶楼C.骑自行车时轮胎的滚动D.钟摆的摆动【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:A、树叶从树上落下,不是平移,故此选项不符合题意;B、电梯从底楼升到顶楼是平移,故此选项符合题意;C、骑自行车时的轮胎滚动是旋转,故此选项不符合题意;D、钟摆的摆动,不是平移,故此选项不符合题意;故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动叫平移,学生混淆图形的平移与旋转或翻转,而误选.5.(2021春•海州区期末)如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则()A.甲和乙同时到B.甲比乙先到C.乙比甲先到D.无法确定【分析】根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.【解答】解:∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选:A.【点评】本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键.6.(2021春•许昌期末)下列运动属于平移的是()A.小朋友荡秋千B.自行车在行进中车轮的运动C.地球绕着太阳转D.小华乘手扶电梯从一楼到二楼【分析】在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移.根据平移的概念进而得出答案.【解答】解:A、小朋友荡秋千,属于旋转变换,此选项错误;B、行驶的自行车的车轮,属于旋转变换,此选项错误;C、地球绕着太阳转,属于旋转变换,此选项错误;D、小华乘手扶电梯从一楼到二楼,属于平移变换,此选项正确;故选:D.【点评】此题主要考查了生活中的平移,正确掌握平移的概念是解题关键.7.(2021春•徐州期末)木匠有32m的木板,他想要在花圃周围做围栏.他考虑将花圃设计成以下的造型上述四个方案中,能用32m的木板来围成的是①③④(写出所有可能的序号).【分析】根据平移的性质以及矩形的周长公式分别求出各图形的周长即可得解.【解答】解:①周长=2(10+6)=32(m);②∵垂线段最短,∴平行四边形的另一边一定大于6m,∵2(10+6)=32(m),∴周长一定大于32m;③周长=2(10+6)=32(m);④周长=2(10+6)=32(m);故答案为:①③④.【点评】本题考查了矩形的周长,平行四边形的周长公式,平移的性质,根据平移的性质第一个图形,第三个图形的周长相当于矩形的周长是解题的关键.8.(2021春•南开区期末)一个长方形花园,长为a,宽为b,中间有两条互相垂直的宽为c的路,则可种花的面积为ab﹣ac﹣bc+c2.【分析】将路平移到花园的两边,即可找到种花的两边的长度即可求面积.【解答】解:将路平移到花园两边,所得种花的两边的长度分别为:(a﹣c)、(b﹣c).∴种花的面积为:(a﹣c)(b﹣c)=ab﹣ac﹣bc+c2故答案为:ab﹣ac﹣bc+c2.【点评】本题考查了列代数式,以及平移的知识,能根据题意正确列出代数式是解此题的关键.9.(2021春•江都区校级期末)白云宾馆在装修时,准备在主楼梯上铺上红地毯.已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买这种地毯至少需要504元.【分析】根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长宽分别为5.8米,2.6米,即可得地毯的长度为2.6+5.8=8.4(米),地毯的面积为8.4×2=16.8(平方米),故买地毯至少需要16.8×30=504(元).故答案为:504.【点评】此题考查了平移的应用,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.10.(2021春•依安县期末)如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为98米.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,∴图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故答案为:98.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.11.(2020秋•海州区校级期中)某公园准备修建一块长方形草坪,长为30米,宽为20米,并在草坪上修建如图所示的十字路,已知十字路宽x米,请回答下列问题:(1)草坪(阴影部分)的面积是多少平方米?(2)修建十字路的面积是多少平方米?(3)如果十字路宽4米,那么草坪(阴影部分)的面积是多少平方米?【分析】(1)阴影面积等于矩形面积减去道路面积;(2)根据修建的十字路面积=两条路的面积和﹣重叠部分的面积得出;(3)根据长方形草坪的面积﹣十字路的面积=草坪(阴影部分)的面积得出.【解答】解:(1)30×20﹣(30x+20x﹣x2)=600﹣50x+x2(平方米),答:草坪(阴影部分)的面积是(600﹣50x+x2)平方米;(2)30x+20x﹣x2=50x﹣x2(平方米),答:修建十字路的面积是(50x﹣x2)平方米;(3)600﹣50x+x2=600﹣50×4+4×4=416(平方米),答:草坪(阴影部分)的面积416平方米.【点评】本题考查了列代数式及代数式求值的问题,解题的关键是灵活运用公式:整体面积=各部分面积之和,阴影部分面积=原面积﹣空白的面积.12.(2020秋•江阴市校级月考)根据图中标示的数据,计算图形的周长(单位:mm)【分析】经过线段的平移,该图形可变为一个长为(29+14),宽为(10+11+2)的长方形.【解答】解:如图形的周长=(29+14+10+11+2)×2=132mm.【点评】本题主要考查的是平移的性质,经过线段的平移将原图形转化为一个矩形的周长是解题的关键.13.(2015春•宝应县期中)在长为12m,宽为9m的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,其示意图如图所示,求其中一个小长方形花圃的长和宽.【分析】由图形可看出:小矩形的2个长+一个宽=12m,小矩形的2个宽+一个长=9m,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:,即小矩形的长为5m,宽为2m.答:小矩形花圃的长和宽分别为5m,2m.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.三.平移的性质(共10小题)14.如图,△ABC向右平移2cm得到△DEF,如果△ABC的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.22cm【分析】根据平移的性质得到BE=AD=CF,DF=AC,根据四边形的周长公式计算,得到答案.【解答】解:∵△ABC向右平移2cm得到△DEF,∴BE=AD=CF=2(cm),DF=AC,∵△ABC的周长是16cm,∴AB+AC+BC=16cm,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=16+2+2=20(cm),故选:C.【点评】本题考查的是平移的性质,根据平移的性质求出AD和CF以及DF=AC是解题的关键.15.如图,在△ABC中,BC=7,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF 的位置,若CF=4,则下列结论中错误的是()A.DF=7B.∠F=30°C.AB∥DE D.BE=4【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=7,∠A=80°,∠B=70°,∴EF=BC=7,CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴B、C、D正确,A错误,故选:A.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.16.(2021春•凤山县期末)如图,△ABC沿着BC方向平移到△DEF,已知BC=6、EC=2,那么平移的距离为()A.2B.4C.6D.8【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=6﹣2=4,进而可得答案.【解答】解:由题意平移的距离为BE=BC﹣EC=6﹣2=4,故选:B.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.17.(2021春•罗湖区校级期末)如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.18.(2021春•河源期末)如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为()A.20B.24C.25D.26【分析】由S△ABC=S△DEF,推出S四边形ABEH=S阴即可解决问题;【解答】解:∵平移距离为4,∴BE=4,∵AB=8,DH=3,∴EH=8﹣3=5,∵S△ABC=S△DEF,∴S四边形ABEH=S阴∴阴影部分的面积为=×(8+5)×4=26故选:D.【点评】此题主要考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,要熟练掌握.19.(2021春•江都区期中)如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=60°.【分析】作OC∥m,如图,利用平移的性质得到m∥n,则判断OC∥n,根据平行线的性质得∠1=∠OBC=30°,∠2+∠AOC=180°,从而得到∠2+∠3的度数.【解答】解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.20.(2021春•兴化市期末)把一副直角三角尺如图摆放,∠C=∠F=90°,∠CAB=60°,∠FDE=45°,斜边AB、DE在直线l上,△ABC保持不动,△DEF在直线l上平移,当以点A、E、F三点为顶点的三角形是直角三角形时,则∠CAF的度数是15或30.【分析】有两种情形,当点D运动到与A重合时,△AEF是直角三角形,当点D运动到A是DE中点时,△AEF是直角三角形.【解答】解:当点D运动到与A重合时,△AEF是直角三角形,此时∠CAF=60°﹣45°=15°当点D运动到A是DE中点时,△AEF是直角三角形,此时∠CAF=90°﹣60°=30°,∴∠CAF的度数为15或30,故答案为:15或30.【点评】本题考查平移的性质,直角三角形的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.21.(2021春•镇江期末)如图,在三角形ABC中,∠ABC=90°,BC=7,把△ABC向下平移至△DEF后,AD=CG=4,则图中阴影部分的面积为20.【分析】先根据平移的性质得到AD=BE=4,EF=BC=6,S△ABC=S△DEF,则BG=3,由于S阴影部分=S梯形BEFG,所以利用梯形的面积公式计算即可.【解答】解:如图,∵△ABC向下平移至△DEF,∴AD=BE=4,EF=BC=6,S△ABC=S△DEF,∵BG=BC﹣CG=7﹣4=3,∴S梯形BEFG=(3+7)×4=20,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=20.故答案为:20.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.22.(2020春•惠来县期末)如图,AD∥BC,∠B=∠D=50°,点E、F在BC上,且满足∠CAD =∠CAE,AF平分∠BAE.(1)∠CAF=65°;(2)若平行移动CD,那么∠ACB与∠AEB度数的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(3)在平行移动CD的过程中,是否存在某种情况,使∠AFB=∠ACD?若存在,求出∠ACD 度数;若不存在,说明理由.【分析】(1)证明∠CAF=∠BAD,求出∠BAD即可.(2)证明∠EAC=∠ECA,再利用三角形的外角的性质解决问题即可.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,构建方程组解决问题即可.【解答】解:(1)∵AD∥BC,∴∠B+∠BAD=180°,∵∠B=50°,∴∠BAD=130°,∵AF平分∠BAE,∴∠BAF=∠EAF,∵∠CAD=∠CAE,∴∠CAF=∠BAE+∠DAE=∠BAD=65°,故答案为65.(2)结论:∠ACB与∠AEB度数的比值不变.理由:∵AD∥BC,∴∠CAD=∠ACE,∵∠CAD=∠CAE,∴∠ACE=∠CAE,∵∠AEB=∠ACE+∠CAE=2∠ACB,∴∠ACB:∠AEB=1:2.(3)设∠ACD=x,∠CAD=y.则有x+y=130°,∵∠AFB=∠ACD=∠ACB+∠CAF,∴x=65°+y,解得x=97.5°,∴∠ACD=97.5°.【点评】本题考查平行线的性质,平移变换,三角形内角和定理,三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(2019春•江宁区期中)如图1,已知直线a∥b,点A、E在直线a上,点B、F在直线b上,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧.若将线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.试探索∠1的度数与∠EPB的度数有怎样的关系?为了解决以上问题,我们不妨从EF的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图2,当∠1=40°,且点P在直线a、b之间时,求∠EPB的度数;(2)当∠1=70°时,求∠EPB的度数;【一般化】(3)当∠1=n°时,求∠EPB的度数.(直接用含n的代数式表示)【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P 在直线a上方或直线b下方时.【解答】解:(1)如图2,作PG∥a,∴∠EPG=∠EFC=40°∵a∥b∴PG∥b∴∠GPB+∠CBD=180°,又∵BD是∠ABC平分线,且∠ABC=100°,∴∠GPB=180°﹣2(1)∠ABC=130°∴∠EPB=∠EPG+∠GPB=170°,(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当n>50°时,交点P在直线a上方,∠EPB=n﹣50°,交点P在直线a、b之间,∠EPB=230°﹣n交点P在直线b下方,∠EPB=n﹣50°,②当n<50°时,交点P在直线a上方,∠EPB=50°﹣n交点P在直线a、b之间,∠EPB=130°+n交点P在直线b下方,∠EPB=50°﹣n.【点评】本题考查了平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.四.作图-平移变换(共2小题)24.(2009春•宿豫区期中)将图中的三角形ABC向右平移6格.略.【分析】分别作出点A、B、C的对应点,顺次连接即可.【解答】解:【点评】本题需注意,作平移图形时,找关键点的对应点是主要的一步.25.(2021春•睢宁县月考)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.(1)请在图中画出△ABC向上平移3个单位后的△A1B1C1;(2)图中AC与A1C1的关系是:AC=A1C1,AC∥A1C1.(3)画出△ABC的AB边上的高CD;垂足是D;(4)图中△ABC的面积是8.【分析】(1)将各点的横坐标不变、纵坐标加3可得;(2)根据平移的性质解答即可.(3)从C点向AB的延长线作垂线,垂足为点D,CD即为AB边上的高;(4)根据三角形面积公式即可求出△ABC的面积.【解答】解:(1)如图所示:(2)AC=A1C1,AC∥A1C1;故答案为:AC=A1C1,AC∥A1C1;(3)如图所示;(4)△ABC的面积=;故答案为:8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.五.利用平移设计图案(共3小题)26.(2021春•江都区期中)下列所示的车标图案,其中可以看作由“基本图案”经过平移得到的是()A.B.C.D.【分析】根据平移的概念;在平面内,将一个图形整体沿某一方向移动,这种图形移动,叫做平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知C符合题意,故选:C.【点评】本题主要考查了图形的平移,注意区分图形的平移、旋转、翻折是解题的关键.27.(2021春•鼓楼区校级月考)平移小平行四边形◇可以得到美丽的“中国结”图案,下面四个图案是由小平行四边形◇平移后得到的类似“中国结”的图案,按图中规律,在第n个图案中,小平行四边形◇的个数是2n2个【分析】仔细观察图形发现第一个图形有2×12个小平行四边形,第二个图形有2×22个小平行四边形,第三个图形有2×32个小平行四边形,…由此规律得到第n个图形有2n2个小平行四边形,可求得答案.【解答】解:第一个图形有2×12=2个小平行四边形,第二个图形有2×22=8个小平行四边形,第三个图形有2×32=18个小平行四边形,…第n个图形有2n2个小平行四边形.故答案为:2n2.【点评】此题考查了图形的变化类规律,解题的关键是仔细观察图形的变化,并找到图形的变化规律,利用规律解决问题.28.(2021春•新吴区月考)请把下面的小船图案先向上平移3格,再向右平移4格.【分析】分别作出△MNE和梯形ABCD向上平移3格,再向右平移4格的对应位置即可.【解答】解:如图所示:.【点评】此题主要考查了图形的平移,关键是掌握平移后图形的大小和形状不发生改变.题组A 基础过关练一.选择题(共4小题)1.(2021春•高邮市期末)现实世界中,平移现象无处不在,中国的方块字中有些也具有平移性,下列汉字是由平移构成的是()A.B.C.D.【分析】根据平移的基本性质,汉字只需由两或三个完全相同的部分组成即可.【解答】解:根据题意,由两或三个完全相同的部分组成的汉字即可,∴“朋”可以通过平移得到.故选:B.【点评】本题考查了平移的基本性质的运用,熟知图形平移不变性的性质是解答此题的关键.2.(2020•如皋市一模)如图,△ABC沿着由点B到点E的方向,平移到△DEF.若BC=5,EC =3,则平移的距离为()A.7B.5C.3D.2分层提分【分析】根据平移的性质即可解决问题.【解答】解:由题意得平移的距离为:BE=BC﹣EC=5﹣3=2,故选:D.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.3.(2021春•汉阳区期末)下列生活现象中,属于平移的是()A.足球在草地上滚动B.拉开抽屉C.把打开的课本合上D.钟摆的摆动【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【解答】解:A.足球在草地上滚动方向变化,不符合平移的定义,不属于平移,故本选项错误;B.拉开抽屉符合平移的定义,属于平移,故本选项正确;C.把打开的课本合上,不符合平移的定义,不属于平移,故本选项错误;D.钟摆的摆动是旋转运动,不属于平移,故本选项错误;故选:B.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移与旋转或翻转,而选择错误.注意平移是图形整体沿某一直线方向移动.4.(2021春•郫都区校级期中)如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC 沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4B.∠F=30°C.AB∥DE D.DF=5【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.二.填空题(共10小题)5.(2020•蠡县一模)如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为20cm.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴CF=AD=2cm,AC=DF,∵△ABC的周长为16cm,∴AB+BC+AC=16cm,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+CF+AD=16cm+2cm+2cm=20cm.故答案为:20cm.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.6.(2021春•鼓楼区期中)如图,这个图形的周长是18.【分析】本题可将图形的边长拆分、拼成一个矩形,从而求得周长.【解答】解:将图形的上面部分的边都向上和向左右、平移,可得一个长为5、宽为4的矩形,∴这个图形的周长为4+4+5+5=18.故答案为:18.【点评】解答本题的关键是将这个图形拼成学过的简单图形,从而求解.7.(2018春•新沂市期中)如图,在△ABC中,BC=5cm,把△ABC沿直线BC的方向平移到△DEF的位置,若EC=2cm,则平移的距离为3cm.【分析】根据平移的性质可得对应点连接的线段是AD、BE和CF,结合图形可直接求解.【解答】解:观察图形可知,对应点连接的线段是AD、BE和CF.∵BC=5cm,CE=2cm,∴平移的距离=BE=BC﹣EC=3cm.故答案为:3.【点评】本题主要考查了平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.8.(2018春•镇江期末)如图所示,一块长为m,宽为n的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d的长度,则由此产生的裂缝面积是dn.【分析】利用新长方形的面积减去原长方形的面积得到产生的裂缝的面积.【解答】解:产生的裂缝的面积=(m+d)n﹣mn=dn.答:产生的裂缝的面积是dn.故答案为:dn.【点评】本题考查了生活中的平移现象.解题的关键是掌握平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.9.(2021春•姜堰区期末)如图,在△ABC中,D是BC的中点,将△ABC沿BC向右平移得△A'DC',若点A平移的距离AA'=4cm,则BC=8cm.。
图形的平移课前测试【题目】课前测试如图,将网格中的三条线段沿网格的水平方向或垂直方向平移后组成一个首尾顺次相接的三角形,那么这三条线段在水平方向与垂直方向移动的总格数最小是()A.6 B.7 C.8 D.9【答案】B.【解析】要使平移的个数最少,可将它们朝同一方向共同移动,此时需要平移的格数最少.解:如图,将网格中的三条线段沿网格线平移后组成一个首尾相接的三角形,根据平移的基本性质知:左边的线段向右平移3格,中间的线段向下平移2格,最右边的线段先向左平移1格,再向上平移1格,此时平移的格数最少为:3+2+1+1=7,其它平移方法都超过7格,所以至少需要移动7格.故选:B.总结:本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.【难度】4【题目】课前测试如图,已知△ABC平移后得到△DEF,则以下说法中,不正确的是()A.AC=DF B.BC∥EFC.平移的距离是BD D.平移的距离是AD【答案】C【解析】根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等结合图形与所给的选项即可得出答案.解:A.对应线段相等可得AC=DF,正确,故此选项不符合题意;B.对应线段平行可得BC∥EF,正确,故此选项不符合题意;C.平移的距离应为同一点移动的距离,错误,故此选项符合题意;D.平移的距离为AD,正确,故此选项不符合题意.故选:C.总结:此题主要考查了平移的性质,属于基础题,难度不大,灵活应用平移性质是解决问题的关键.【难度系数】3知识定位适用范围:沪教版,七年级知识点概述:本章重点部分是图形的平移。
了解,掌握平移概念以及图形平移的基本性质,并且能画出的平移后的图形,在考试中会出现图形平移的问题,平移的距离问题,以及平移距离最短的题目,题目有难有容易的,需要多见一些题型,很好掌握出题方向。
适用对象:基础差,成绩中等的学生注意事项:所有同学要牢牢掌握平移的性质,多做一些题目,在考试中这部分题目不要丢分,要多积累一些好题,新题。
七年级下册平移知识点平移是指平面内点、线、面沿着某一方向移动一段距离,仍保持原来变化前的形态和大小。
下面是七年级下册数学中平移的重点知识点。
一、平移的基本概念平移就是通过加上一个固定的向量,将图形上的点或线段等移动到新位置。
平移操作下,图形的形状不变,只是位置发生改变。
平移的方向描述需使用向量,向量的长度表示平移的距离,向量箭头的方向表示平移的方向。
若向量 $\overrightarrow {AB}$ 表示向右移动 $2$ 格,向上移动 $3$ 格,则可使用向量$\overrightarrow {AB}$ 描述这个平移操作。
二、平移的性质1. 平移本质不改变二维图形的面积和周长等几何性质。
2. 两次平移相当于一次平移。
3. 平移满足三角不等式(即旧位置到新位置的最短距离小于等于平移的距离)。
三、平移的一些应用1. 图形的对称性可以用平移的方式来刻画。
2. 实际上,平移和翻转都是有循环对称性的几何操作,通常可用于制作一些类似图案的艺术品。
3. 在地图上进行缩放时,也可以考虑将整个地图平移一定的距离来实现。
(注:常见的 Google 地图缩放其实就是使用了这种方式)四、平移的练习方法1. 通过练习平移来提高视觉空间能力和几何感。
2. 多尝试将不同的图形进行平移,尝试在平移距离和方向上进行变化,让自己更加熟练地掌握这一技能。
3. 保存一些图片,将其进行平移,然后观察其变化。
四、平移的实际应用平移不仅在数学中有着重要的地位,也在现实生活中有着广泛的应用。
例如:1. 制作地图时采用平移技术进行缩放和移动以获得更加精准的地图位置。
2. 室内设计时可用平移来改变家具的位置以适应房间内的布局。
3. 通过平移操作来改变线路设计,使得传输传输的信号更加稳定。
总之,平移是一项非常重要的几何操作,不仅仅存在于数学中,还在日常生活中存在着广泛的应用。
通过深入学习该技能,可以让我们在日后的学习和实际应用中更加得心应手。
苏科版数学七年级下册7.3《图形的平移》教学设计一. 教材分析《图形的平移》是苏科版数学七年级下册第七章第三节的内容。
本节课主要让学生理解平移的性质,学会用平移的方法对图形进行变换,培养学生的动手操作能力和空间想象能力。
教材通过例题和练习题,使学生掌握平移的定义、平移的方向和距离、平移的性质,并能够运用平移解决实际问题。
二. 学情分析学生在七年级上学期已经学习了图形的旋转,对图形的变换有了一定的认识。
但平移与旋转有很大的区别,平移不改变图形的方向,而旋转则会改变图形的方向。
因此,在教学过程中,教师需要引导学生区分平移和旋转,并理解平移的性质。
三. 教学目标1.知识与技能:让学生理解平移的定义,掌握平移的方向和距离,了解平移的性质,学会用平移的方法对图形进行变换。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手操作能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:平移的定义、平移的方向和距离、平移的性质。
2.难点:理解平移与旋转的区别,运用平移解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平移的概念,让学生在实际情境中感受平移的意义。
2.互动教学法:引导学生进行小组讨论,培养学生的团队协作能力和交流能力。
3.启发式教学法:教师提问,学生思考,引导学生主动探索平移的性质。
4.实践操作法:让学生动手操作,实际操作中掌握平移的方法。
六. 教学准备1.教具:多媒体课件、图形卡片、练习题。
2.学具:学生用书、练习本、文具。
七. 教学过程1.导入(5分钟)教师通过展示生活中的平移现象,如电梯上升、滑滑梯等,引导学生思考:这些现象有什么共同特点?学生回答后,教师总结平移的定义。
2.呈现(10分钟)教师用多媒体课件展示平移的性质,引导学生观察、思考:平移是如何改变图形的位置和方向的?学生回答后,教师总结平移的方向和距离、平移的性质。
七年级下册的平移知识点平移,也叫做移动或者平移变换,是几何学中的一种常见的变换方式。
在数学中,表示一个图形沿着平面内的一个向量移动,从而生成另一个所需的几何图形,新的图形与原图形具有相同的形状和大小,只是位置不同。
一、平移的定义平移就是把几何图形沿着一个固定方向的一条线段上移动一定的距离,使图形中所有点移动到一个新的位置,平移的过程中保持图形大小和形状不变。
二、平移的性质1. 平移保持图形大小和形状不变;2. 平移前后图形在平面上的位置发生改变,但是图形的方向、形状、大小、面积等性质不变;3. 平移的过程中,所有的点都是平移相同的距离和相同的方向。
三、平移的步骤平移的基本步骤如下:1. 确定平移向量,即平移方向和距离;2. 选择一个参考点,任意一个点都可以;3. 沿着平移向量方向,以参考点为基础,将原图形上的所有点平移相同的距离到相应的位置。
四、平移的应用平移是几何变换中最为常见的一种,应该说几乎所有的几何图形都可以通过平面移动来实现变换。
1. 平移可以用于解决数学问题,如计算角平分线、中垂线等问题;2. 平移可以用于解决实际问题,如建筑、制图、数控加工等中的布局、对称、找定位点等问题;3. 平移对于学习几何和计算机图形学都非常重要,可以用于模拟、计算机辅助设计等。
五、平移的小技巧1. 选择一个容易计算的点作为原点,使之在移动过程中保持不变;2. 在移动前需要较为熟练地掌握各类平移的步骤和技巧;3. 在移动时可以使用类似轮廓的方式,先确定顶点位置,再确定直线等。
总之,平移是数学和几何学中一个非常重要的概念,需要我们在学习过程中认真掌握,灵活运用。
七年级数学下册平移知识点整理
1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。
2、特征:
① 发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);
② 对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。
如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。
当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。
3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
(1)确定平移后图形的基本要素有两个:平移方向、平移距离.
(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方
向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。
专题7.9 图形的平移(全章知识梳理与考点分类讲解)【知识点一】平移的定义定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.要点提醒:(1)图形的平移的两要素:平移的方向与平移的距离.(2)图形的平移不改变图形的形状与大小,只改变图形的位置.【知识点二】平移的性质性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1)平移后,对应线段平行且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行且相等;(4)平移后,新图形与原图形是一对全等图形.要点提醒:(1)“连接各组对应点的线段”的线段的长度实际上就是平移的距离.(2)要注意“连接各组对应点的线段”与“对应线段”的区别,前者是通过连接平移前后的对应点得到的,而后者是原来的图形与平移后的图形上本身存在的.【知识点三】利用平移的性质作图平移作图是平移基本性质的应用,在具体作图时,应抓住作图的“四步曲”--定、找、移、连.(1)定:确定平移的方向和距离;(2)找:找出表示图形的关键点;(3)移:过关键点作平行且相等的线段,得到关键点的对应点;(4)连:按原图形顺次连接对应点.【考点目录】【考点1】生活中的平移现象;【考点2】图形的平移;(1)求种花草的面积;(2)若空白的部分种植花草共花费了【变式1】(2011下·广东惠州2.如图所示的图案分别是三菱、大众、奥迪、奔驰汽车的车标,其中可以看着是由本图案”经过平移得到的是(A....【变式2】(2023下·贵州铜仁.在一矩形花园里有两条绿化带.如图所示的阴影部分,A(1)把ABC 先向右移动5个单位长度,再向下移动111A B C △(其中点A 的对应点为1A ,点(2)连接1AA ,1BB ,判定1AA 与1BB 【变式1】(2022下·浙江宁波·七年级浙江省鄞州区宋诏桥中学校考期末)5.下列选项中,能由原图平移得到的是A ....【变式2】(2023北京朝阳·七年级校考期中)如图,在正方形网格中有两个直角三角形,顶点都在格点上,DEF 先横向平移格,再纵向平移格,就能与ABC 拼合成一个四边形,那么 .【考点3】通过平移的性质求值与证明;【例3】(2023下·全国·八年级假期作业)【变式1】(2023下·海南省直辖县级单位8.如图,将等边ABC 沿射线CA 2AD =,CF 10=,则BE 的长为(A .4B .【变式2】(2023下·全国·9.如图,将ABC 沿直线CBD ∠的度数为 .【例4】(2023下·全国10.如图,线段AB ,BC 接AE ,B E ∠=∠.将线段(1)求证:AE BC ∥(2)若75E ∠=︒,A.6【变式2】(2023下·全国沿直线12.如图,将ABCBE的长是.【考点5】平移的性质应用;A.①②都正确B.①正确,D.①不正确,【变式2】(2023下·浙江嘉兴·七年级校联考阶段练习)15.一建筑物楼梯样式如图所示,经测量得出计算出折线AC(即楼梯表面AJIHGFEDC1.(1)种花草的面积为42平方米;(2)每平方米种植花草的费用是110元【分析】(1)将道路直接平移到矩形的边上,进而根据长方形的面积公式得出答案;(2)根据(1)中所求,代入计算即可得出答案.【详解】解:(1)()()8281-⨯-67=⨯42=(平方米)答:种花草的面积为42平方米;(2)462042110÷=(元)答:每平方米种植花草的费用是110元.【点睛】此题考查了生活中的平移现象,解题的关键是要利用平移的知识,把要求的所有道路平移到矩形的边上进行计算.2.C【分析】根据平移的性质:不改变物体的形状和大小,朝一个方向移动能够得到的图形.【详解】解:观察图形可知A ,D 选项的图形由旋转可得到,B 选项的图形由对折可得到;选项C 的图形是通过图形平移得到的,符合题意;∴选项A 、B 、D 图形不能通过平移得到,不符合题意.故选C【点睛】此题考查了图形的平移,平移只改变位置,不改变大小和性质,要注意与旋转和翻折的区别是解题的关键.3.12S S =【分析】设矩形花园的宽a ,根据题意可知,两条绿化地的面积都相当于长为AB ,宽为a 的长方形的面积.【详解】解:设矩形花园的宽a ,根据题意可知,两条绿化地的面积都相当于长为AB ,宽为a 的长方形的面积,∴12S S =,故答案为:12S S =.【点睛】本题考查了生活中的平移,根据平移确定绿化带的长和宽是解题的关键.4.(1)见解析(2)11AA BB ,7(2)解:由平移可知,11AA BB .111A B C △的面积为()1123522⨯+⨯-⨯5.C【分析】本题考查了图形的平移,根据平移的性质即可求解,求解.【详解】解:只有C 的图形的形状和大小没有变化,符合平移的性质,属于平移得到.当DEF 平移到如图2所示的位置时,则此时33x y ==,,∴6x y +=;当DEF 平移到如图3所示的位置时,则此时41x y ==,,∴5x y +=;【解析】略13.①1470平方米;②1421平方米;③109米【分析】①结合图形,利用平移的性质求解;②结合图形,利用平移的性质求解;③结合图形,利用平移的性质求解.【详解】①将小路往左平移,直到E 、F 与A 、B 重合,则平移后的四边形11EFF E 是一个矩形,并且30EF AB ==,111FF EE ==,则草地的面积为:50301301470´-´=(平方米);②将小路往AB 、AD 边平移,直到小路与草地的边重合,则草地的面积为:()()5013011421-⨯-=(平方米);③将小路往AB 、AD 、DC 边平移,直到小路与草地的边重合,则所走的路线(图中虚线)长为:30503011101109++-=-=(米).【点睛】本题结合图形的平移考查有关面积的问题,需要注意的是:平移前后图形的大小、形状都不改变,熟练掌握平移的性质和长方形的面积公式是解题的关键.14.B【分析】根据平移的性质可得ABC DEF S S = ,AD EC ∥,AD BE =,即可得出结果.【详解】解:由平移可得:ABC DEF S S = ,∴ABC GEC DEF GEC S S S S -=- ,即ABEG CGDF S S =四边形四边形,故①正确;由平移的性质可得:AD EC ∥,AD BE =,故②错误,故选:B .【点睛】本题考查平移的性质,熟练掌握把一个图形整体沿某一直线移动,会得到一个新图形,新图形与原图形的形状和大小完全一样是解题的关键.15.7dm【分析】楼梯长度的和等于楼梯的水平宽度与垂直高度的和.【详解】解:如下图,过点I ,G ,E 作MI BC ∥,NG BC ∥,ZE BC ∥交AB 于点M ,N ,Z ,过点I ,G ,E 作IX AB ∥,GY AB ∥,EP AB ∥交BC 于点X ,Y ,P ,由图可知:JI AM =,HG MN =,FE NZ =,CD ZB =,AJ BX =,HI XY =,GF YP =,ED PC =,∴折线()()347dm AC AJ IH GF ED JI HG EF DC =+++++++=+=,故答案为:7dm .【点睛】此题主要考查了平移的知识,与实际生活相联系,熟练掌握平移的知识并灵活运用是解答本题的关键.。